
Form Approved

REPORT DOCUMENTATION PAGE OMB NO. 0704-0188

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection
of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188,) Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE - 3. REPORT TYPE AND DATES COVERED
FINAL -01 Aug 00 - 30 Apr 01

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

12th Int'l Symposium on Methodologies for Intelligent Systems (ISMIS'00) DAAD19-00-1-0432

6. AUTHOR(S)
Zbigniew W. Ras

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

University of North Carolina - Charlotte

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

U. S. Army Research Office
P.O. Box 12211 ARO 41380.1-C1-CF

Research Triangle Park, NC 27709-2211

11. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision, unless so designated by other documentation.

12 a. DISTRIBUTION / AVAILABILITY STATEMENT 12 b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

See Attached

14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OR REPORT ON THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev.2-89)

Prescribed by ANSI Std. 239-18
298-102

20010517 070

US Army Research Office
A7TN.: AMSRL-RO-ICA (Hall)
4300 South Miami Blvd.
Durham, NC 2 7703-9142

SCIENTIC REPORT By

US Army Special Program: Conference and Symposia Grants

Twelfth International Symposium on Methodologies for
Intelligent Systems (ISMIS'00)
Grant No. DAAD19-00-1-0432
Award: $6,000.00

Principal Investigator:
Dr. Zbigniew W. Ras (UNC-Charlotte, Computer Science)
e-mail: ras@uncc.edu, Telephone: 704-547-4567
http://www.coit.uncc.edul-ras

Institution:
The University of North Carolina at Charlotte
School of Information Technology
Department of Computer Science, Charlotte, N.C. 28223

PROJECT REPORT

ISMIS Symposium was organized by UNC-Charlotte at the University

Hilton Hotel in Charlotte, North Carolina, October 11-14, 2000.

We had 7 invited talks and 59 regular presentations. Special session on

Evolutionary Computation (5 papers) was organized by Z. Michalewicz in

the second day of the Symposium. 112 papers from the universities and

research institutes represented by ISMIS'00 Program Committee members
have been submitted.

ISMIS'00 proceedings are published by Springer-Verlag in LNCS/LNAI
series (No. 1932) with Zbigniew W. Ras (UNC-Charlotte) and Setsuo
Ohsuga (Waseda U., Japan) as its co-editors.

Also, ISMIS'00 Special Issue (about 200 pages long) containing extended
versions of 10 papers presented at ISMIS'00 Symposium will appear in

Fundamenta Informaticae Journal (published by IOS Press) sometime this
year. Zbigniew Ras and Essam El-Kwae are its guest editors.

Papers from the following seven areas have been presented at ISMIS'00:
evolutionary computation, intelligent information retrieval, intelligent
information systems, knowledge representation, knowledge discovery and
learning, logic for artificial intelligence, methodologies.

The list of ISMIS'00 invited speakers & titles of their talks is given below:

0 Jaime Carbonell (CMU)
"A Machine Learning Perspective on Information Filtering"

0 Bruce Croft (UM-Amherst)
"Information Systems Based on Statistical Language Models"

* Philip Emmerman (Army Research Lab)
"Intelligent Agent Battlespace Augmentation"

0 Bill Harris (Bank of America)
"Architecting to Meet Customer Need"

* Ryszard Michalski (GMU)
"Learning and Evolution"

* Jeff Scott (First Union)
"The Intelligent Business" (Banquet Talk)

a Brian Bachman (NCR)
"SQL-based Data Mining Applications" (Software Presentation)

2

Because of ARO grant, ISMIS'00 Organizing Committee was able to
reduce the early registration fee from $330.00 to $320 (and the late
registration fee from $380 to $370) for all ISMIS'00 participants and also
give 6 free registration awards ($1,320.00 in total) to Ph.D. in Information
Technology students from UNC-Charlotte. Their names are listed below:
Shishir Gupta, Vincent Osisek, Dongwan Shin, Pamela Thompson, Neal
Wagner, Xiaochen Zhao.

ARO grant was used to pay the registration fee ($990.00 in total) and the
travel/accommodation expenses at University Hilton for three invited
speakers: Jaime Carbonell, Bruce Croft, Ryszard Michalski.

Also, we used ARO grant to pay partially ISMIS'00 mailing and printing
costs.

We had 82 participants at the symposium.

3

Letr Noe in,

Artfca Intliec 1932

Zbigniew W. Ras Setsuo Ohsuga (Eds.)

Foundations of
Intelligent Systems
12th International Symposium, ISMIS 2000
Charlotte, NC, USA, October 2000
Proceedings

* • Springer

Lecture Notes in Artificial Intelligence 1932
Subseries of Lecture Notes in Computer Science
Edited by J. G. Carbonell and J. Siekmann

Lecture Notes in Computer Science
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

Springer
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Zbigniew W. Ras Setsuo Ohsuga (Eds.)

Foundations of
Intelligent Systems

12th International Symposium, ISMIS 2000
Charlotte, NC, USA, October 11-14, 2000
Proceedings

* Springer

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jorg Siekmann, University of Saarland, Saarbriicken, Germany

Volume Editors

Zbigniew W. Rag
University of North Carolina, Department of Computer Science
Charlotte, NC 28223, USA
E-mail: ras@uncc.edu
and Polish Academy of Sciences, Institute of Computer Science
01-237 Warsaw, Poland

Setsuo Ohsuga
Waseda University, Department of Science and Technology
61-414, 3-4-1, Ohkubo, Shinjuku-ku, 169-8555 Tokyo, Japan
E-mail: ohsuga@fd.catv.ne.jp or ohsuga@ohsuga.info.waseda.ac.jp

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Foundations of intelligent systems : 12th international symposium
proceedings / ISMIS 2000, Charlotte, NC, USA, October 11 - 14, 2000.
Zbigniew W. Ra's ; Setsuo Ohsuga (ed.). - Berlin ; Heidelberg ; New
York; Barcelona; Hong Kong ; London ; Milan ; Paris ; Singapore;
Tokyo: Springer, 2000

(Lecture notes in computer science ; Vol. 1932 : Lecture notes in
artificial intelligence)
ISBN 3-540-41094-5

CR Subject Classification (1998): 1.2, H.3, H.2

ISBN 3-540-41094-5 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH
© Springer-Verlag Berlin Heidelberg 2000
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP-Berlin, Stefan Sossna
Printed on acid-free paper SPIN: 10781187 06/3142 543 2 1 0

Preface

This volume contains the papers selected for presentation at the Twelfth In-
ternational Symposium on Methodologies for Intelligent Systems - ISMIS 2000,
held in Charlotte, N.C., 11-14 October, 2000. The symposium was co-organized
by the College of Information Technology at UNC-Charlotte and the Polish-
Japanese Institute of Information Technology. It was sponsored by the US Army
Research Office, NCR Data Mining Laboratory, College of IT at UNC-Charlotte,
and others.

ISMIS is a conference series that was started in 1986 in Knoxville, Tennessee.
Since then it has been held in Charlotte (North Carolina), Knoxville (Tennessee),
Torino (Italy), Trondheim (Norway), Warsaw (Poland), and Zakopane (Poland).

The program committee selected the following major areas for ISMIS 2000:
Evolutionary Computation, Intelligent Information Retrieval, Intelligent Infor-
mation Systems, Knowledge Representation and Integration, Knowledge Disco-
very and Learning, Logic for Artificial Intelligence, and Methodologies.

The contributed papers were selected from 112 full draft papers by the fol-
lowing program committee: A. Biermann, P. Bosc, J. Calmet, S. Carberry, N.
Cercone, J. Chen, W. Chu, B. Croft, J. Debenham, S.M. Deen, K. DeJong, R.
Demolombe, B. Desai, T. Elomaa, F. Esposito, A. Giordana, J. Grzymala-Busse,
M. Hadzikadic, H. Hamilton, D. Hislop, K. Hori, W. Kloesgen, Y. Kodratoff, J.
Komorowski, J. Koronacki, W. Kosinski, R. Kostoff, B.G.T. Lowden, D. Maluf,
D. Malerba, R.L. de Mantaras, S. Matwin, R. Meersman, Z. Michalewicz, R.
Michalski, R. Mizoguchi, M. Mukaidono, L. De Raedt, V. Raghavan, E. Rosent-
hal, L. Saitta, A. Skowron, V.S. Subrahmanian, S. Tsumoto, T. Yamaguchi, G.P.
Zarri, M. Zemankova, N. Zhong, J.M. Zytkow. Additionally, we acknowledge the
help in reviewing papers from: E. El- Kwae, S. Ferilli, M. Kryszkiewicz, and A.
Wieczorkowska.

We wish to express our thanks to Jaime Carbonell, Bruce Croft, Philip Em-
merman, Bill Harris, and Ryszard Michalski who presented invited talks at the
symposium. Also, we are thankful to Zbigniew Michalewicz for organizing the
Special Session on Evolutionary Computation. We express our appreciation to
the sponsors of the symposium and to all who submitted papers for presenta-
tion and publication in the proceedings. Our sincere thanks go to the Organi-
zing Committee of ISMIS 2000. Also, our thanks are due to Alfred Hofmann of
Springer-Verlag for his continuous help and support.

August 2000 Zbigniew W. Raý
Setsuo Ohsuga

Table of Contents

Invited Papers

Information Retrieval Based on Statistical Language Models 1

W. Bruce Croft

Intelligent Agent Battlespace Augmentation 12

Philip J. Emmerman and Uma Y. Movva

Learning and Evolution: An Introduction to Non-darwinian Evolutionary
C om putation .. 21

Ryszard S. Michalski

Regular Papers

IA Knowledge Discovery and Learning

Can Relational Learning Scale Up? 31

Attilio Giordana, Lorenza Saitta, Miehele Sebag, and Marco Botta

Discovering Geographic Knowledge: The INGENS System 40
Donato Malerba, Floriana Esposito, Antonietta Lanza, and
Francesca A. Lisi

Temporal Data Mining Using Hidden Periodicity Analysis 49

Weiqiang Lin and Mehmet A. Orgun

M ining N-most Interesting Itemsets 59

Ada W.-c. Fu, Renfrew W.-w. Kwong, and Jian Tang

1B Intelligent Information Retrieval

Repository Management in an Intelligent Indexing Approach for
M ultim edia Digital Libraries .. 68

B. Armani, E. Bertino, B. Catania, D. Laradi, B. Manin,
and G.P. Zarri

Logic-Based Approach to Semistructured Data Retrieval 77

Mohand-Sai'd Hacid and Farouk Toumani

High Quality Information Retrieval for Improving the Conduct and
Management of Research and Development 86

Ronald N. Kostoff

VIII Table of Contents

Signature-Based Indexing for Retrieval by Spatial Content in Large
2D-String Image Databases ... 97

Essam A. El-Kwae

2A Knowledge Discovery and Learning

Refining Logic Theories under OI-Implication 109
Floriana Esposito, N. Fanizzi, S. Ferilli, and G. Semeraro

Rule Quality Measures Improve the Accuracy of Rule Induction:
An Experimental Approach ... 119

Aijun An and Nick Cercone

A Dynamic Approach for Knowledge Discovery of Web Access Patterns... 130
Alaaeldin Hafez

Data Reduction via Conflicting Data Analysis 139
M. Boussouf and M. Quafafou

A Comparison of Rule Matching Methods Used in AQ15 and LERS 148
Jerzy W. Grzymala-Busse and Pankaj Shah

2B Evolutionary Computation

Evolving Behaviors for Cooperating Agents 157
Jeffrey K. Bassett and Kenneth A. De Jong

Evolving Finite-State Machine Strategies for Protecting Resources 166
William M. Spears and Diana F. Gordon

A Method of Generating Program Specification from Description of Human
A ctivities ... 176

Shuhei Kawasaki and Setsuo Ohsuga

PLAtestGA: A CNF-Satisfiability Problem for the Generation of Test
Vectors for Missing Faults in VLSI Circuits 186

Alfredo Cruz

Evaluating Migration Strategies for an Evolutionary Algorithm Based on
the Constraint-Graph that Solves CSP 196

Arturo Nztiiez and Maria-Cristina Riff

3A Methodologies

Relative Robustness: An Empirical Investigation of Behaviour Based and
Plan Based Paradigms as Environmental Conditions Change 205

Jennifer Kashmirian and Lin Padgham

Table of Contents IX

A Heuristic for Domain Independent Planning and Its Use in an Enforced
Hill-Climbing Algorithm .. 216

Jarg Hoffmann

Planning while Executing: A Constraint-Based Approach 228
R. Barruffi, M. Milano, and P. Torroni

3B Intelligent Information Systems

Problem Decomposition and Multi-agent System Creation for Distributed
Problem Solving ... 237

Katsuaki Tanaka, Michiko Higashiyama, and Setsuo Ohsuga

A Comparative Study of Noncontextual and Contextual Dependencies 247
S.K.M. Wong and C.J. Butz

Extended Query Answering Using Integrity Rules 256
Barry G. T. Lowden and Jerome Robinson

4A Knowledge Discovery and Learning

Finding Temporal Relations: Causal Bayesian Networks vs. C4.5 266
Kamran Karimi and Howard J. Hamilton

Learning Relational Clich6s with Contextual LGG 274
Johanne Morin and Stan Matwin

Design of Rough Neurons: Rough Set Foundation and Petri Net Model ... 283
J.F. Peters, A. Skowron, Z. Suraj, L. Han, and S. Ramanna

Towards Musical Data Classification via Wavelet Analysis 292
Alicja Wieczorkowska

4B Logic for Al

Annotated Hyperresolution for Non-horn Regular Multiple-Valued Logics . 301
James J. Lu, Neil V. Murray, and Erik Rosenthal

Fundamental Properties on Axioms of Kleene Algebra 311
Tomoko Ninomiya and Masao Mukaidono

Extending Entity-Relationship Models with Higher-Order Operators 321
Antonio Badia

Combining Description Logics with Stratified Logic Programs in
Knowledge Representation .. 331

Jianhua Chen

X Table of Contents

5A Knowledge Discovery and Learning

Emergence Measurement and Analyzes of Conceptual Abstractions During
Evolution Simulation in OOD 340

Mourad Oussalah and Dalila Tamzalit

Using Intelligent Systems in Predictions of the Bacterial Causative Agent
of an Infection ... 349

Diana R. Cundell, Randy S. Silibovsky, Robyn Sanders, and
Les M. Sztandera

An Intelligent Lessons Learned Process 358
Rosina Weber, David W. Aha, Hector Mufioz-Avila, and
Leonard A. Breslow

5B Intelligent Information Systems

What the Logs Can Tell You: Mediation to Implement Feedback in
T raining .. 368

David A. Maluf and Gio Wiederhold

Top-Down Query Processing in First Order Deductive Databases under
the D W F S .. 377

C.A. Johnson

Discovering and Resolving User Intent in Heterogeneous Databases 389
Chris Fernandes and Lawrence Henschen

6A Learning and Knowledge Discovery

Discovering and Matching Elastic Rules from Sequence Databases 400
Sanghyun Park and Wesley W. Chu

Perception-Based Granularity Levels in Concept Representation 409
Lorenza Saitta and Jean-Daniel Zucker

Local Feature Selection with Dynamic Integration of Classifiers 417
Alexey Tsymbal and Seppo Puuronen

Prediction of Ordinal Classes Using Regression Trees 426
Stefan Kramer, Gerhard Widmer, Bernhard Pfahringer, and
Michael de Groeve

6B Intelligent Information Retrieval

Optimal Queries in Information Filtering 435
Ali H. Alsaffar, Jitender S. Deogun, and Hayri Sever

Automatic Semantic Header Generator 444
Bipin C. Desai, Sami S. Haddad, and Abdelbaset Ali

Table of Contents XI

On Modeling of Concept Based Retrieval in Generalized Vector Spaces ... 453

Minkoo Kim, Ali H. Alsaffar, Jitender S. Deogun, and
Vijay V. Raghavan

Template Generation for Identifying Text Patterns 463

Cdcile Boisson and Nahid Shahmehri

7A Knowledge Discovery and Learning

Qualitative Discovery in Medical Databases 474
David A. Maluf and Jiming Liu

Finding Association Rules Using Fast Bit Computation: Machine-Oriented
M odeling ... 486

Eric Louie and Tsau Y. Lin

Using Closed Itemsets for Discovering Representative Association Rules ... 495
Jamil Saquer and Jitender S. Deogun

Legitimate Approach to Association Rules under Incompleteness 505
Marzena Kryszkiewicz and Henryk Rybinski

7B Logic for AI

A Simple and Tractable Extension of Situation Calculus to Epistemic
L ogic ... 515

Robert Demolombe and Maria del Pilar Pozos Parra

Rule Based Abduction .. 525
Sai K. Lakkaraju and Yan Zhang

An Efficient Proof Method for Non-clausal Reasoning 534
E. Altamirano and G. Escalada-Imaz

An Intelligent System Dealing with Complex Nuanced Information within
a Statistical Context ... 543

D. Pacholczyk and F. Dupin de Saint Cyr

8A Learning and Knowledge Discovery

On the Complexity of Optimal Multisplitting 552

Tapio Elomaa and Juho Rousu

Parametric Algorithms for Mining Share-Frequent Itemsets 562
Brock Barber and Howard J. Hamilton

Discovery of Clinical Knowledge in Hospital Information Systems:
Tw o C ase Studies .. 573

Shusako Tsumoto

XII Table of Contents

Foundations and Discovery of Operational Definitions 582
Jan M. Zytkow and Zbigniew W. Rag

A Multi-agent Based Architecture for Distributed KDD Process 591
Chunnian Liu, Ning Zhong, and Setsuo Ohsuga

8B Knowledge Representation

Towards a Software Architecture for Case-Based Reasoning Systems 601
Enric Plaza and Josep-Lluis Arcos

Knowledge Representation in Planning: A PDDL to OCLh Translation ... 610
R.M. Simpson, T.L. McCluskey, D. Liu, and D.E. Kitchin

A Method and Language for Constructing Multiagent Systems 619
Hiroyuki Yamauchi and Setsuo Ohsuga

A Formalism for Building Causal Polytree Structures Using Data
D istributions .. 629

M. Ouerd, B.J. Oommen, and Stan Matwin

Abstraction in Cartographic Generalization 638
Sdbastien Musti~re, Lorenza Saitta, and Jean-Daniel Zucker

A uthor Index ... 645

Information Retrieval Based on Statistical
Language Models

W. Bruce Croft

Computer Science Department
University of Massachusetts, Amherst, MA 01003-4610

crofttcs.umass.edu
http://ciir .cs.unmass .edu

Abstract. The amount of on-line information is growing exponentially.
Much of this information is unstructured and language-based. To deal
with this flood of information, a number of tools and language technolo-
gies have been developed. Progress has been made in areas such as in-
formation retrieval, information extraction, filtering, speech recognition,
machine translation, and data mining. Other more specific areas such
as cross-lingual retrieval, summarization, categorization, distributed re-
trieval, and topic detection and tracking are also contributing to the
proliferation of technologies for managing information. Currently these
tools are based on many different approaches, both formal and ad hoc.
Integrating them is very difficult, yet this will be a critical part of build-
ing effective information systems in the future. In this paper, we discuss
an approach to providing a framework for integration based on language
models.

1 Introduction

Tools for managing language-based information have become essential compo-
nents of modern information systems. This type of information, in the form of
unstructured or semi-structured text (e.g. HTML or XML), is found throughout
the applications that are driving our economy. In addition, the increase in the
use of speech input and data, OCR, and metadata descriptions of images and
video, has resulted in text becoming a lingua franca for information systems.
Although considerable progress has been made with language-based tools such
as information retrieval, filtering, categorization, extraction, summarization, and
mining, their performance is unreliable and the effects of integrating them are
unpredictable. One of the major reasons for this is the lack of a unifying formal
framework for developing and combining language-based technologies. Instead,
the tooks are based on many different approaches and theories, often implicit
and sometimes ad hoc. If a single unifying framework and architecture for in-
formation management could be created, it would enable the development of
significantly more effective tools, support integration, and substantially advance
our understanding of the processes underlying information access and organi-
zation. A growing number of researchers believe that such a framework can be
based on statistical language models.

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 1-11, 2000.
©Springer-Verlag Berlin Heidelberg 2000

2 W.B. Croft

The language modeling approach has been applied, with considerable success,
to speech recognition and machine translation [10,4, 3]. More recently, there
have been breakthroughs in applying this approach to information retrieval and
extraction [16, 15, 1, 12, 22, 2].

The use of language models is attractive for several reasons. Building an in-
formation system using language models allows us to reason about the design
and empirical performance of the system in a principled way, using the tools
of probability theory. In addition, we can leverage the work that has been car-
ried out in the speech recognition community in the past thirty years on such
problems as smoothing and combining language models for multiple topics and
collections. The language modeling approach applies naturally to a wide range
of information system technologies, such as distributed retrieval, cross-language
IR, summarization and filtering.

Much remains to be done to establish language modeling as a unifying frame-
work. We need to show how language models can represent documents, topics,
databases, languages, queries, and even people. We need to develop efficient algo-
rithms for acquiring, comparing, and summarizing language models of different
types and granularities. We need to show how statistical language models can
describe the crucial functions in a language-based information system, such as
information retrieval, filtering, and summarization. Finally, we need to demon-
strate that the performance of the language-based functions improves as a result
of using a language modeling framework. Figure 1 gives an overview of the rep-
resentation and function aspects of the language model framework.

Topics, Documents, Collections,
Languages, Queries, People

I Representation

Language Models

+ Function

IR, Distributed IR, Translingual IR, Speech,
TDT, MT, Summarization, Organization,

Extraction, Mining, Filtering

Fig. 1. Overview of Language Model Framework

Information Retrieval Based on Statistical Language Models 3

A project addressing these issues has begun as a collaboration between re-
searchers at the University of Massachusetts and Carnegie Mellon University.

In this paper, I will focus on a more detailed description of the issues involved
in applying language models to information retrieval. The next section describes
how language models can transform the view of document representations and
indexing models. Section 3 discusses how language modeling approaches to IR
approach relevance. In other words, how is the concept of relevance incorporated
in the overall retrieval model. Section 4 shows how combination of evidence or
data fusion can be implemented using language models.

2 Language Models and Indexing

Over the past three decades, probabilistic models of document retrieval have
been studied extensively. In general, these approaches can be characterized as
methods of estimating the probability of relevance of documents to user queries.
One component of a probabilistic retrieval model is the indexing model, i.e., a
model of the assignment of indexing terms to documents.

A well-known example of an indexing model is the 2-Poisson model [8]. The
success of the 2-Poisson model has been somewhat limited but it should be
noted that Robertson's tf weight, which has been quite successful, was intended
to behave similarly to the 2-Poisson model [18]. Other probabilistic indexing
models have also been proposed (e.g. [7]).

Estimating the probability that an index term is "correct" for that document
is difficult. As a result, heuristic tf~idf weights are used in the retrieval algorithms
based on these models. In order to avoid these weights and the awkwardness of
modeling the correctness of indexing, Ponte and Croft [16] proposed a language
modeling approach to information retrieval. The phrase "language model" is used
by the speech recognition community to refer to a probability distribution that
captures the statistical regularities of the generation of language [10]. Generally
speaking, language models for speech attempt to predict the probability of the
next word in an ordered sequence. For the purposes of document retrieval, Ponte
and Croft modeled occurrences at the document level without regard to sequen-
tial effects, although they showed that it is possible to model local predictive
effects for features such as phrases. Mittendorf and Schauble [13] used a simi-
lar approach to construct a generative model for retrieval based on document
passages.

The approach to retrieval described in Ponte and Croft [16] is to infer a lan-
guage model for each document and to estimate the probability of generating
the query according to each of these models. Documents are then ranked ac-
cording to these probabilities. In this approach, collection statistics such as term
frequency, document length and document frequency are integral parts of the
language model and do not have to be included in an ad hoc manner. The score
for a document in the simple unigram model used in Ponte and Croft is given
by:

P(QID) =HP(wID) 11 (1 - P(wID)
wGQ wVQ

4 W.B. Croft

where P(Q ID) is the estimate of the probability that a query can be generated
for a particular document, and P(wID) is the probability of generating a word
given a particular document (the language model).

Much of the power of this simple model comes from the estimation techniques
used for these probabilities, which combine both maximum likelihood estimates
and background models. This part of the model benefits directly from the ex-
tensive research done on estimation of language models in fields such as speech
recognition and machine translation. More sophisticated models that make use
of bigram and even trigram probabilities are currently being investigated [12,
19].

The idea of a language model representing the text written in specific doc-
uments leads directly to the possibility of using language models to represent
topics in domains and users' views of domains. Establishing a context for the
query is a crucial part of achieving effective retrieval. The query "star wars" can
be interpreted very differently in the context of missile defense systems rather
than Hollywood films. Many approaches have been tried to identify and use con-
text, mostly in the form of query expansion techniques. For example, the Local
Context Analysis technique [23] identifies words and phrases associated with the
query context by analyzing retrieved documents. This technique, although one
of the most successful in terms of improving retrieval effectiveness, is ad-hoc and
cannot distinguish multiple contexts for a given query. The language model ap-
proach appears to provide a more principled way of describing and using context
that will lead to substantially more effective retrieval.

Language models for important topics could be based on groups of similar
documents. We call these topic models to distinguish them from models based
on individual documents. To generate topic models for a set of documents, the
documents would first need to be clustered or grouped, and then a model could
be estimated for each group. Note that this represents a different form of the
clustering hypothesis [17], which states that closely associated documents tend to
be relevant to the same requests. Instead, we are assuming that closely associated
documents will have the same underlying language model. Xu and Croft [22]
used this technique to represent databases using multiple language models for
distributed search.

A variation of this approach would be to cluster document passages and
allow multiple topic models to be associated with a given document. In a very
similar approach, Hoffman [9] describes how mixture models based on latent
classes can represent documents and queries. The latent classes are generated
using clustering based on the EM (Expectation-Maximization) algorithm [11],
and Hoffman shows how this approach is related to Latent Semantic Indexing
[6]. The use of mixture models to represent queries and documents makes it clear
that many of the previous uses of expansion and clustering techniques in IR can
be described as smoothing techniques in the language model framework.

Information Retrieval Based on Statistical Language Models 5

3 Language Models and Relevance

The Ponte and Croft model uses a relatively simple definition of relevance that
is based on the probability of generating a query text. This definition does not
easily describe some of the more complex phenomena involved with information
retrieval. The language model approach can, however, be extended to incorporate
more general notions of relevance. For example, Berger and Lafferty [1] show how
a language modeling approach based on machine translation provides a basis for
handling synonymy and polysemy. Related tasks, such as question answering
and summarization, also provide a challenge for a model of relevance.

Early probabilistic models of retrieval, such as the binary independence
model, viewed retrieval as a classification problem [17]. Documents were treated
as belonging to either the relevant (R) or non-relevant classes for a particular
query. In this model, documents are ranked according to the probability P(RID),
or the probability that a particular document D belongs to the relevant class.
Fuhr [7] extended this model to non-binary document representations and made
the conditioning on the query explicit. In his model, documents are ranked by
P(RID, Q). Turtle and Croft [20] proposed a Bayesian net model that calculates
P(IID), which is the probability that a particular information need I is satis-
fied for a given document. This is a different way of describing relevance, but is
otherwise quite similar to the previous models. In this model (described in more
detail in the next section), the query is represented as intermediate propositions
that describe the information need.

Ponte [15] views a query as the user's description of an ideal or relevant
document. More specifically, the description is treated as a text sample. The
task of the retrieval system, in his view, is to rank documents by P(QIMD),

which is the probability that the query text can be generated by the language
model M associated with a given document D. This view of retrieval, however,
does not easily describe the question-answering task and is regarded by some
researchers to be an inadequate model of relevance.

Miller et al [12] described a simple probabilistic model for ranking documents
by P(D is RJQ), which is described as the probability that D is relevant given
the query Q. Using Bayes Rule, this can be transformed into

P(QID is R)P(D is R)

P(Q)

This model is somewhat awkward, and although the term P(QID is R) is treated
in Miller et al [12] as being the same as the Ponte probability, it is not because
of the constraint that the document is relevant. In the absence of relevance
information, it is difficult to apply this model.

Berger and Lafferty's model [1] has similarities to the Ponte model in that
they view the user generating a query as a sample of an ideal document. The
task of the system is then to find the a posteriori most likely documents given
the query and the specific user U. In other words, documents are ranked by

P(DIQ, U) = P(QID, U)P(DIU)
P(QIU)

6 W.B. Croft

The denominator P (Q IU) is fixed for a given query and user. The term P(D IU) is
a "document prior" that can be used, for example, to discount short documents.
If we assume a uniform prior, this is the same as the Ponte model.

Another formulation of the retrieval process, which we are currently investi-
gating, views the query as a sample or a description of an underlying language
model MQ. This language model describes the information need. In other words,
instead of the user having a "perfect document" in mind, this approach assumes
that the user has some idea of the characteristics of good documents and can de-
scribe these characteristics in terms of relative frequencies, co-occurrences, and
other phenomena that can be captured in a language model. The task of the
retrieval system is viewed as first to estimate MQ and then use this model to
retrieve documents (or answers).

In this approach, we estimate MQ using a mixture of document models. A
" pooled'' mixture could be found using the document models that optimize

arg max P(QIM{T, ..To).
{T1 ... Tk}I

This part of the retrieval process is very similar to the Ponte model, but
here the document models are being used to smooth the model of the informa-
tion need. Then, for each document in the collection, we compute the posterior
likelihood that the smoothed model MQ is the source from which D was gen-
erated: P(MQ ID). Applying Bayes Rule, we rank documents by the equivalent
log P(DIMQ)/P(D) (the prior P(MQ) does not affect the ranking). This model
is also similar to the Berger and Lafferty approach, but there are important
differences. In particular, the process of forming the language model of the in-
formation need allows the query to be something other than a text sample.
Queries formulated using query languages (such as Boolean operators) or as
questions can be accommodated. More development of this model of relevance
and experimental validation remain to be done.

4 Language Models and Combination of Evidence

Combining multiple sources of evidence about relevance has been shown many
times to be an effective approach to IR.

The inference network framework, developed by Turtle and Croft [20] and
implemented as the INQUERY system [5], was explicitly designed for combining
multiple representations and retrieval algorithms into an overall estimate of the
probability of relevance. This framework uses a Bayesian network [14] to rep-
resent the propositions and dependencies in the probabilistic model (Figure 2).
The network is divided into two parts: the document network and the query
network. The nodes in the document network represent propositions about the
observation of documents (D nodes), the contents of documents (T nodes), and
representations of the contents (K nodes). Nodes in the query network represent
propositions about the representations of queries (K nodes and Q nodes) and
satisfaction of the information need (I node). This network model corresponds

Information Retrieval Based on Statistical Language Models 7

closely to a framework for combining classifiers as indicated by the labels on the
boxes in Figure 2.

S2Raw Data:

Features

Classifiers

O Combiner

Fig. 2. Bayesian net model of information retrieval

In this model, all nodes represent propositions that are binary variables with
the values true or false, and the probability of these states for a node is deter-
mined by the states of the parent nodes. For node A, the probability that A is
true is given by:

p(A)= as Hs pi 1-J(1 -pi)

SC{1,..n} iES iOS

where as is a coefficient associated with a particular subset S of the n parent
nodes having the state true, and pi is the probability of parent i having the state
true. Some coefficient settings result in very simple but effective combinations of
the evidence from parent nodes. For example, if as = 0 unless all parents have
the state true, this corresponds to a Boolean and. In this case, p(A) = iH>Pi.

8 W.B. Croft

The most commonly used combination formulas in this framework are the
average and the weighted average of the parent probabilities. These formulas are
the same as those shown in other research to be the best combination strategies
for classifiers and discussed earlier in the paper. The combination formula based
on the average of the parent probabilities comes from a coefficient setting where
the probability of A being true depends only on the number of parent nodes
having the state true. The weighted average comes from a setting where the
probability of A depends on the specific parents that are true. Parents with
higher weight have more influence on the state of A. The INQUERY search
system provides a number of these "canonical" combination formulas as query
operators. The three described above are #and, #sum, and #wsum.

In the INQUERY system, different document representations are combined
by constructing nodes corresponding to propositions about each representation
(i.e. is this document represented by a particular term from a representation vo-
cabulary) and constructing queries using those representation nodes. The queries
for each representation are combined using operators such as #/wsum.

In the inference net model, the probabilities associated with the query node
propositions are computed from the probabilities associated with representation
nodes. The probabilities associated with representation nodes, however, can be
computed from evidence in the raw data of the documents. For example, a
tf. idf formula is used in INQUERY to compute the probability of a word-based
representation node for a particular document. The use of heuristic estimation
formulas, the lack of knowledge of prior probabilities, and the lack of training
data means that the outputs of the inference net (document scores) do not
correspond closely to real probabilities.

The language model framework described previously can readily incorporate
new representations, can produce accurate probability estimates, and can be
incorporated into the general Bayesian net framework. Miller et al [12], point
out that estimating the probability of query generation involves a mixture model
that combines a variety of word generation mechanisms. They describe this com-
bination using a Hidden Markov Model with states that represent a unigramn
language model (P(wID)), a bigramn language model (P(wnjw,,i,D)), and a
model of general English (P(wjEnglish)), and mentions other generation pro-
cesses such as a synonym model and a topic model. Hoffman [9], and Berger and
Lafferty [1] also describe the generation process using mixture models, but with
different approaches to representation. Put simply, incorporating a new repre-
sentation into the language model approach to retrieval involves estimating the
language model (probability distribution) for the features of that representation
and incorporating that new model into the overall mixture model. The stan-
dard technique for calculating the parameters of the mixture model is the EM
algorithm. This algorithm can be applied to training data that is pooled across
queries and this, together with techniques for smoothing the maximum likeli-
hood estimates, results in more accurate probability estimates than a system
using tf. idf weights without training, such as INQUERY.

Information Retrieval Based on Statistical Language Models 9

There is a strong relationship between the Ponte approach to language mod-
eling for IR and the inference net. Figure 3 shows the unigram language model
approach represented using a simplified part of the network from Figure 2. The
W nodes that represent the generation of words by the document language model
replace the K nodes representing index terms describing the content of a doc-
ument. The Q node represents the satisfaction of a particular query. In other
words, the inference net computes the value of P(Q is true). In the Ponte and
Croft model, the query is simply a list of words. In that model, Q is true when
the parent nodes representing words present in the query are true and the words
not in the query are false. The document language model gives the probabilities
of the true and false states for the W nodes.

As we mentioned in the last section, however, we can regard the query as hav-
ing an underlying language model, similar to documents. This language model
is associated with the information need of the searcher and can be described
by P(W 1 , . . . , W,, Q). This probability is directly related (by Bayes rule) to the
probability P (Q I W, . .. , W~,,) that is computed by the inference network.

Fig. 3. The language model approach represented in a Bayesian net

The inference network, therefore, provides a mechanism for comparing the
document language model to the initial specification of the searcher's language
model, which is the first part of the retrieval process described in the last section.

5 Conclusion

Research on language model-based information retrieval systems is beginning to
bear fruit. Experiments indicate that these systems will be more flexible and

10 W.B. Croft

effective than systems based on ad-hoc approaches or other probabilistic mod-
els. There have also been some early promising results in related areas such as
summarization [21]. This, combined with the established track record of the lan-
guage model approach for tasks such as speech recognition, provides substantial
encouragement for further study of a language model framework for integrating
language technologies. The increasing interest in applications such as question
answering, cross-language retrieval, and information mining gives additional im-
petus to the development of this framework.

Acknowledgments

The recent approach to modeling relevance was developed with Victor Lavrenko.
This material is based on work supported in part by the National Science Foun-
dation, Library of Congress and Department of Commerce under cooperative
agreement number EEC-9209623, and SPAWARSYSCEN-SD under grant num-
ber N66001-99-1-8912. Any opinions, findings and conclusions or recommenda-
tions expressed in this material are the authors' and do not necessarily reflect
those of the sponsor.

References

1. A. Berger and J. Lafferty, "Information retrieval as statistical translation," Pro-
ceedings of the 22nd International Conference on Research and Development in
Information Retrieval (SIGIR'99), pp. 222-229, 1999.

2. D. Bikel, R. Schwartz, and R. Weischedel, "An Algorithm that Learns What's in
a Name," Machine Learning 34(1-3), 1999.

3. P. Brown, V. Della Pietra, S. Della Pietra, and R. Mercer. "The mathematics of
statistical machine translation," Computational Linguistics, 19(2), 1993.

4. P. F. Brown, J. Cocke, S. A. Della Pietra, V. J. Della Pietra, F. Jelinek, J. D.
Lafferty, R. L. Mercer, and P. S. Roossin, "A statistical approach to machine
translation," Computational Linguistics, vol. 16, no. 2, pp. 79-85, Jun. 1990.

5. J. Callan, W.B. Croft, and J. Broglio, "TREC and TIPSTER experiments with
INQUERY," Information Processing and Management, 31(3), pp. 327-343, 1995.

6. S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman, "Indexing
by latent semantic analysis," Journal of the American Society for Information
Science, 41, pp. 391-407, 1990.

7. N. Fuhr, "Probabilistic models in information retrieval," Computer Journal, 35,
pp. 243-255, 1992.

8. S.P. Harter, "A probabilistic approach to automatic keyword indexing," Journal
of the American Society for Information Science, 26, pp. 197-206, 1975.

9. T. Hofmann, "Probabilistic latent semantic indexing," In Proceedings of the 22nd
ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 50-57, 1999.

10. F. Jelinek, Statistical Methods for Speech Recognition, MIT Press, 1997.
11. C. Manning and H. Schutze, Foundations of statistical natural language processing,

MIT Press, Cambridge, 1999.

Information Retrieval Based on Statistical Language Models 11

12. D. Miller, T. Leek, and R. Schwartz, "A Hidden Markov Model information re-
trieval system," In Proceedings of the 22nd ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 214-221, 1999.

13. E. Mittendorf and P. Schauble, "Document and passage retrieval based on Hidden
Markov Models," In Proceedings of the 17th ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 318-327, 1994.

14. J. Pearl, Probabilistic reasoning in intelligent systems: Networks of plausible infer-
ence, Morgan Kaufmann, San Mateo, 1988.

15. J. Ponte, A Language Modeling Approach to Information Retrieval. Ph.D. thesis,
University of Massachusetts at Amherst, 1998.

16. J. Ponte and W. B. Croft, "A language modeling approach to information re-
trieval," Proceedings of the 21st International Conference on Research and De-
velopment in Information Retrieval (SIGIR'98), pp. 275-281, 1998.

17. C.J. Van Rijsbergen, Information Retrieval. Butterworths, London, 1979.
18. S. Robertson, S. Walker, M. Hancock-Beaulieu, A. Gull, and M. Lau (1992). "Okapi

at TREC," In Proceedings of the Text REtrieval Conference (TREC-1), Gaithers-
burg, Maryland.

19. F. Song, and W.B. Croft, "A general language model for information retrieval,"
in Proceedings of the Conference on Information and Knowledge Management
(CIKM), pp. 316-321, 1999.

20. H. Turtle and W.B. Croft, "Evaluation of an inference network-based retrieval
model," ACM Transactions on Information Systems, 9(3), pp. 187-222, 1991.

21. M. Witbrock and V. Mittal, "Ultra-summarization: A statistical approach to gen-
erating highly condensed non-extractive summaries," Proceedings of the 22nd In-
ternational Conference on Research and Development in Information Retrieval
(SIGIR'99), 1999.

22. J. Xu and W.B. Croft, "Cluster-based language models for distributed retrieval,"
in Proceedings of ACM SIGIR 99, pp. 254-261, 1999.

23. J. Xu and W.B. Croft, "Improving the effectiveness of information retrieval with
local context analysis," ACM Transactions on Information Systems, 18, pp. 79-
112, 2000.

Intelligent Agent Battlespace Augmentation

Philip J. Emmerman and Uma Y. Movva

U.S. Army Research Laboratory, Adeiphi, MD 20783

Abstract. The anticipated dynamics of the future battlefield will require greatly
increased mobility, information flow, information assimilation, and
responsiveness from a tactical operation center (TOG) and platforms (tanks,
arnored personnel carriers, etc.). Three significant and related trends in the
evolution of the tactical battlefield address these requirements. The first is the
increased automation of the brigade nerve center or TOC. Much of this
automation will be provided by software agent technology. The second is the
digitization of current battlefield platforms. This digitization greatly reduces
the uncertainty concerning these platforms and enables automated information
exchange between these platforms and their TOG. The third is the rapid
development of robotics or physical agents for numerous battlefield tasks such
as clearing buildings of hazards (such as snipers) or performing wingman
functions for a future combat vehicle. This paper illustrates the potential
synergy between these seemingly disparate developments, particularly related
to battlefield visualization, multi-resolution analysis, software agents, and
physical agents. Battlefield visualization programs are currently focussed on
representing the physical environment. This greatly contributes to situation
awareness at the TOG and platform levels. As intelligent agents, both software
and physical agents, are developed, battlefield visualization must be enhanced
to include the state, behavior, and results of the actions of these agents. Multi-
resolution data and analysis will enhance visualization, software agent and
physical agent performance.

Introduction

There is widespread dissatisfaction with the design and functionality of current Army
tactical operation centers (TO~s) [4]., due primarily to their lack of mobility,
inefficiency, and high complexity. The extensive hardware, software, and manpower
resources needed to operate a current TOC severely limit the required mobility needed
for a future nonlinear, dynamic battlefield. A greatly increased level of automation is
needed both to significantly lower the human resources required and to improve
information flow. Figure 1 depicts the size and mobility envisioned for a future
TOG.

The TOG exists to support the tactical commander in understanding the current
state of the battlefield and in predicting its future state. It also provides planning,
monitoring, and reaction functions to the commander. The situation awareness that
results enables rapid and effective decision making and leadership. Although the
TOC is the information and control center of the tactical battlefield, it must also be

Z.W. R8~ and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 12-20, 2000.
C Springer-Verlag Berlin Heidelberg 2000

Intelligent Agent Battlespace Augmentation 13

able to project its critical information to a commander on a remote platform such as a
tank or helicopter, observing or interacting with vital positions on the battlefield.
Because the TOC is an information integration and fusion node, it is an essential part
of a highly distributed and mobile force. A scalable, extensible, and adaptable
visualization and software agent architecture and rich application set are required to
achieve the increased efficiency envisioned. Most low-level information retrieval,
dissemination, and analysis will be performed or controlled by these agents.

INS

Reducedconmp/exfty * CoIotlon wn•er
* Multkn'daM,,~OHigh m Mdigmob"

Fig. 1. Mobile future TOC concept.

Battlefield visualization technology and software agent technology are closely
linked because of the need to visualize and interact with both the agents and the
results of their analysis. Automated communications between the TOC and its
associated platforms (human or robotic) will be agent based. The digitization of the

lower echelons of the army strongly enhances the coupling of the TOC and the
tactical platforms, enabling the automated exchange of data and information, as well
as access to more advanced applications by means of an agent environment. This
automated information exchange will greatly reduce the latency of information,
reduce uncertainty, and enable a more real-time control system approach in the
battlefield. Figure 2 illustrates this exchange, where agents are classified according to
their battlefield functional area.

Physical agents are expected to be ubiquitous on the future battlefield, significantly
lowering the risk to our soldiers. They will be present in a myriad of shapes, sizes,
and capabilities. Because these physical agents are to complement future manned
systems, they must be able to collaborate not only amongst themselves but also with
their manned partners. Their missions will range from scout missions
(reconnaissance, surveillance, and target acquisition) to urban rescue. Robotic

14 P.J. Emmerman and U.Y. Movva

sentinels and remote communication systems would reduce the soldier workload of a
future TOC. Teams of small robots deployed by manned or unmanned mother ships
will explore (for hazards) and define buildings before manned occupation. Figure 3
depicts an urban scenario [1]. The Army has both cross-country and urban mission
robot programs in development. Robust mobility, collaborative military behavior,
and effective soldier robot interaction are major development areas. These robots
must be able to operate in these battlefield environments approximately at the same
tempo as the manned forces.

TOC

Battlefield Agent
Architecture

K MANEUVER
INTELLIGENCE Platform

i\ LOGISTICS • -

"\ FIRE SUPPORT

.. MANEUVER :,

SINTELLIGENCE

,_ :.:LOGISTICS

Fig. 2. TOC-platform agent interaction.

The information gathered by these agents will be sent to a mother ship or TOC and
be visualized by human controllers. The high-level control and interaction between
the mother ship and its agents will be based on software agent technology, analogous
to the TOC/platform interaction. Software agents will be monitoring the robot
disposition and communicating with the robot controller. A future combat system
could be augmented by these small robots, thereby increasing its urban effectiveness.

Software Agent Applications
Figure 4 illustrates the relationship between software agent applications and
visualization. Software agents provide much of the analysis of battlefield data. Both
the results of this analysis and the state and behavior of these agents need to be
visualized. Of the myriad possible battlefield agent applications, this paper focuses
on several that require scalability and extensibility of the agent approach.

Intelligent Agent Battlespace Augmentation 15

Fig. 3. Small robot urban scenanio

Consider initially the basic sentinel application, where agents must be able to
dynamically monitor and analyze battlefield activity and perform alert functions.
These agents are assigned to monitor either fixed areas on the battlefield or areas
associated with entities (fixed or moving). The following are two examples of
monitor agents scenarios:
1 . Assign an agent to monitor a specific area of interest where if enemy armor is

detected in force before the blue force occupies the nearby hills, the blue
2. commander and the maneuvering units must be alerted. This agent, although

fixed spatially, must have spatial and temporal reasoning.
3. Assign an agent to monitor a maneuvering blue force battalion, and alert it if any

enemy radar is capable of detecting it as it performs its planned maneuver path.
This agent has mobility (not fixed to a geographic area) in addition to spatial
reasoning.

Although these sentinel agent applications seem simple, significant temporal and
spatial reasoning is required to minimize unnecessary alerts.

Now consider a broader agent application scenario. The TOC brigade commander
has selected a maneuver course of action plan that calls for the synchronized
movement, enemy engagement,and logistics resupply of the brigade. The plan has
been disseminated and the maneuver platforms have begun executing this course of
action. This plan implementation stimulates significant agent activity both in the
TOC as well as in the maneuver platforms. A global maneuver monitor agent in the
TOC interacts with the maneuver monitor agents in the platforms. The platform
synchronization monitor agents have the task of alerting the human platform
commander if the maneuver entity cannot execute its maneuver plan. This agent
would also alert the TOC maneuver monitor agent of any execution problems. A

16 P.J. Emmerman and U.Y. Movva

TOG intelligence agent continuously monitors and retrieves any pertinent enemy
information that would affect this operation. For example, suppose a radar is detected
near the planned path of one of the maneuver battalions. This intelligence agent
alerts both the TOG maneuver plan agent as well as the affected platform agents
(maneuver and intelligence). At the TOG, a fire support agent generates an attack
plan to disable this enemy sensor asset. This plan is presented to the TOG
commander and is refused because the commander considers the available fire
support assets insufficient. At the affected platforms, the platform maneuver agent
generates a reactive maneuver plan and if acceptable to the local commander, the plan
is executed. A platform logistics monitor agent keeps track of local resources (fuel,
ammnunition, spare parts, etc.) and disseminates this information to the TOG logistics
agent. The TOG logistics agent continuously monitors the resupply plan that supports
this engagement. If the planned resupply points become inadequate because of
excessive engagement times or maneuver, the TOG logistics agent redefines the
resupply points.

BATTLEFIELD VISUALIZATION B0ATTLEFIELD COLLABORATIVE

H Software Agent State AGENT ANALYSIS
E Physical Agent State Focus of Attention~
N Terrain / Features a~~ Alerts
N Communications ynroiatn

0 Weater m efensive Information
0 EnttiesWarfare

E Adaptive
>Communications

0 Hum~an /Agent
Itrcion

Inrformation Fusionl~
0 Physical Agent.

Control

Fig. 4. Intelligent agent battlefield applications and visualization.

This example application indicates that monitoring, alerting, dissemination and
retrieval agents are needed for each of the major battlefield functions (such as
maneuver, intelligence, and logistics) at both the TOG and the lead platforms. Many
applications are possible within each of the functional areas. Some of which may
differ, within each functional area such as maneuver, at the TOG and the platform.
Because of the complexities inherent in creating and interacting with a large set of
agents, it is essential that the human/agent interaction be intuitive and not

Intelligent Agent Battlespace Augmentation 17

cumbersome. Since many agent applications will be oriented toward entities or areas
in the battlefield, an effective battlefield visualization approach representing the
agents and their behaviors is essential.

Battlefield Visualization
We introduce here a multi-resolution approach to visualization as well as analysis.
Most of the current emphasis of the Army battlefield visualization program is on
providing a global infrastructure with the ability to visualize the battlefield
environment (terrain, weather, entities, features, communications, etc.) at whatever
resolution is required and available. This enables the commander to have a custom
global view of the battlefield as well as a high-resolution local view to support critical
decisions. This same infrastructure supports high-fidelity local views for the platform
commanders as well as the ability to jump to any other local view in the world (as
long as data is available) to support training or preparation for deployment. This
scalability provides a single visualization approach suitable for both TOC and
platform applications, including robotic platforms. Figure 5 illustrates a coupled
2D/3D visualization approach.

A 2D/3D approach in necessary since soldiers are very familiar with two-
dimensional maps and can maintain their global situation awareness. However the 2D
representation is not as effective for visualization of high-resolution, complex terrain.
3D representation is excellent for high-resolution, complex terrain, but it is very easy
to lose a global perspective (get lost) in all the detail presented. Presenting both views
simultaneously eliminates many of the problems inherent in a single-view approach.

Fig. 5. Coupled 2D/3D visualization.

18 P.J. Emmerman and U.Y. Movva

Many sources of environmental data are available, albeit with widely varying
resolution and coverage. It is therefore necessary for any visualization system to
work with multresolution data (elevation and imagery). Software agents will use this
multiresolution data for responsive planning and mission execution. While robots do
not visualize, they must reason about their environment. Although the robotic
platforms will have effective local perception, this multiresolution environmental data
will enable them to create reactive plans(implemented by software agents), similar to
the agent activity in human platforms.

Military planners currently use digital terrain and elevation data along with digital
feature data to plan. Because the currently available elevation data are so coarsely
sampled (100 m or 30 m post spacing), these planned routes may contain numerous,
significant obstacles. In order to traverse these routes, the manned or unmanned
vehicles must sense and react to these obstacles. As the number of reactions
increases, the time to complete the mission also increases. Fortunately, under the
battlefield visualization umbrella, there are programs, that are developing the
technology to both rapidly generate and visualize much higher resolution data (I in).
This would enable an operator to visualize the planned routes and manually detect
obstacles. If the planning and execution analysis could use the high-resolution data,
then many of the obstacles that fall within the 1 to 100 m range could be detected and
avoided in the plan. However, the cost for this high-resolution analysis is increased
processing time, since the route-planning algorithms would be using much more data.
A multiresolution analysis would use high-resolution data only when the
environmental complexity required it. This would greatly decrease the processing
cost for most areas. Because the cost for reactive planning is high, particularly in
robotic platforms, significant mission savings (time) are expected. Figure 6 illustrates
the need for high-resolution data.

The original plan developed with 100 m elevation post spacing does not recognize
a significant obstacle to the planned maneuver. With 1 m data, the resultant plan does
not require reactive planning.

Agent/Visualization Implementation

The Army Research Laboratory (ARL) and the University of Maryland (UMD) have
recently integrated a software agent architecture with a 2D/3D multiresolution
visualization research testbed [3]. The University of Maryland has developed a
software agent architecture called Interactive Maryland Platform for Agents
Collaborating Together (IMPACT) [2,5], and ARL has developed a large-scale
battlefield visualization testbed, the Combat Information Processor (CIP). IMPACT
was used to agentize the legacy client/server-based CIP and provide the initial sentinel
agent functionality described in this paper. This functionality was added by
agentizing the CIP control measure and entity servers. Figure 7 represents the human
computer interface of this agent application.

Conclusions

The Army must take advantage of the synergy between its visualization, software
agent, and physical agent technology developments. Without a holistic approach,
multiple competing visualization and software agent designs will proliferate. Even

Intelligent Agent Battlespace Augmentation 19

with a single optimal design approach for human/agent interaction, this research and
development must address the ability of the human controller to assimilate and act on
the state of the battlefield and direct his agents rapidly enough to satisfy future
battlefield dynamics. An effective physical and software agent interaction would be
perceived to be non-intrusive and would provide all the necessary focussed
information for rapid decision making. A software agent application architecture may
be sufficient to perform many of the manpower intensive tasks at both the TOC and
the individual platforms. These tasks have been categorized similarly to the
battlefield functional areas. Although myriad applications are possible, spanning a
widely dispersed level of complexity, a number of low-level applications can also be
very effective in Toe automation. It is critical that the agent approach be scalable,
extensible, and adaptable to address the broad application area of the tactical
battlefield. Many of these tasks can be implemented with generic low- level monitor,
alert, retrieve, and disseminate functions.

Multi-Resolution Planning & Execution

-~ <\ >.Low Resolution

~. Planning

Fig. 6. Multi-resolution planning

There still is concern that the human/agent interaction may be too encumbering for
the commanders and staff involved. Closely coupling the agent interaction with
battlefield visualization should make the interaction more intuitive. Also, an
embedded training application for decision making that uses an this agent approach
will accelerate the acceptance of this approach. This embedded training would
include the ability to rapidly construct scenarios to continuously improve the
commander's and staff's decision making. If this training capability is embedded, the
operators will automatically train on the use of this agent approach and develop a trust
in these agents.

20 P.J. Emmerman and U.Y. Movva

Fig. 7. Sentinel visualization interface.

References

1. Budulas, P.P., Young, S. H., and Emmerman, P. J., Mother Ship and Physical
Agents Collaboration, Proceeding SPIE 1999

2. Eiter,T., Subramanian, V.S.,and Rogers, T.J., Heterogeneous Active Agents, III:
Polynomially Implementable Agents, Artificial Intelligence Journal, Vol. 117, Nr.
1, pps 107-167, Feb. 2000.

3. Emmerman, P.J., Gasarch, C., Movva, U.Y., Rogers, T. J., Subrahmanian, V.S.,
and Tokarcik, L., An Agent Based Combat Information Processor System,
Proceedings Fusion 2000 Conference

4. Emmerman, P.J., Grills, J. P., Johnson, J. E., and Rodriguez, A., Future Army
5. Tactical Operation Center Concept, Proceedings 1999 CCRT Conference.
6. Subrahmanian, V.S., Bonatti, P., Dix, J., Eiter, T., Kraus, S., Ozcan, F., and Ross,

R., Heterogeneous Agent Systems: Theory and Implementation, MIT Press,
2000.

Learning and Evolution:
An Introduction to Non-darwinian Evolutionary Computation

Ryszard S. Michalski

Machine Learning and Inference Laboratory
School of Computational Sciences

George Mason University, Fairfax, VA, USA
and

Institute of Computer Science
Polish Academy of Sciences, Warsaw, Poland

michalski@gmu.edu

Abstract. The field of evolutionary computation has drawn inspiration from
Darwinian evolution in which species adapt to the environment through random
variations and selection of the fittest. This type of evolutionary computation has
found wide applications, but suffers from low efficiency. A recently proposed non-
Darwinian form, called Learnable Evolution Model or LEM, applies a learning
process to guide evolutionary processes. Instead of random mutations and re-
combinations, LEM performs hypothesis formation and instantiation. Experiments
have shown that LEM may speed-up an evolution process by two or more orders of
magnitude over Darwinian-type algorithms in terms of the number of births (or
fitness evaluations). The price is a higher complexity of hypothesis formation and
instantiation over mutation and recombination operators. LEM appears to be
particularly advantageous in problem domains in which fitness evaluation is costly
or time-consuming, such as evolutionary design, complex optimization problems,
fluid dynamics, evolvable hardware, drug design, and others.

1 Introduction

In his prodigious treatise "On the Origin of Species by Means of Natural Selection,"
Darwin conceived the idea that the evolution of species is governed by "one general
law, leading to the advancement of all organic beings, namely, multiply, vary, let the
strongest live and the weakest die" (Darwin, 1859). In such biological or natural
evolution, new organisms are created via asexual reproduction with variation
(mutation) or via sexual reproduction (recombination). The underlying assumption is
that the evolution process is not guided by some "external mind," but proceeds through
semi-random modifications of genotypes through mutation and recombination, and
progresses to more advanced forms due to the principle of the "survival of the fittest."

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 21-30, 2000.
0 Springer-Verlag Berlin Heidelberg 2000

22 R.S. Michalski

In Darwinian evolution, individuals thus serve as holders and transmitters of their
genetic material. Their life experiences play no role in shaping their offspring's
properties. Jean-Baptiste Lamarck's1 idea that traits learned during the lifetime of an
individual could be directly transmitted to progeny has been rejected as biologically
viable because it is difficult to construe a mechanism through which this could occur .2

Many scientists believe, however, that there is another mechanism through which
learned traits might influence evolution, namely, the so-called Baldwin effect
(Baldwin, 1896). This effect stems from the fact that, due to learning, certain
individuals can survive even though their genetic material may be suboptimal. In this
way, some traits that otherwise would not survive are passed on to the next
generations. Some researchers argue that under certain conditions such learning may
actually slow genetic change and thus slow the progress of evolution (Anderson,
1997).

More than a century after Darwin introduced his theory of evolution, computer
scientists adopted it as a model for implementing evolutionary computation (e.g.,
Holland, 1975; Goldberg, 1989; Michalewicz, 1996; Koza et al. 1999). Their efforts
have led to the development of several major approaches, such as genetic algorithms,
evolutionary strategy, genetic programming, and evolutionary programs. These and
related approaches, viewed jointly, constitute the rapidly growing field of evolutionary
computation (see, e.g., Baeck, Fogel, M. Mitchell; 1996, Banzhaf et al., 1999; Zalzala,
2000).

Methods of evolutionary computation based on principles of Darwinian evolution
use various forms of mutation and/or recombination as variation operators. These
operators are easy to implement and can be applied without any knowledge of the
problem area. Therefore, Darwinian-type evolutionary computation has found a very
wide range of applications, including many kinds of optimization and search problems,
automatic programming, engineering design, game playing, machine learning,
evolvable hardware, and many others.

The Darwinian-type evolutionary computation is, however, semi-blind: the
mutation is a random, typically small, modification of a current solution; the crossover
is a semi-random recombination of two or more solutions; and selection is a sort of
parallel hill climbing. In this type of evolution, the generation of new individuals is not
guided by principles learned from past generations, but is a form of the trial and error
process executed in parallel. Consequently, computational processes based on
Darwinian evolution tend to be not very efficient. Low efficiency has been the major
obstacle in applying Darwinian-type evolutionary computation to highly complex

1Jean-Baptiste Lamarck, a French naturalist (1744-1829), who proposed a theory that the
experience of an individual can be encoded in some way and passed to the genome of
the offspring.

2Recent studies show that Lamarckian evolution appears to apply in the case of antibody
genes (Steel and Blanden, 2000).

Learning and Evolution 23

problems. The objective of many research efforts in this area has been thus to increase
the efficiency of the evolutionary process.

In modeling computational processes after principles of biological evolution, the
field of evolutionary computation has followed a long-practiced tradition of looking to
nature when seeking technological solutions. The imitation of bird flying by
mythological Icarus and Daedalus is an early example of such efforts. In seeking
technological solutions, the "imitate-the-nature" approach, however, frequently does
not lead to the best engineering results. Modern examples of successful solutions that
are not imitations of nature include balloons, automobiles, airplanes, television,
electronic calculators, computers, etc.

This paper discusses a recently proposed, non-Darwinian form of evolutionary
computation, called Learnable Evolution Model or LEM. In LEM, new individuals are
created by hypothesis formation and instantiation, rather through mutation or
recombination. This form of evolutionary computation attempts to model "intellectual
evolution"---the evolution of ideas, technical solutions, human organizations, artifacts,
etc.---rather than biological evolution. In contrast to Darwinian evolution, an
intellectual evolution is guided by an "intelligent mind," that is, by humans who
analyze advantages and disadvantages of previous generation of solutions and use the
developed understanding in creating next generation of solutions. It is due to the
intellectual evolution that the process of evolving the automobile, airplane or
computer from primitive prototypes to modern forms was astonishingly rapid, taking
just few human generations.

The idea and the first version of the LEM methodology were introduced in
(Michalski, 1998). A more advanced and comprehensive version is in (Michalski,
2000). Its early implementation, LEM 1, produced very encouraging results on selected
function optimization problems (Michalski and Zhang, 1999). Subsequent experiments
with a more advanced implementation, LEM2, confirmed earlier results and added
new highly encouraging ones (e.g., Cervone et al., 2000, Cervone, Kaufman and
Michalski, 2000).

The following sections briefly describe LEM and its relationship to Darwinian-type
evolutionary computation, and then summarize results of testing experiments.

2 LEM vs. Darwinian Evolutionary Computation

Darwinian-type evolutionary algorithms can be generally viewed as stochastic
techniques for performing parallel searches in a space of possible solutions. They
simulate natural evolution by creating and evolving a population of individuals until a
termination condition is met. Each individual in the population represents a potential
solution to a problem. Such a solution can be represented as a vector of parameters, an
instantiation of function arguments, an engineering design, a concept description, a
control strategy, a pattern, a computer program, etc. A precondition for applying an

24 R.S. Michalski

evolutionary algorithm is the availability of a method for evaluating the quality
(fitness) of individuals from the viewpoint of the given goal.

A general schema of an evolutionary computation consists of the following steps:

1. Initialization
t:= 0
Create an initial population P(t) and evaluate fitness of its individuals.

2. Selection
t := t+1
Select a new population from the current one based on their fitness: P(t)
Select(P(t- 1))

3. Modification
Apply change operators to generate new individuals: P(t) := Modify(P(t))

4. Evaluation
Evaluate fitness of individuals in P(t)

5. Termination
If P(t) satisfies the termination condition, then END, otherwise go to step 2.

Different evolutionary algorithms differ in the way individuals are represented,
created, evaluated, selected and modified. They may also use different orders of steps
in the above schema, employ single or multiple criteria in fitness evaluation, assume
different termination conditions, and simultaneously evolve more that one population.
Some algorithms (specifically, genetic algorithms) make a distinction between the
search space and the solution space. The search space is a space of encoded solutions
("genotypes"), and the solution space is the space of actual solutions ("phenotypes").
Encoded solutions have to be mapped onto the actual solutions before the solution
quality or fitness is evaluated.

As mentioned earlier, in Darwinian-type (henceforth, also called conventional)
evolutionary algorithms, change operators are typically some forms of mutation and/or
recombination. Mutation is a unary transformation operator that creates new
individuals by modifying previous individuals. Recombination is an n-ary operator
(where n is typically 2) that creates new individuals by combining parts of n
individuals. Both operators are typically semi-random, in the sense that they make
random modifications within certain constraints.

The selection operator selects individuals for the next population. Typical selection
methods include proportional selection (the probability of selecting an individual is
proportional to its fitness), tournament selection (two or more individuals compete for
being selected on the basis of their fitness), and ranking selection (individuals are
sorted according to their fitness and selected according to probabilities associated with
different ranks on the sorted list). The termination condition evaluates the progress of
the evolutionary process and decides whether to continue it or not.

Learning and Evolution 25

Learnable Evolution Model, briefly, LEM, also follows this general schema. Its
fundamental difference from Darwinian-type algorithms lies in step 4, as it generates
new individuals in very different way. In contrast to semi-random change operators
employed in Darwinian-type algorithms, LEM conducts a reasoning process in
generating new individuals. Specifically, it applies operators of hypothesis formation
and hypothesis instantiation.

The operator of hypothesis formation selects from a population a group of high-
performing individuals, called the H-group, and a group of low-performing
individuals, called the L-group, according to their fitness. The H-group and L-group
may be selected from the current population or from a sequence of past populations.
These groups can be selected using a population-based method, a fitness-based
method, or a combination of the two. The population-based method applies High and
Low Population Thresholds (HPT and LPT) in selecting individuals, and fitness-based
method applies High and Low Fitness Thresholds (HFT and LFT). The thresholds can
be fixed or may change in the process of evolution. For details, see (Michalski, 2000).

The H-group and L-group are then supplied to a machine learning program that
generates a general hypothesis distinguishing between high performing from low
performing individuals. Such a hypothesis can be viewed as a theory explaining the
differences between the two groups. Alternatively, it can be viewed as a
characterization of the sub-areas of the search space that are likely to contain the top
performing individuals (the best solutions). Once such a hypothesis has been
generated, the algorithm generates new individuals that satisfy the hypothesis.

In principle, any inductive learning method can be used for hypothesis formation.
LEM1 and LEM2 implementations of the LEM methodology has used the AQ-type
learning method (specifically, AQ15 and AQ18, respectively; see Wnek et al., 1995;
Kaufman and Michalski, 2000b). This method appears to be particularly
advantageous for LEM, because it employs attributional calculus as the representation
language (Michalski, 2000b). Attributional calculus adds to the conventional logic
operators new operators, such as internal disjunction, internal conjunction, attribution
relation, and the range operator, which are particularly useful for characterizing

groups of similar individuals. Attributional calculus stands between propositional
calculus and predicate calculus in terms of its representational power.

New individuals are generated by a hypothesis instantiation operator that
instantiates the given hypothesis in various ways. To very simply illustrate, suppose
that a hypothesis was generated by an AQ-type learning program and expressed in the
form of two attributional rules (these rules are in a simplified form to facilitate
explanation):

Rule 1: [x-=avc]& [y-= 2.3..4] &[z>5] (sup=80)

Rule 2: [x-=bvdve] &[z-= 3.5..6.4] (sup=15) (1)

26 R.S. Michalski

where the domains of attributes x, y, and z are: D(x) = {a,b,c,d,e,f), and D(y) and
D(z) range over real numbers between 0 and 10.

Rules in (1) characterize two subareas of the search space that contain high
performing individuals. The first rule states that high performing individuals appear in
the area in which the variable x has value a or c, the variable y takes value between 2.3
and 4, and the variable z takes value greater than 5. The parameter sup (support)
indicates that this rules covers 80 individuals in the H-group. The second rule
describes an alternative set of conditions, namely, that high performing individuals
appear also in the area in which differ x takes value b or d or e, and z takes values
from the real interval between 3.5 and 6.4. The second rule covers sup= 15 individuals
in the H-group. Note that Rule 2 does not include variable y. This means that this
variable was found irrelevant for differentiating between high and low performing
individuals.

The hypothesis (1) is a generalization of the set of individuals in the H-group. Thus,
it may potentially cover many other, unobserved individuals. The instantiation
operator instantiates the hypothesis in different ways, that is, generates different
individuals that satisfy conditions of the rules. For example, using hypothesis (1), the
operator may generate such individuals as:

<a, 2, 6>, <c, 3.5, 9. 1>, <a, 2.1, 6.4> (based on Rule 1)
<d, 2, 6>, <e, 5.5, 4.3>, <b, 2.2, 4.5> (based on Rule 2) (2)

Since variable y is not present in Rule 2, any values of y could be selected from
D(y) to instantiate this rule. In our experiments, variables not present in the rule were
instantiated to values selected randomly from among those that appeared in
individuals of the training set (H-group and L-group).

The newly generated individuals are combined with the previous ones, and a new
population is selected using some selection method. Again, an H-group and L-group
are generated and operations of hypothesis generation and instantiation are repeated.
The process continues until a LEM termination condition is met, e.g., the (presumably)
global or a satisfactory solution has been found.

The above-described process of creating new individuals by operators of hypothesis
formation (through inductive generalization) and hypothesis instantiation (by
generating individuals satisfying the hypothesis) constitutes the Machine Learning
Mode of LEM. A general form of LEM includes two versions: uniLEM, which
repetitively applies the Machine Learning mode until a termination condition is
satisfied, and duoLEM, which toggles between Machine Learning and Darwinian
Evolution mode, switching from one mode to another when the termination condition
for the given mode is satisfied (when there is little progress in executing the mode).

Learning and Evolution 27

The Darwinian Evolution Mode executes one of the existing conventional
evolutionary algorithms.

A comprehensive explanation of various details of the LEM methodology and its
variants is in (Michalski, 1999).

3 A Simple Illustration of LEM

To illustrate LEM, let us consider a very simple search problem in a discrete space.
The search space is spanned over four discrete variables: x, y, w, and z, with domains
{0,1 }, {0,1 }, {0,1 }, and {0,1,2}, respectively. Figure 1A, presents this space using the
General Logic Diagram or GLD (Michalski, 1978; Zhang, 1997). Each cell of the
diagram represents one individual. For example, the uppermost cell marked by 7
represents the vector: <0, 0, 0, 2>. The initial population is visualized by cells marked
by dark dots (Figure 1A). The numbers next to the dots indicate the fitness value of the
individual. The search goal is to determine individuals with the highest fitness,
represented by the cell marked by an x (with the fitness value of 9).

xy xy
-O-T " 4 71.11 .4 S F 7 .', .,

A B0 0

#x9 2012J Z 0 2XjZ
S.... !

0 12 0W 1~ L12_

~~. r -T '

0 1 W 0 T; j W

Figure 1. The search space and four states of the LEM search process.

28 R.S. Michalski

We assume that descriptions discriminating between an H-group and an L-group are in
the form of attributional rules learned AQ-type learning programs. Figure 1B presents
the H-group individuals (the gray-shaded cells) and L-group individuals (crossed
cells) determined from the initial population. The shaded areas in Figure IC represent
two attributional rules discriminating between the H-group and the L-group: [w = 0]
& [z= 1 v2] and [y= 1] & [w= 1] & [z=0v 1].

Figure 1D shows individuals in the H-group (shaded cells) and the L-group (crossed
cells) generated by instantiating rules in Figure 1C. The shaded area in Figure ID
represents a rule that discriminates between these groups: [x=0] & [y=1] & [w=0] &
[z=iv2]. This rule was obtained through incremental specialization of the parent rule,
and covers two individuals. The global solution will be located in the next iteration.

4 Summary of Testing Experiments

To test the LEM methodology, it has been implemented in a general-purpose form in
programs LEMI (Michalski and Zhang, 1999) and LEM2 (Cervone, 1999). It was also
employed in program ISHIED1, specifically tailored to problems of optimizing heat
exchangers (Kaufman and Michalski, 2000a). Both LEM1 and LEM2 were applied
to a range of function optimization problems. LEMI was also successsulfy applied to
a problem in filter design (Colleti et. al, 1999). LEM2 was tested in a wide range of
experiments dealing with optimizing different types of functions with different
numbers of arguments, ranging from 4 to 180 continuous variables.

In all experiments LEM2 strongly outperformed conventional evolutionary
computation algorithms employed in the study, frequently achieving two or more order
of magnitude speedups in terms of the number of births (or function evaluations).
Results from LEM2 were also significantly better than the best results from
conventional evolutionary algorithms published on a website. These and other recent
results have been described in (Cervone et. al, 2000a; Cervone et al., 2000b). Results
from experiments with ISHED1 were presented in (Kaufman and Michalski, 2000a).
According to the collaborating expert, ISHEDI's heat exchanger designs were
comparable to the best human designs in the case of uniform flow of refrigerant, and
were superior to the best human designs in the case of non-uniform flow.

5 Conclusion

Experimental studies conducted so far have strongly demonstrated that the proposed
Learnable Evolution Model can significantly speed up evolutionary computation
processes in terms of the number of births (or fitness evaluations). These speed-ups
have been achieved at the cost of higher complexity of operators generating new
individuals (hypothesis formation and instantiation). An open problem is thus to study
trade-offs associated with the LEM application to different problem domains. It is
safe to say, however, that LEM is likely to be highly advantageous in problem areas in
which computation of the evaluation function is costly or time-consuming. Such areas

Learning and Evolution 29

include engineering design, complex optimization problems, fluid dynamics,
evolvable hardware, drug design and automatic programming.

Another limiting aspect of LEM is that in order to apply it, the machine learning
system must be able to work with the given representation of individuals. For
example, if individuals are represented as attribute-value vectors, rule and decision
tree learning systems can be applied. If they are represented as relational structures, a
structural learning system must be employed.

Concluding, among the open problems for further research on LEM are to understand
the benefits, trade-offs, advantages and disadvantages of LEM versus Darwinian-type
evolutionary algorithms in different problem domains.

Acknowledgments

The author thanks Guido Cervone, Ken Kaufman and Liviu Panait for an excellent
collaboration on the LEM project and the experimental validation of the LEM
methodology. This research has been conducted in Machine Learning and Inference
Laboratory at George Mason University. The Laboratory's research on this project
has been supported in part by the National Science Foundation under Grants No. IIS-
9904078 and IRI-9510644.

References

Anderson R.W. (1997), The Baldwin Effect, in Handbook of Evolutionary
Computation, Section C3.4.1, pp. C3.:4:1-C3.4:15., IOP Publishing Ltd and Oxford:
Oxford University Press.
Baeck, T., Fogel, D.B. and Michalewicz, Z. (eds.) (1997), Handbook of Evolutionary
Computation. IOP Publishing Ltd and Oxford: Oxford University Press.
Baldwin, J.M. (1896), A New Factor in Evolution, American Naturalist, vol. 30,
pp.441-51.
Banzhaf, W., Nordin P., Keller R.E., and Francone F.D (1998), Genetic
Programming: An Introduction, Morgan Kaufman Publishers, Inc., San Francisco,
CA, 1998.
Cervone, G., Michalski, R.S., Kaufman K., Panait, L. (2000), Combining Machine
Learning with Evolutionary Computation: Recent Results on LEM, Proceedings of the
Fifth International Workshop on Multistrategy Learning (MSL2000), Michalski, R.S.
and Brazdil, P. B. (eds.), Guimaraes, Portugal, June 5-7.
Cervone, G., Kaufman, K.A., and Michalski, R.S. (2000), Experimental Validations of
the Learnable Evolution Model, Proceedings of the 2000 Congress on Evolutionary
Computation, La Jolla, California.
Coletti, M., Lash, T., Mandsager, C., Michalski, R.S., and Moustafa, R. (1999),
Comparing Performance of the Learnable Evolution Model and Genetic Algorithms
on Problems in Digital Signal Filter Design. Proceedings of the 1999 Genetic and
Evolutionary Computation Conference (GECCO).

30 R.S. Michalski

Darwin, C. (1859), On the Origin of Species by Means of Natural Selection, or the
Preservation of Favoured Races in the Struggle for Life, John Murray, London.

Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley.

Holland, J. (1975), Adaptation in Artificial and Natural Systems. Ann Arbor: The
University of Michigan Press.

Kaufman, K. A. and Michalski, R.S. (2000a), Applying Learnable Evolution Model to
Heat Exchanger Design, Proceedings of the Seventeenth National Conference on
Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial
Intelligence (AAAI-2000/IAAI-2000), Austin, Texas.
Kaufman, K.A. and Michalski, R.S. (2000b), The AQ18 Machine Learning and Data
Mining System: An Implementation and User's Guide. Reports of the Machine
Learning Laboratory, George Mason University, Fairfax, VA (to appear).
Koza, J.R., Bennett, F. H. III, Andre D., Keane M. A. (1999), Genetic Programming
III: Darwinian Invention and Problem Solving, Morgan Kaufmann Publishers, San
Francisco, CA.
Michalewicz, Z. (1996), Genetic Algorithms + Data Structures = Evolutionary
Programs. Springer Verlag, Third edition.
Michalski, R.S. (1998), Learnable Evolution: Combining Symbolic and Evolutionary
Learning. Proceedings of the Fourth International Workshop on Multistrategy
Learning (MSL'98), 14-20.
Michalski, R.S. (2000a), LEARNABLE EVOLUTION MODEL: Evolutionary
Processes Guided by Machine Learning. Machine Learning 38(1-2).
Michalski, R.S. (2000b), Natural Induction: A Theory and Methodology of the AQ
Approach to Machine Learning and Data Mining. Reports of the Machine Learning
Laboratory, George Mason University, Fairfax, VA (to appear).
Michalski. R.S. and Zhang, Q. (1999), Initial Experiments with the LEMI Learnable
Evolution Model: An Application to Function Optimization and Evolvable Hardware.
Reports of the Machine Learning and Inference Laboratory, MLI 99-4, George
Mason University, Fairfax, VA.
Mitchell, M. (1996). An Introduction to Genetic Algorithms. Cambridge, MA: MIT
Press.Back, Thomas, Optimization by Means of Genetic Algorithms, ENCORE.
Steele E. J. and Blanden R. V. (2000), Lamarck and Antibody Genes, Science, Vol.
288, No. 5475, pp. 2318.

Wnek, J., Kaufman, K., Bloedorn, E. and Michalski, R.S. (1995), Inductive Learning
System AQ15c: The Method and User's Guide, Reports of the Machine Learning and
Inference Laboratory, MLI 95-4, George Mason University, Fairfax, VA.

Can Relational Learning Scale Up?

Attiio Giordana1 , Lorenza Saitta1 , Michele Sebag2 , and Marco Botta3

1 DISTA, Universit. del Piemonte Orientale, Alessandria, Italy

attilio~unipmn. it
2 LMS, Itcole Polytechnique, Palaiseau, France

sebaglcmapx.po1ytechnique.fr
' Dipartimento di Informatica, Universitl di Torino, Torino, Italy

bottaldi .unito. it

Abstract. A key step of supervised learning is testing whether a can-
didate hypothesis covers a given example. When learning in first order
logic languages, the covering test is equivalent to a Constraint Satisfac-
tion Problem (CSP). For critical values of some order parameters, CSPs
present a phase pransition, that is, the probability of finding a solution
abruptly drops from almost 1 to almost 0, and the complexity drama-
tically increases. This paper analyzes the complexity and feasibility of
learning in first order logic languages with respect to the phase transition
of the covering test.

1 Introduction

This paper is concerned with supervised learning from structured examples, ter-
med relational learning [Qui9O] or Inductive Logic Programming (ILP) [MDR94].
Relational learning involves an additional difficulty, compared to learning in
attribute-value languages: in first order logic, the covering test - testing whether
a candidate hypothesis covers a given example - can be formulated as a Con-
straint Satisfaction problem (CSP), which is a NP-hard task. The phase tran-
sition manifests itself as an abrupt change, with respect to some order para-
meters of the problem class, of the probability for a problem instance to be
satisfiable. This change is usually coupled with a peak in computational com-
plexity [HHW96]; the "hardest-on-average" instances lie in the phase transition,
or mushy region.

Previous work has provided strong evidence of the existence of a phase tran-
sition for the relational covering test [GSOO]. The mushy region was empirically
localized and found to be relevant to relational learning; this region is very likely
to be visited when learning non-toy relational concepts. Even worse, the phase
transition might have deceptive effects on the learning search; according to preli-
minary experiments, the mushy region seems to attract the learning search, no
matter what the region of the "true" target concept is.

In this paper, we focus on the actual effects of the phase transition on rela-
tional learning, through systematic experiments on artificial problems. We de-
fine some hundreds of target concepts, located in the under-constrained, over-
constrained and mushy regions. For any given target concept, we construct a

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 31-39, 2000.
@ Springer-Verlag Berlin Heidelberg 2000

32 A. Giordana et al.

learning and a test set. The well-known top-down relational learner FOIL [Qui9O]
is run on these training sets, and the theories learnt by FOIL are compared to
the true target concepts. A Failure Region appears, where FOIL fails to either
identify or accurately approximate the target concept. The reasons for FOIL's
behavior are analyzed and some explanations are given.

2 Phase Transition in Hypothesis Testing

We restrict ourselves to the simplest case of concept learning in first order logic,
i.e., learning a 0-ary conjunctive relation. The target concept W is thus described
as a conjunctive formula implicitly existentially quantified. Let E be a universe
where W is evaluated. E is said a positive example of s if it contains a model of
s, and a negative example otherwise.

Let us briefly recall our previous results. Let any example E be given as a
conjunction of ground literals ai (vi, ..ViK), where ai is a predicate symbol and
vi denotes a constant of the application domain [MDR94]. The set of literals built
on a same predicate symbol ai is termed a relation. The complexity of example
E is characterized from two parameters: the number L of distinct constants and
the average size N of the relations occurring in E. Similarly, the complexity
of hypothesis st is characterized from its number n of variables and its total
number m of literals. The CSP defined as "test whether st covers E" is finally
characterized from the 4-tuple (n, N, m, L).

Extending the work by [Pro96], [BGS99] have shown the occurrence of a phase
transition in the covering test with respect to the order parameters (m, L). Fig.
1(a) plots the probability P,,, for a hypothesis to cover an example as a function
of m and L; n and N are set to 10 and 100, respectively. The contour plots of

K-100 45

35

30 L

5e •

25

20

45 4'

18 S 5 10 15 28 25 38 35 48 45 58

(a) (b)

Fig. 1. (a) Po, in the plane (m, L); n = 10, N = 100; (b) Pco1 = 0.5 for n = 4, 6, 10,
14; N = 100.

the crossover point (P,,, = .5) for different numbers n of variables is given in
Fig. 1(b); the phase transition shifts toward the upper right as n increases, and

Can Relational Learning Scale Up? 33

the computational cost (not shown here) increases exponentially. Let W be a
concept and let m~o denote its number of literals; let, moreover, LW,,, be the
critical number of constants for which the pair (mn~o, LW,,,) falls within the phase
transition region. Any problem of deciding whether V covers an aexample E lies
on the vertical line rn=m p in the above landscape (Fig. ??). Depending on the
number L of constants in E, three possibilities are distinguished. For L > LW,cr,
the covering test lies in the over-constrained region (NO region); assuming that
E corresponds to a uniformly generated universe, E is almost surely a negative
example of W. Symmetrically, when L < Lcp,cr, the covering test lies in the

under-constrained region (YES region), and E would be a positive example of
W. ast ifL ý Lp,cr, E might be a positive or negative example with about

implies that two different concepts having mcp literals cannot be distinguished
with respect to their coverage of uniformly generated examples, exrcept if those
examples involve about LW,,, constants.

On the contrary, assuming a non-random example distribution, we may ex-
pect any rate of successful and unsuccessful covering tests in any region of the
plane (in, L). In the following, both random and non-random distributions will
be considerd.

3 Experiment Goal and Setting

Our study is based on artificial learning problems. Each learning problem is
characterized as a triplet (ýo, EL -IT), where ýo denotes the "true" target concept,
and SL and ST respectively denote the learning and the test sets. Two restrictions
have been done: ýo only contains binary predicates and all predicates in the
examples are relevant, i.e. they appear in W.

A total number of 451 problems have been constructed, each characterized
by a 4-tuple (n, N, m, L). The number in of literals in ýo varies in the interval
[5±--30]; the number L of constants in the examples varies in the interval [11÷ 40].
The number n of distinct variables in Wo is set to 4; the relation size is set to
N = 100 in all examples. In this way, a wide region of the plane (mn, L), including
the phase transition, is covered.

The problems have been generated using the random generator described by
[BGS99], which guarantees a uniform distribution of both the target concepts
and the examples. All training and test sets contain 100 positive and 100 negative
examples each. As noted earlier, such an even distribution is quite unlikely when
the pair (in, L) falls outside the mushy region and the examples follow a uniform
distribution. We thus repair the training and test sets, by turning some negative
examples into positive ones, by adding a model of ýp when so belongs to the NO
region; symmetrically, some positive examples are turned into negative ones by
removing all models of so, when Wo belongs to the YES region.

The relational learning goal is to discover either the very description of the
target concept so, or some accurate approximation ý of it. Besides the computa-
tional cost, two issues have been specifically considered:

34 A. Giordana et al.

Predictive accuracy. As usual, the accuracy is given by the percentage of test
examples correctly classified by the hypothesis ý produced by the learner. The
accuracy is considered satisfactory iff it is greater than 80% (the point of this
threshold value will be discussed later on).
Concept identification. It must be emphasized that a high predictive accu-
racy does not imply that the learner has discovered the actual target concept ý0.
The two issues must therefore be distinguished. The identification is considered
satisfactory iff the structure of 0 is close to that of the true target concept 0,
i.e., if 0 is conjunctive.

Most experiments have been done using FOIL [Qui90], which basically per-
forms a top-down exploration. It starts with the most general hypothesis, and
iteratively specializes its current hypothesis ot by taking its conjunction with the
"best" literal ci (xi, Xk) according to some statistical criterion (Information Gain
[Qui90] or Minimum Description Length (MDL) [Ris78]). When specializing fur-
ther the current hypothesis does not improve the criterion, WT is retained, all
positive examples covered by VT are removed from the training set, and the se-
arch is restarted, unless the training set is empty. The final hypothesis ý returned
by FOIL is the disjunction of all retained partial hypotheses 'PT.

4 Results

Predictive Accuracy. Each relational problem (W, EL, £T) is defined from the
size m of the target concept and the number L of constants in the examples, and
represented as a point in the plane (mn, L). Fig 2 reports the predictive accuracy
of the hypotheses 0 learned with FOIL A successful case (resp. a failure case)
corresponds to a "+" (resp. ".").

45

I'• • +÷ ÷+ ++ ÷•

+÷ + ÷ + + ++ +

+. ,. ..: . . .•7+ ++ + ++ ++:+ +

+ $ ' ., + ,• + + + •

'0

Fig. 2. Relational learning with FOIL. The Failure region (.) and the Success region
(+). The upper (resp. lower) curve indicates the (mn, L) points such that any random
concept W with m literals subsumes with probability .1 (resp. .9) a random example
generated from L constants.

Can Relational Learning Scale Up? 35

There are marked differences between successful and failure cases: the pre-
dictive accuracy usually is either very high (> 95%) or comparable to that of
random guessing (: 58%) (Table 1). Other experiment made with other learners
suggest that the failure region seems almost independent from the success crite-
rion and the learning strategy. Overall, the experiments suggest that relational
learning succeeds iff either the target concept is sufficiently small (m < 6), or
the relational problem is sufficiently far away from the phase transition. The
latter condition was unexpected, as it states that longer concepts (extreme right

region) might be easier to learn than shorter ones (close to the phase transition).
This point will be discussed further in Section 5.
Concept Identification. Table 1 reports the characteristics of the learnt theo-
ries versus the target concept: the first two columns recalls the coordinates m
and L of the relational learning problem; columns 3 and 4 give the number of

conjunctive hypotheses in 0 and their average number of literals, respectively.

Columns 5, 6 and 7 give the predictive accuracy of 0 on the training and test

sets, and the computational cost of learning (in seconds on a Sparc Enterprise
450). Last column gives the problem category, explained below. Table 1 shows
three categories of relational problems.

Table 1. Target concept y and learnt hypothesis 0

W 0 = 'PT 1
V ... V TATK Performances

m L #Ti #Hlit (WTi) EL ET 0CPU Time

8 16 1i 8 100 100 106.2 E
10 13 1 14 100 99 144.2 E
10 16 8 11.75 89 48.5 783.5 H
11 13 1 6 131 00 100 92.2 E
11 15 6 13.5 85 53.5 986.2 H
12 13 3 14 98.5 83 516.4 A

'p belongs to the YES region (lower left)

15 1 6 f i 8.3 A
15 35 2 6 97.5 84.5 894.6 A
18 35 1 6 100 100 201.0 A
21 18 8 4.13 81.5 58 1394.9 H
25 24 1 6 100 99 135.9 A
259 17 1 12 100 99.1 144.9 A

W belongs to the NO region (upper right)
6 28 12 8.08333 91.5 50.5 815.4 i-
7 28 11 7.63636 91.5 60.5 1034.2 H
8 27 1 7 100 100 58.8 E

13 26 1 9 100 99 476.8 A
17 14 8 15 93 46 294.6 H

18 16 8 8.875 91 58.5 404.0 H
36 13 3 24 .3333 80 58 361.4 H

- belongs to the phase .ransitio region

E. Easy problems. FOIL finds a conjunctive hypothesis 0 which equals Wo or

differs from so by at most one literal, and correctly classifies (almost) all training

and test examples. Easy problems lie in the YES or in the mushy regions, for

low values of m.
A. Approximable problems. FOIL finds a conjunctive hypothesis 0, which correc-
tly classifies (almost) all training and test examples, but largely over-generalizes
ýp (e.g. ý has 6 literals instead of 18).

Approximable problems are mostly in the NO region, far away from the phase

transition.
H. Hard problems. FOIL learns a disjunctive hypothesis •, involving many con-

36 A. Giordana et al.

junctive hypotheses YPT (between 6 and 15) of various sizes, and each S
0T only

covers a few training examples. The predictive accuracy of ý is not much better
than random guess on the test set. In other words, such cases involve the emer-
gence of the true concept is a conjunctive one. Incidentally, the computational
cost reaches its maximum for hard problems; this results from the number of
hypotheses learned and from the fact that they lie close to the phase transition
(see next paragraph).
Hard problems lie on or close to the phase transition, for high values of m.

These results confirm the fact that a high predictive accuracy does not im-
ply that the true concept ýo has been discovered. It is true that FOIL succeeds
whenever it correctly discovers a single conjunctive concept @; but 0 might be a
wild generalization of W. Obviously, there is no way one can distinguish between
easy and approximable problems in real-world applications.

Location of the hypotheses. Let us examine the hypotheses learnt by FOIL.
Except for those easy problems located in the YES region, conjunctive hypo-
theses V0T lie in the mushy region (Fig. 3). More precisely, in the easy problems
located in the mushy region, FOIL discovers the true concept; in approxima-
ble problems, FOIL discovers a generalization of the true concept, lying in the
mushy region; in hard problems, FOIL retains seemingly random disjuncts, most
of them lying in the mushy region. As previously noted [GSOO], the phase tran-
sition behaves as an attractor of the learning search.

Fig. 3. Histogram of the conjunctive hypotheses W,

5 Interpretation

The above results raise at least three questions. Why does the learning search
end up in the mushy region ? When and why is the target concept correctly
identified ? When and why should a relational learner fail to approximate the
target concept ? Some tentative answers are proposed in this section.

Can Relational Learning Scale Up? 37

5.1 The Phase Transition Is an Attractor

FOIL constructs a series of candidate hypotheses. It starts with a single literal
(p, and specializes Wot to obtain sot+,. The series of hypotheses thus forcedly
starts in the YES region, then it might come to visit the mushy region, and
possibly thereafter the NO region. Each sot is required to be representative, co-
vering sufficiently many positive examples; the last hypothesis WoT is such that
it is sufficiently correct, covering no or few negative examples. We examine the
implications of this search strategy, depending on the location of the target con-
cept ýp.

Case 1: Wo belongs to the phase transition region.
By construction, W would cover a random example with probability around .5;
examples need little repairing (Section 3) in order to get evenly distributed
training and test sets. Hence:

* No hypothesis in, the YES region can be correct as it likely covers all training
examples. The search must go on until reaching the mushy region.

* Symmetrically, any hypothesis in the NO region would hardly cover any
training example, hence it is not representative. The search thus should stop at
the very beginning of the NO region, and preferably before, that is, in the mushy
region.
Therefore in this case, a top-down learner is bound. to produce hypotheses WT
lying in the mushy region.

Case 2: W belongs to the NO region.
Here, negative examples do not need to be repaired; hence, any hypothesis in the
YES region will cover them; thus the search must go on at least until reaching
the mushy region. On the other hand, any hypothesis in the NO region should
be correct, and there is no need to continue the search. Top-down learning is
thus bound to produce hypotheses 'pT lying in the mushy region, or on the verge
of the NO region.

Case 3: W~ belongs to the YES region.
The situation is different here, since there exist correct hypotheses in the YES
region, namely the target concept itself, and possibly many specializations the-
reof. Should these hypotheses be discovered (the chances for such a discovery
are discussed in the next subsection), it would not be necessary to continue the
search. In any case, the search should stop before reaching the NO region, for the
following reason: positive examples do not need to be repaired; any hypothesis
in the NO region would cover none of them. Then, top-down learning is bound
to produce hypotheses soT in the YES or in the mushy region.

The above remarks explain why the phase transition constitutes an attractor
for top-down learning.

5.2 Correct Identification of' the Target Concept

As the information gain relies on the number of models of a candidate hypothe-
sis. But any hypothesis in the YES region admits many models in any random

38 A. Giordana et al.

example. The number of models associated to any literal is thus hardly meaning-
ful, except when the current hypothesis is close to the target concept. Further,
the variance in the number of models blinds the selection of the literals. Com-
plementary experiments [BGSSOO] show that the variance reaches its maximum
as hypotheses reach the phase transition.

p i45

40

35

3 3
43 30

', W, 2",3" 5 ý 2

6 15 .3

Q 2',4 1 4 3 2 3

"7, 5 3 3 3 3 2
3 4 . 7 8 3 4 3 3 4 3
3 t,,5 J3 6% 6 4 3 6 3 6 3 11 2 2 2 3 3 2 20
1 1 "4 8 '&, 12 7 14 3 4 3 3 3 3 3 2 2 2

*6 '8,7 'S. 6 6 3 7 3 3 4 3 1•' .7 "7".10S"- 13 5 3 4 1 5 7 1 13 3 12 31 53_ "4 T- 6- 10 7 8 15 13 15 13 14 6 3

3 1 8 -95.7-9-k -16"-1-1 17 13 15 13 3 9 15
1 1 1 3 44' 16-64Q.98421--21

8 15 14 2 4"-1-- -- -

i i10

5 10 1 20 25 30

Fig. 4. Minimum size of •o before the information gain becomes reliable.

Fig. 4 reports, at coordinates (m, L), the minimal level tm of the specializa-
tion process where the information gain becomes reliable. Fig. 4 could be thus
interpreted as a reliability map of the information gain.

Note that, for most problems in the mushy region or on the borderline bet-
ween the mushy and the NO regions, tm takes high values, denoting a poor
ability to find any correct path; moving farther away from the phase transition,
t, gradually decreases.

5.3 Good Approximation of the Target Concept

According to the above discussion, relational learning is doomed to fail when
either the size m of the target concept and/or the number L of constants in the
application domain, are high. Still, when both m and L are high (upper right
region in Fig. 2), FOIL succeeds, and finds highly accurate hypotheses.

This can be explained as follows. Let us assume that the target concept ýp
belongs to the NO region.

Can Relational Learning Scale Up? 39

We show that any generalization ý of the target concept W will almost surely
correctly classify any training or test examples, provided that ý belongs to the
NO region: negative examples are randomly constructed; hence, any hypothesis
in the NO region will be correct; in particular, • is correct. On the other hand,
any example covered by so is also covered by •; this implies that ý covers all
positive examples. Finally, any generalization of W that belongs to the NO region
is complete and (almost surely) correct.

It follows that, if the learning search happens to examine a generalization
of W which is close to the NO region, ý will be considered an optimal hypothesis,
which will stop the search. The success of relational learning, with respect to
predictive accuracy, thus depends on the probability of finding a generalization
Sof W on the edge of the phase transition.

6 Conclusion

The present study shed some light on the limitations of several up-to-date rela-
tional learners. One major result of the paper is the fact that the learning search,
be it based on top-down or genetic-like exploration, is trapped in the mushy re-
gion. This result is supported by the systematic experiments reported here and
also by complementary experiments [GS00] on real-world applications. A second
result is the fact that there is a large "blind spot" in the concept landscape. Any
concept so in this area could not be learned from examples; all relational lear-
ners considered in the present study failed to learn anything better than random
guess from the available examples. This blind spot reflects the criteria used to
guide the search, which actually mislead it.

References

[BGS99] M. Botta, A. Giordana, and L. Saitta. Relational learning: Hard problems
and phase transitions. In Proceedings of th 16th International Joint Conference on
Artificial Intelligence, pages 1198-1203, Stockholm, Sweden, 1999.

[BGSS00] M. Botta, A. Giordana, L. Saitta, and M. Sebag. Relational learning: Hard
problems and phase transition. In Selected papers from AIIA '99, volume to appear.
Springer-Verlag, 2000.

[GS00] A. Giordana and L. Saitta. Phase transitions in relational learning. Machine
Learning, x:to appear, 2000.

[HHW96] T. Hogg, B.A. Huberman, and C.P. Williams, editors. Artificial Intelligence:
Special Issue on Frontiers in Problem Solving: Phase Transitions and Complexity,
volume 81(1-2). Elsevier, 1996.

[MDR94] S. Muggleton and L. De Raedt. Inductive logic programming: Theory and
methods. Journal of Logic Programming, 19:629-679, 1994.

[Pro96] P. Prosser. An empirical study of phase transitions in binary constraint satis-
faction problems. Artificial Intelligence, 81:81-110, 1996.

[Qui90] R. Quinlan. Learning logical definitions from relations. Machine Learning,
5:239-266, 1990.

[Ris78] J. Rissanen. Modeling by shortest data description. Automatica, 14:465-471,
1978.

Discovering Geographic Knowledge: The INGENS
System

Donato Malerba Floriana Esposito Antonietta Lanza Francesca A. Lisi

Dipartimento di Informatica, UniversitA degli Studi di Bar
via Orabona 4, 70125 Bad, Italy

{ malerba I esposito I lanza I lisi } @di.uniba.it

Abstract. INGENS is a prototypical GIS which integrates machine learning
tools in order to discover geographic knowledge useful for the task of
topographic map interpretation. It embeds ATRE, a novel learning system that
can induce recursive logic theories from a set of training examples. An
application to the problem of recognizing four morphological elements in
topographic maps of the Apulia region is also illustrated.

1 Introduction

Data stored in many geographical information systems (GIS) concern topographic
maps, which show relief, vegetation, hydrography and man-made features of a land
portion [4]. Some map management functions implemented in current GIS are
storage, retrieval and visualization on different scales. Nevertheless, the interpretation
of topographic maps is an equally important facility which is rarely supported in a
GIS. Indeed, information given in topographic map legendcs or in GIS models is often
insufficient to recognize geographic objects of interest for a given application. For
example, a study of the drawing instruction of Bavarian cadastral maps pointed out
that symbols for road, pavement, roadside, garden and so on were defined neither in
the legend nor in the GIS model of the map [8]. These objects require a process of
map interpretation, which can be quite complex in some cases. The detection of
morphologies characterizing the territory described in a topographic map, the
selection of important environmental elements, both natural and artificial, and the
recognition of forms of territorial organization require abstraction processes and deep
domain knowledge that only human experts have. Although these are the patterns
which geographers, geologists and town planners are interested in, they are never
explicitly represented in topographic maps or in GIS.

In order to acquire the necessary knowledge for map interpretation, we propose to
extend a GIS with a training facility and a learning capability, so that each time a user
wants to query its database on some geographic objects not explicitly modeled, he/she
can prospectively train the system to recognize such objects and to create a special
user view. Both examples and counter-examples are provided by the expert user by
means of the GIS interface. The symbolic representation of the training examples is
automatically extracted from the maps, although it is still controlled by the user who
can select a suitable level of abstraction and/or aggregation of data. The learning

Z.W. Ra• and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 40-48, 2000.
0 Springer-Verlag Berlin Heidelberg 2000

Discovering Geographic Knowledge: The INGENS System 41

module of the information system implements one or more inductive learning
algorithms that can generate models of geographic objects from the chosen
representations of training examples.

INGENS (INductive GEographic iNformation System) is a prototypical GIS
devoted to manage topographic maps of the Apulia region (Italy) to support land
planning. Its logical architecture is described in the next section. The distinguishing
feature of INGENS is its inductive learning capability, which is used to discover
geographic knowledge of interest to town planners. In Section 3, the main
characteristics and the high level algorithm of a novel learning system currently
embedded in INGENS is described. This system, named ATRE, has been applied to
map interpretation tasks to locate important environmental and morphological
concepts on topographic maps. Section 4 is devoted to the explanation of some
preliminary results. The paper concludes with a brief discussion on future work.

2 INGENS software architecture and object data model

The software architecture of INGENS is reported in Figure 1. The Map Repository is
the database instance that contains the actual collection of maps stored in INGENS.
Geographic data are organized according to a hybrid tessellation - topological object-
oriented model.' The tessellation model follows the usual topographic practice of
superimposing a regular grid on a map to simplify the localization process. Indeed
each map in the repository is divided into square cells of same size. The raster image
of a cell is stored together with its coordinates and component objects. In the
topological model of each cell it is possible to distinguish two different hierarchies:

GUI (Web Browser)

Query Interpreter • Learning Server

Map Map Map
Converter Editor Descriptor

Map Storage Subsystem

SObjectStore DBMS

_ _~p Rpoiitr~

Fig. 1. INGENS three-layered software architecture.

1 The object-oriented database management system (OODBMS) used to store data is
ObjectStore 5.0 by Object Design, Inc.

42 D. Malerba et al.

physical and logical. The former describes the geographical objects by means of the
most appropriate physical entity, that is point, line or region, while the latter expresses
the semantics of geographic objects (hydrography, orography, administrative or
political boundary, and so on), independently of their physical representation.

The Map Storage Subsystem is involved in storing, updating and retrieving items to
and from the map repository. As resource manager, it represents the only access path
to the data contained in the repository by multiple, concurrent clients.

The layer of the application enablers makes several functionalities available to the
different users of the system. Users are classified in four categories:
"* Administrators, who are responsible for GIS management.
"* Map maintenance users, whose main task is updating the Repository.
"* Sophisticated end users, who can train the system to learn operational definitions

of geographic objects not explicitly modeled in the database.
"* Casual end users, who occasionally access the database and may need different

information each time. Casual users cannot train INGENS.
The Map Converter is a suite of tools which support the acquisition of maps from

external sources, namely raster images from scanners and geographic objects from
files of maps in a proprietary vector format. Currently, INGENS can automatically
acquire information from vector maps in the MAP87 format defined by the Italian
Military Geographic Institute (IGMI) (http://www.nettuno.itlfiera/igmi/igmit.htm). Since
these maps contain static information on orographic, hydrographic and administrative
boundaries alone, a Map Editor is required in order to integrate and/or modify this
information. The Map Descriptor is the application enabler responsible for the
automated generation of first-order logic descriptions of geographic objects. The
Learning Server provides a suite of learning systems that can be run by multiple users
to train INGENS. Currently, two inductive learning systems are available in the suite:
INDUBI/CSL [6] and ATRE [7]. Both systems can induce first-order logic
descriptions of some concepts from a set of training examples. Nevertheless, they
adopt different generalization models and search strategies, so that they can induce
different descriptions from the same set of examples. The system ATRE is described
in the next section. The Query Interpreter is the inference engine that allows any user
to formulate a query in a first-order logic language. The query can contain both spatial
and aspatial descriptors that can be automatically generated by the Map Descriptor, as
well as new descriptors whose operational description has already been learned.

The interface layer implements a Graphical User Interface (GUI), which allows
the four categories of INGENS users to create/ maintain/delete a repository of maps,
train the system to learn operational definitions of some geographic concepts, choose
a specific map repository and query/browse it on the basis of the content of its maps.

3 Learning classification rules for geographical objects

Sophisticated end users may train INGENS in order to learn operational definitions of
geographical objects that are not explicitly modeled in the database. The system
ATRE, which is presented in this section, can induce recursive logical theories and
can autonomously discover concept dependencies, the latter being an important issue
for many map interpretation problems.

Discovering Geographic Knowledge: The 1NGENS System 43

Here the term logical theory (or simply theory) denotes a set of first-order definite
clauses. An example of a logical theory is the following:

downtown(X) -- high-businessactivity(X), onthesea(X).
residential(X) €--close to(X, Y), downtown(Y), low business activity(X).

residential(X) -- close-to(X, Y), residential(Y), low-businessactivity(X).
It expresses sufficient conditions for the two concepts of "main business center of a
city" and "residential zone," which are represented by the unary predicates downtown
and residential, respectively.

The learning problem solved by ATRE can be formulated as follows:
Given
* a set of concepts C1, C 2, ... , C, to be learned,
* a set of observations 0 described in a language Lo,
* a background knowledge BK described in a language LBK,

• a language of hypotheses L1,,

* a generalization model Fover the space of hypotheses,
* a user's preference criterion PC,
Find

a (possibly recursive) logical theory T for the concepts C,, C2, ... , C,, such that T is
complete and consistent with respect to 0 and satisfies the preference criterion PC.

The completeness property holds when the theory T explains all observations in 0
of the r concepts Ci, while the consistency property holds when the theory T explains
no counter-example in 0 of any concept Cý. The satisfaction of these properties
guarantees the correctness of the induced theory with respect to 0.

As to the representation languages Lo, LBK, L,, the basic component is the literal,
which takes two distinct forms:

fit1 ... , t,) = Value (simple literal) fit1 ... , t,) e [a..b] (set literal),
wheref and g are function symbols called descriptors, tP's and s,'s are terms, and [a..b]
is a closed interval. Descriptors can be either nominal or linear, according to the
ordering relation defined on its domain values. Some examples of literals are:
color(X)=blue, distance(X, Y)=63.9, width(X) e[82.2.. 83.11, and close to(X, Y)=true.

The last example shows the lack of predicate symbols in the representation

languages adopted by ATRE. Indeed, ATRE can deal with classical negation, -, but
not with negation by failure, not [5]. Thus, the first-order literals p(X, Y) and -,p(X, Y)
are represented as f (X, Y)=true and fp(X, Y)=false, respectively, wherefp is the function
symbol associated to the predicate p. Henceforth, for the sake of simplicity, we will
adopt the usual notation p(X, Y) and -1p(X, Y).

The language of observations Lo is object-centered, meaning that observations are
represented as ground multiple-head clauses, called objects, with a conjunction of
simple literals in the head. An instance of an object is the following:

downtown(zone1) A residential(zone2) *-- close to(zone,, zone2), onthesea(zone1),
high-business activity(zone,), low business activity(zone2).

which is semantically equivalent to the set of definite clauses:

downtown(zone1) <- closeto(zone1, zone2), onthesea(zone1),
high-business activity(zone,), lowbusiness-activity(zone2).

residential(zone2) <- close to(zone,, zone2), onthesea(zone1),
high-business activity(zone,), low business activity(zone2).

44 D. Malerba et al.

Multiple-head clauses are peculiar to ATRE and present two main advantages with
respect to definite clauses: higher comprehensibility and efficiency. The former is
basically due to the fact that multiple-head clauses provide us with a compact
description of multiple properties to be predicted in a complex object like those we
may have in map interpretation. The second advantage is the possibility to have a
unique representation of known properties shared by a subset of observations. In fact,
ATRE distinguishes objects from examples, which are described as pairs <H, OlD>
where H is a literal in the head of the object indicated by the object identifier OlD.
Examples can be considered as positive or negative, according to the concept to be
learned. For instance, (downtown(zone1)=true, 0) is a positive example of the concept
downtown(X)=true, a negative example of the concept downtown(X)=false, and it is
neither a positive nor a negative example of the concept residential(X)=true.

The language of hypotheses L,, is that of linked, range-restricted definite clauses
[2] with simple and set literals in the body and one simple literal in the head. The
interval [a.. b] in a set literal fiX ,.... X) e [a.. b] is computed according to the same
criterion used in INDUBI/CSL [6]. Some examples of clauses induced by ATRE are
given in the next section.

The background knowledge defines any relevant domain knowledge. It is
expressed in a language LBK with the same constraints as the language of hypotheses.
The following is an example of spatial background knowledge:

closejto(X, Y) .-f adjacent(X, Y)
which states that two adjacent zones are also close.

Theories generated by ATRE can be easily translated into sets of Datalog definite
clauses with built-in predicates [1], thus allowing to extend notions and properties of
standard first-order logics (e.g., resolution) to ATRE definite clauses.

Regardless of the representation language adopted, a key part of the induction
process is the search through a space of hypotheses. A generalization model provides
a basis for organizing this search space, since it establishes when a hypothesis
explains a positive/negative example and when a hypothesis is more general/specific
than another. A novel generalization model, named generalized implication [7], is
adopted by ATRE.

The main learning procedure is shown in Figure 2. To illustrate the algorithm, let
us consider the following input data:
Objects 0, downtown(zone,)A ýresidential(zone,)A residential(zone,) A

--downtown(zone,) A -downtown(zone3) A residential(zone4) A
-downtown(zone4) A -,downtown(zone5) A -,residential(zone,) A
-residential(zone6) A downtown(zoned) A -residential(zoneT) +-

onthesea(zone,),high.business.activity(zone,), close to(zone,,zoned),
lowbusiness activity(zone,), close-to(zone,,zone,), adjacent(zone,,zone3),
onthesea(zone,), lowbusiness activity(zone3), low business activity(zone4),
closegto(zone4,zone), high-business activity(zone,),adjacent(zone!,zone6),
lowbusinessactivity(zone6), close to(zone, zone,), low businessactivity(zone,),
closejto(zone,,zoned), onthesea(zoned),high-businessactivity(zone7).

BK close to(X, Y) -- adjacent(X, Y)

close to(X, Y) -- closeto(Y,X)
Concepts C, downtown(X)=true

C2 residentiaLzone(X)=true
PC Minimize/maximize negative/positive examples explained by the theory.

Discovering Geographic Knowledge: The INGENS System 45

procedure learn recursivetheorv(Objects, BK, [C:,..., C], PC)

SatObjects := saturateobjects(Objects, BK)
Examples := generatepos-and neg-examples(Objects, I C1,..., C]})
LearnedTheor :=0
Concepts:= [C.., Q
repeat

ConsistentClauses := parallel-conquer(Concepts, Examples, PC)
Clause := findbestclause (Consistent~clauses, PC)
ConsistentTheory: =verify..global consistence(Clause, Learned-theory, Objects, Examples)
LearnedTheory := ConsistentTheory u(•Clausel
Objects := saturateobjects(SatObjects, LearnedTheor'y)
Examples := update-examples(LearnedTheorv.Examples)
foreach C, in Concepts do

if pos-examples(C,)= Othen Concepts:= Concepts / [CJ
endif

endforeach
until Concepts = 0
return LearnedTheory

Fig. 2. ATRE: Main procedure.

The first step towards the generation of inductive hypotheses is the saturation of
all objects with respect to the given BK [9]. In this way, information that was implicit
in the object, given the background knowledge, is made explicit. In the above
example, the saturation of O involves the addition of the nine literals logically
entailed by BK, that is: close to(zone2, zone1), closegto(zone,, zone3), close to(zone3,
zone,), closejto(zone, zone1), close to(zone4, zone2), close to(zone5, zone4),
close-to(zone5, zone,), close-to(zone, zone5), and close to(zone, zone6).

Initially, all positive and negative examples (pairs (L,OID)) are generated for every
concept to be learned, the learned theory is empty, while the set of concepts to be
learned contains all C,. With reference to the above input data, the system generates
two positive examples for C, (downtown(zone) and downtown(zone)), two positive
examples for C, (residential(zone2) and residential(zone,)), and eight negative
examples equally distributed between C, and C2 (--downtown(zone2),
-edowntown(zone3), -downtown(zone,) A ---downtown(zone,), -7residential(zone,),
-lresidential(zone5), -residential(zone6), -residential(zone)).

The procedure parallel-conquer generates a set of consistent clauses, whose
minimum number is defined by the user. For instance, by requiring the generation of
at least one consistent clause with respect to the above examples, this procedure
returns the following set of clauses:

downtown(X) . onthesea(X), highbusiness activity(X).

downtown(X) - onthesea(X), adjacent(X, Y).
downtown(X) f- adjacent(XY), onthesea(Y).
The first of these is selected according to the preference criterion (procedure

find best clause). In fact, the hypothesis space of the concept residential has been
simultaneously explored, just when the three consistent clauses for the concept
downtown have been found, no consistent clause for residential has been discovered

46 D. Malerba et al.

yet. Thus, the parallel-conquer procedure stops, since the number of consistent
clauses is greater than one.

Since the addition of a consistent clause to the partially learned theory may lead to
an augmented, inconsistent theory, the procedure verify globalconsistence makes
necessary checks and possibly reformulates the theory in order to recover the
consistency property without repeating the learning process from scratch. The
reformulation is based on the layering technique, which is peculiar to ATRE. The
learned clause is used to resaturate the object. Continuing the previous example, the
two literals added to 0, are downtown(zone) and downtown(zone7). This operation
enables ATRE to generate also definitions of the concept residential that depend on
the concept downtown. Indeed, at the second iteration the procedure parallel conquer
returns the clause:

residential(X) (- close to(X, Y), downtown(Y), lowbusiness activity(X).

and by resaturating the object with both learned clauses, it becomes possible to
generate a recursive clause at the third iteration, namely:

residential(X) (- close to(X, Y), residential(Y), lowbusiness activity(X).
At the end of each iteration, the procedure updateexamples tags positive examples

explained by the current learned theory, so that they are no longer considered for the
generation of new clauses. The loop terminates when all positive examples are
tagged, meaning that the learned theory is complete and consistent.

4. Application to Apulian map interpretation

INGENS has been applied to the recognition of four morphological elements in
topographic maps of the Apulia region (Italy), namely regular grid system of farms,
fluvial landscape, system of cliffs and royal cattle track. Such elements are deemed
relevant for the environmental protection, and are of interest to town planners. A
regular grid system of farms is a particular model of rural space organization that
originated from the process of rural transformation. The fluvial landscape is
characterized by the presence of waterways, fluvial islands and embankments. The
system of cliffs presents a number of terrace slopes with the emergence of blocks of
limestone. A royal cattle track is a road for the transhumance that can be found
exclusively in the South-Eastern part of Italy.

The considered territory covers 131 km2 in the surroundings of the Ofanto River,
spanning from the zone of Canosa until the Ofanto mouth. The examined area is
covered by five map sheets on a scale of 1:25000 produced by the IGMI. The
gridding step chosen for the segmentation of the territory delimits, for each map,
square observation units of 1 Km2 each. This is the same gridding system
superimposed over IGMI topographic chart on a scale of 1:25000. Thus there is a one-
to-one mapping between observation units in the chart and single cells in the
database. Each cell has to be described in the logic formalism of ATRE objects.

First-order logic descriptions of the maps are generated by applying algorithms
derived from geometrical, topological, and topographical reasoning. Since descriptors
are quite general they can also be used to describe maps on different scales. A partial
description of a cell containing fifty-two distinct objects is given in Figure 3. The
whole description is a clause with three hundred and forty literals in the body.

Discovering Geographic Knowledge: The INGENS System 47

class(xl)=other <-
contain(x 1,x2)=true, contain(xl,x3)=true ... , contain(x 1,x53)=true,
type of(x2)=canal-line, type-of(x3)=vegetation ... , type of(x53)=vegetation,
color(x2)=blue, color(x3)=black,.... color(x53)=black, trend(x2)=straight,
trend(x8)=straight ... , trend(x51)=curvilinear, extension(x2)=184.057,
extension(x8)=170.074 ... , extension(x51)=982.207,
geographic-direction(x2)=north-west, geographic direction(x8)=north-est.
geographic-direction(x49)=northnest, shape(xl6)=cuspidal, shape(xl8)=cuspidal.
shape(x44)=cuspidal, density(x4)=low, density(x6)=low ... , density(x52)=low,
relation(x8,xlO)=almostparallel, relation(x8,x14)=almost-parallel.
relation(x46,x49)=almosLtparallel, distance(x8,x 10)=463.09,
distance(x8,x 14)=423.1 11 ... , distance(x46,x49)=477.322

Fig. 3. Partial logical description of a cell. Constant xl represents the whole cell, while all
other constants denote the fifty-two enclosed geographic objects. Distances and extensions
are expressed in meters.

Then the problem of recognizing the four morphological elements can be
reformulated as the problem of labeling each cell with at most one of four labels.
Unlabelled cells are considered uninteresting with respect to the goal of
environmental protection. Globally 131 cells were selected, each of which was
assigned to one of the following five classes: system of farms, fluvial landscape,
system of cliffs, royal cattle track and other. The last class simply represents "the rest
of the world," and no classification rule is generated for it. Indeed, the cells assigned
to it are not interesting with respect to the problem of environmental protection under
study, and they are always used as negative examples when ATRE learns
classification rules for the remaining classes. Forty-five cells from the map of Canosa
were selected to train the system, while the remaining eighty-six cells were randomly
selected from the other four maps. The preference criterion PC maximizes both the
number of explained positive examples and the number of clause literals.

A fragment of the logical theory induced by ATRE is reported in the following:

class(X1) = fluvial-landscape (- contain(X1,X2), color(X2)=blue,
type of(X2)=river, trend(X2)=curvilinear, extension(X2) e[325.00..818.00].

class(X1) = fluvial landscape (- contain(X1,X2), type of(X2)=river, color(X2)=blue,
relation(X3,X2)=almostperpendicular, extension(X2) E[615.16.. 712.37],
trend(X3)=straight.

class(Xl)=system-ofjarms (--contain(X1,X2), color(X2)=black,
relation(X2,X3)=ahtnost-perpendicutlar, relation(X3,X4)=almost-paralle!,
type of(X4)=interfarm-road, geographic-direction(X4)=north_est,
extension(X2) F[36 2.34 .. 712.25], color(X3)=black,
type_of(X3)=farm_road, color(X4) =black, trend(X2) =straight.

The first two clauses explain all training observations of a fluvial landscape, while

the third clause is a partial description of the concept system-of arms.
In order to test the accuracy of the induced theory, the Query Interpreter was

provided with both the eighty-six observations, reserved for the test phase, and the
theory itself. Test cells were recognized with a predictive accuracy of over 95%.

These results are promising, although they are affected by the careful selection of
both a suitable representation of observations and a training set. Results of a previous
experiment on a smaller scale map of the same region (1:50000) are reported in [3].

48 D. Malerba et al.

5. Conclusions and future work

Knowledge of the meaning of symbols listed in map legends is not generally
sufficient to recognize interesting geographic patterns on a topographic map, so that
GIS users are asked to formulate quite complex queries to describe such patterns. In
fact, these user queries are operational definitions of abstract concepts often reported
in specialist texts and handbooks. To support GIS users in their activity a new
approach has been proposed in this paper. The idea is asking users a set of classified
instances of the patterns of their interest, and then applying machine learning tools
and techniques to generate the operational definitions for such patterns. These
definitions can be subsequently used to search for new instances not in the training
set, or to facilitate the formulation of a query. INGENS is a prototypical GIS with
learning capabilities that has been designed and implemented to provide users with a
training facility. An application of the system to the problem of Apulian map
interpretation has been briefly described, and preliminary experimental results are
presented. The learning system used in this application is ATRE, whose innovative
features have been briefly explained.

INGENS can be extended in various directions. Currently, a set of generalization
and abstraction operators has been implemented to provide the user with some tools
that simplify the complex descriptions produced by the Map Descriptor. These
operators are similar to those commonly used in on-line analytical processing (OLAP)
tools. For the future, we plan to embed a system for the discovery of spatial
association rules in the Learning Server.

References

1. Ceri, S., Gottlob, G., and Tanca, L. 1989. What you always wanted to know about Datalog
(and never dared to ask), IEEE Transactions on Knowledge and Data Engineering, 1(1), pp.
146-166.

2. De Raedt, L. 1992, Interactive theory revision: An inductive logic programming approach.
London: Academic Press.

3. Esposito, F., Lanza, A., Malerba, D., and Semeraro, G. 1997. Machine learning for map
interpretation: an intelligent tool for environmental planning. Applied Artificial Intelligence.
11(7-8), October-December:673-695.

4. Laurini, R., and Thompson, D. 1992. Fundamentals of Spatial Information Systems.
Academic Press.

5. Lloyd, J.W. 1987, Foundations of logic programming. 2nd ed. Berlin: Springer-Verlag.
6. Malerba, D., Esposito, F., Semeraro, G. , and Caggese, S. 1997. Handling Continuous Data

in Top-down Induction of First-order Rules. In AI*IA 97: Advances in Artificial
Intelligence, ed. M. Lenzerini, Lecture Notes in Artificial Intelligence 1321, pp. 24-35.
Springer: Berlin.

7. Malerba, D., Esposito, F. and Lisi, F.A. 1998. Learning Recursive Theories with ATRE. In
Proc. of the 13th European Conf. on Artificial Intelligence, ed. H. Prade, pp. 435-439, John
Wiley & Sons: Chichester (UK).

8. Mayer, H. 1994. Is the knowledge in map-legends and GIS-models suitable for image
understanding? In International Archives of Photogrammetry and Remote Sensing 30, 4, pp.
52-59.

9. Rouveirol, C. 1994. Flattening and saturation: Two representation changes for
generalization. Machine Learning. 14(2), February: 219-232.

Temporal Data Mining
Using Hidden Periodicity Analysis

Weiqiang Lin* and Mehmet A. Orgun

Department of Computing, Macquarie University
Sydney, NSW 2109, Australia

E-mail: {w1in,mehmet}©comp.mq. edu.au

Abstract. Data mining, often called knowledge discovery in databases (KDD),
aims at semiautomatic tools for the analysis of large data sets. This report is first
intended to serve as a timely overview of a rapidly emerging area of research,
called temporal data mining (that is, data mining from temporal databases and/or
discrete time series). We in particular provide a general overview of temporal
data mining, motivating the importance of problems in this area, which include
formulations of the basic categories of temporal data mining methods, models,
techniques and some other related areas. This report also outlines a general fra-
mework for analysing discrete time series databases, based on hidden periodicity
analysis, and presents the preliminary results of our experiments on the exchange
rate data between US dollar and Canadian dollar.

Keywords: data mining, temporal databases, temporal data analysis, time series,
statistical theory, hidden periodicity analysis.

1 Introduction

Data Mining, also known as Knowledge Discovery in Databases(KDD), aims at semiau-
tomatic tools for the analysis of large, realistic data sets. It is a rapidly evolving area of
research, that is at intersection of several disciplines, including statistics, pattern reco-
gnition, databases, optimization, visualization and high-performance computing. There
are some very important and challenging research problems in data mining, for instance,
the application of data mining techniques and tools to different types of databases such
as temporal databases, spatial databases and so on. This paper focusses on issues and
challenges for mining temporal databases.

Temporal data mining is concerned with discovering qualitative and quantitative
temporal patterns in a temporal database or in a discrete-valued time series (DTS) dataset.
Recently, there has been special attention to two kinds of major problems in the literature:
similarity problem and periodicity problem. Although there are various results to date
on discovering periodic patterns and similarity patterns in discrete-valued time series
(DTS) datasets (e.g. [2]), a general theory of discovering patterns for DTS data analysis
is not well known.

* Communicating author: W. Lin, Department of Computing, Macquarie University, Syd-

ney, NSW 2109, Australia, Phone: +61 2 9850-9514, Fax: +61 2 9850-9551, Email:
wlin@comp.mq.edu.au

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 49-58, 2000.
© Springer-Verlag Berlin Heidelberg 2000

50 W. Lin and M.A. Orgun

In this article, we first provide an overview of temporal data mining (TDM), define
some of the key ideas, identify a variety of challenging problems, both in the theory and
the systems, and motivate their importance. We then propose a general framework for
analysing a DTS and then focus on the special problem of discovering patterns using
hidden periodicity analysis.

The rest of the paper is organized as follows. Section 2 starts discussion with temporal
databases (in particular time-series databases) and then moves onto current issues in
temporal data mining. Section 3 provides a few definitions for temporal pattemns, and the
theory and methods of hidden periodicites analysis. Section 4 moves onto experimental
analysis for pattern discovery on US dollar versus Canadian dollar exchange rates. The
paper concludes with a brief summary.

2 An Overview of Temporal Data Mining

2.1 What Is a Temporal Database?

Time is an important aspect of real world phenomena. Conventional databases model an
enterprise as it changes dynamically by a snapshot at particular points in time. Traditional
databases store only the current state of characteristic of the data, so when new data
become valid, old ones are overwritten (or lost). But in many situations, this kind of
databases is inadequate. They can not easily handle historical queries, because they are
not designed to model the way in which the entities represented in the database change
over time.

Due to the importance of time-varying data, efforts have been made to design Tem-
poral Databases (TDB) which support some aspect of time such as valid time, logical
time and transaction time [3]. TDBs are able to overcome this limitation of traditional
databases by not overwriting attribute data information, but instead storing valid time
ranges with them, which can be used to determine their validity at particular times,
including the present. There are numerous time concepts proposed to date for storing
information in temporal databases such as: valid time, denoting the time a fact was true
in reality and transaction time, representing the time the information was entered into
the database. In addition to these two concepts which are of general interest, there are
also user-defined time (time fields in a traditional database), decision time, absolute time
and relative time.

These kinds of time induce different types of databases. A traditional database sup-
porting neither vaild nor transaction time is termed a snapshot database, since it contains
only a snapshot of the real world. A valid-time database contains the entire history of the
enterprise, as is best known now. A transaction-time database supports transaction-time
and hence allows rolling back the database to a previous state. We adopt the definition
of Temporal Database provided by Tansel et al [4] as follows:

Definition 1 A Temporal Database (TDB) is real world database that maintains past,
present, and future data.

A TDB model may support one or more of the time concepts. There has been a
great deal of interest in temporal databases over the last decade with the number of

Temporal Data Mining Using Hidden Periodicity Analysis 51

papers published in the area rising steadily. There are numerous models for temporal
databases which have been designed using both object oriented and relational database
as the underlying database models. The basic understanding of temporal databases has
progressed to the point where a standard temporal language and infrastructure have been
proposed [5]. Most of the work done to date has identified the basic properties of temporal
information and various data models and associated algebras and query languages have
been produced in order to manipulate data with a temporal component.

Although research in temporal databases is now quite mature, the development of
a general purpose temporal data mining system still remains in its infancy. According
to temporal characteristics, objects in temporal databases can be classified into three
categories [6]: (I)Time-invariant objects, (2) Time-varying objects, and (3) Time-series
objects.

In rest of the section, we focus only on temporal databases for time-series objects,
which are often called time-related databases. Time-related databases are of growing im-
portance in many modern database applications, such as data mining, data warehousing
and so on.

2.2 Temporal Data Mining

Temporal data mining is to perform time series analysis on the information held in a
temporal database. Statistical methods provide a natural way of analysing time-related
information in a temporal database.

Definition 2 Temporal Data Mining deals with problems of knowledge discovery from
large Temporal Databases.

A relevant and important question is how to apply data mining techniques on a
temporal database and how to interpret the results. For instance, sequential/temporal
patterns are mined to analyse a collection (subset) of records over periods of different
variables/or time as whole records (set) of variables/or time. Few sequential/temporal
techniques have been developed, based on Discrete Fourier Transformation, to map a
time sequence to frequency domain. Other techniques used in the discovery of sequen-
tial/temporal patterns include dynamic time wrapping, neural networks and rough sets.

According to techniques of data mining and theory of statistical time series analysis,
the theory of temporal data mining may involve following areas of investigation:

1. Temporal data mining tasks include:
- Temporal data characterization and comparison,
- Temporal clustering analysis,
- Temporal classification,
- Temporal association rules,
- Temporal pattern analysis,
- Temporal prediction and trend analysis.

2. A new temporal data model may need to be developed based on:
- Temporal data structures,
- Temporal semantics, or

52 W. Lin and M.A. Orgun

3. A new temporal data mining concept may need to be developed based on the follo-
wing:

- the task of temporal data mining can be seen as a problem of extracting an
interesting part of the logical theory of a model, and

- the theory of a model may be formulated in a logical formalism able to express
quantitative knowledge and approximate truth.

There are two kinds of problems that have been studied in temporal data mining area
in recent years: (1) the similarity problem, that is, finding a time sequence (or TDB) or
subtime sequence similar to a given sequence (or query) or finding all pairs of similar
subtime sequences in the time sequence; and (2) the periodical problem, that is, finding
periodic patterns in TDB.

Similarity Problems. In data mining applications, it is often necessary to search within
a time series database (e.g,TDB) for those series that are similar to a given query series.
This kind of a question is part of the general problem often called the similarity search
problem. The Similarity Search Problem in time-series objects TDBs is to find out how
many of them are similar to one another (or to compare with a given series) within the
same or between different time-series set(s) which may be one-dimensional or multi-
dimensional.

There are two main categories for similarity problems in time-series objects TDBs:

- All-Occurrences Sub-Sequence Matching (AOSM): given a query series Q of length
n and a TDB with length N(N»> n), find all occurrences of a contiguous subse-
quence within the TDB that matches Q approximately. The matching is under the
condition that the query series Q is small, and we look for a subset of the TDB that
best matches the query Q.

- All-Occurrences Whole-Sequence Matching (AOWSM): given a query series Q of
length ni and a set of number N of data sequences (TDBs) with the same length
n, find all occurrences of the TDBs that match Q approximately. The matching is
under the condition that the sequences to be compared have the same length and we
look for the TDB that match the query sequence Q.

Many data mining techniques have been applied in similarity problems such as
classification, regression and clustering/segmentation. The main steps for solving the
similarity problem are as follows:

- define similarity: this step allows us to find similarities between sequences with
different scaling factors and baseline values.

- choose a queiy sequence: this step allows us to find what we want to know from
large sequences (e.g, characteristic, classification)

- processing algorithms for TDB: this step allows us to use some statistical methods
(e.g, transformation, wavelet analysis) on a TDB to remove noisy data, and interpo-
late missing data.

- processing an approximate algorithm: this step allows us to build up the classification
scheme for a time-series TBD according to the definition of similarity by using some
data mining techniques (e.g, visualisation).

Temporal Data Mining Using Hidden Periodicity Analysis 53

In search for similarity, a given query series may have some different types of mat-
ching, such as full match, match with shift, match with scaling, match with combination
of scaling and shifting, approximate match and so on. Also lots of techniques in these
areas have made use of statistical analysis theory such as wavelet analysis, multi-fourier
analysis and various statistical transformations. Some results of similarity problems and
case studies have been published in the literature(e.g, [7]). The results from a similarity
search in a time-series TDB can be used for association, prediction, and so on.

Periodical Problems. The periodic problem involves finding periodic patterns or, cycli-
city occurring in a time-series TDB. The problem is related to two concepts: pattern and
interval. In any selected sequence of a TDB, we are interested in finding the patterns that
repeat over time and their recurring intervals (period), or finding the repeating patterns
of a sequence (or TDB) as well as the interval which corresponds to the pattern period.
The basic variations of preiodical problems include: value-based, trend-base, partial
pattern and complete pattern problems. There are two main categories for periodical
problems:

1 . Fixed Period Periodicity Search: This kind of a periodicity search algorithm is based
on data cubes and OLAP operations combined with some sequential pattern search
strategies to discover large periodic patterns in a time series (or TDB).

2. Arbitrary Periodicity Search: This kind of periodicity search algorithms are based
on mathematical techniques: sequential algorithms, forward optimization algorithms
and backward optimization algorithms.

A general theory for Searching Periodical Problems in a time-series TDB is still
lacking, but we can consider some main steps for searching periodical problems:

-determine some definitions of the concept of a period under some assumptions so
that we know what kind of a periodicity search we want to perform on the TDB.

-build up a set of algorithms that allow us to use properties of periodic time series
for finding out periodic patterns from a subset of the TDB.

-apply simulation algorithms to find patterns from the whole TDB.

If a time-series TDB contains unhealthy data such as noisy data and missing data,
then the results of a periodicity search will not be useful.

Note: A lot of techniques have been involved in this kind of problems by using pure
mathematical analysis such as function data distribution analysis and so on (e.g, [1]).

Discussion. In a time-series TDB, sometimes similarity and periodical search problems
are difficult even when there are many existing methods, but most of the methods are
either inapplicable or prohibitively expensive. In fact, similarity and periodical search
problems can be combined into the problem of finding interesting sequential patterns
in TDBs. Since sequential patterns are essentially associations over temporal data, they
utilize some of the ideas initially proposed for the discovery of association rules (e.g,
[8,9]). In recent years, some new algorithms have been developed such as:

54 W. Lin and M.A. Orgun

- generalized sequential pattern (GSP) algorithm: it essentially performs a level-wise
or breadth-first search of the sequence lattice spanned by the subsequence relation,

- sequential pattern discovery using equivalence classes (SPADE) algorithm: it de-
composes the original problem into smaller sub-problems using equivalence classes
on frequent sequences.

2.3 Some Research Challenges

We list below some of the challenges that are of particular relevance to data mining.

- Develop a general theory for a foundation of temporal data warehousing, supporting
multiple granularities and multiple lines of evolution, for data mining purposes.

- Develop a general asymptotic theory (parameter estimating) for temporal database
models by statistical tools(using multivariate functional analysis).

- Develop a general modelling theory on different temporal databases for forecasting
of the processes with or without parameters.

- Develop data reduction methods for removing redundant or irrelevant data.
- Build up a general technique for mapping a local multivariate time series, using part

of temporal data, to k-dimensional space such that the dissimilarties (or interesting
properties) are preserved.

- Develop new temporal data mining methodologies such as statistical tools, neural
nets and ad-hoc query-based mining etc.

In the rest of the paper, we return our attention to a particular temporal data mining
method based on a well-known statistical tool, called hidden periodicity analysis[10].

3 Hidden Periodicity Analysis

This section first provides a few definitions and results to formalize what we mean by
periodic and similar patterns, and then discusses hidden periodicity analysis in more
detail.

3.1 Temporal Patterns

Without loss of generality, we consider the bivariate data (X1 , Y1) ... ,(Xn, Y"), which
form an independent and identically distributed sample from a population (X, Y). Then
the data as being generated from the model is

Y = M(X) + 0r(X)E

where E(E) = 0, Var(E) = 1,and X and - are independent.
We assume that for every successive pair of two time points in DTS ti+I - ti = f(t)

is a function (in most cases, f(t) = constant). For every succession of three time points:
Xj, Xj+ 1 and Xj+2 , the triple value of (Yj, Yj+I, Yj+2) has only different" 9-states"
(or, called 9 local features). If we let states: S, is the same state as prior one, S" is the
go-up state compare with prior one and Sd is the go-down state compare with prior one,
then we have the state-space S = {sl, s2, s3, s4, s5, s6, s7, s8, s9} = {(Yj, S,, S"), (Yj,

S., SO, (d , S., SO, (Yi, s•, S.), (Sd, s), SA (yi, s, SO, (), Sd, S.), (., Sd, SA(yi, Sd, SO I-

Temporal Data Mining Using Hidden Periodicity Analysis 55

Definition 3 Let h = {hi, h2 ,. ., } be a sequence. If hi C S for every hj G h, then

the sequence h is called a Structural Base sequence and the subsequence h,"b of h is

called a sub-Structural Base sequence.
If h8 ,b is a periodic sequence, then h8,b may be called sub-structural periodic se-

quence(e.g,full or partial periodic pattern in B). Also h is a structural periodic sequence

(existence periodic pattern(s)).

Note that a sequence is called a full periodic sequence if its every point in time

contributes (precisely or approximately) to the cyclic behavior of the overall time series
(that is, there are cyclic patterns with the same or different periods of repetition).

A sequence is called a partial periodic sequence if the behavior of the sequence is
periodic at some but not all points in the time series.

Definition 4 Let y = {Yl, Y2,. } bea real value sequence. If Ysub = {Yi, Y2, .YN }
(yj c Y, j = 1, 2,..., N) and N is the size of a subset of y, then it may be called a

value-point process. If yj with 0 < Yk < 1 (mod 1)for all N, then we say that y is

uniformly distributed if every subinterval of[O, 11 gets its fair share of the terms of the

sequence in the long run. More precisely, if

li number of {j < n: Yk E J} = length of J
n-+ oo n

for all subintervals J of[O, 1).

Definition 5 Let y = {Yl, Y2,. } be a sequence of real numbers with I - 6 < Yk <

I + 6 for all k. We say that y has an approximate constant sequence distribution. More

generally, if h(t) - 6 < Yk < h(t) + 6 for all k, we say that y has an approximate
distribution function h(t).

We have the following results([11]):

Lemma 1. A discrete-valued dataset contains periodic patterns if and only if there

exist structural periodic patterns and periodic value-point processes with or without an

independently identical distribution (i. i.d.).

Lemma 2. In a discrete-valued dataset, there exist similarity patterns if and only if

there exist structural base periodic patterns and similarity value-point distribution with
or without an independently identical distribution.

3.2 Methods of Hidden Periodicity Analysis

We briefly introduce the hypothesis testing method of Grenander [10] for detecting

hidden periodicities in noisy data. Suppose that the model of general observations of a
sub-set is that of

P
x(t) = ý e + + 7(t), t G Z

n=1

56 W. Lin and M.A. Orgun

where P is known, ý, and A, are unkown parameters, q (t) is independently identical
distributed (i.i.d. N(O, a 2)) and or is unkown parameter 1. Then Grenander suggested
the following testing procedure:

Ho: x(t) = -y(t), t = 0, ±1, ±2,.

H1 : M = r (6(t) possesses r frequency components, 1 < r < m)

In the hypothesis testing, the parameter r is assumed to be known a priori. Since in
usual cases r is unknown, we apply the testing step by step, i.e. first put r = 1 and apply
the testing. If H is rejected then put r = 2 and so on, until, say r = p + 1, when H is
accepted then we estimate the order as p. If r = 1 is rejected, then it means ý(t) is not a
white noise series, so the distribution of P{g(r) z} has to be changed.

4 Discovery of Temporal Patterns

4.1 Structural Pattern Discovery

From the point of view of our new method in data analysis, we use squared distance
functions which are provided by a class of positive semidefinite quadratic forms. Speci-
fically, if u = (ul, u 2 , ... , up) denotes the p-dimensional observation of each different
distance of patterns in a state on an object that is to be assigned to one of the g prespeci-
fled groups, then, for measuring the squared distance between u and the centroid of the
ith group, we can consider the function

D 2(i) = (u - y)'M(u - y)

where M is a positive semidefinite matrix to ensure the D 2(i) > 0. Different choices
of the matrix M lead to different metrics, and the class of squared distance functions
represented by above equation is not unduly narrow.

4.2 Point-Value Pattern Discovery

Here, we introduce an enhancement of an approach for modelling discrete-valued time
series through hidden periodicity analysis. On the value-point pattern discovery, suppose
that the model of observations is of subsection 3.2

The first stage of method for detecting the characteristics of those records is to use
the linear regression analysis. We may assume linear model is Y = X/3 + E. The linear
model based upon least square estimation (LSE) is = (XTX)-IXTy. Then we have:
/ - N(/3, Cov(f)). Particularly, for/3i we have/hi N(/li, O'i

2), where 0,,2 = U2aii,
and aii is the ith diagonal element of (XTX) -1.

Now, for each value-point, we may fit a linear model as above and parameters can be
estimated under LSE. Therefore, we first remove the trend effect of each curve from the
original record by subtracting the above regression function at x from the corresponding
value to obtain a comparatively stationary series. Then the problem can be formulated
as the hidden periodicity analysis of discrete-valued time series.

In fact, Grenander considered the model .(t) = P A, COS(Wkt) + -y(t) where Pis known,

Ak, Wk are unkown parameters, -y(t) is i.i.d. N(O, a 2) and ar is unkown parameter

Temporal Data Mining Using Hidden Periodicity Analysis 57

4.3 Experimental Results

For brevity, we only present a few experimental results for both structural and value-point
pattern discovery, on the exchange rate between the US and Canadian dollars.

Structural pattern discovery experiments. We are investigating the sample of the
structural base to test the naturalness of the similarity and periodicity on Structural Base
distribution. We consider 9 states in the state-space of structural distribution: S = {sl,
s2, s3, s4, s6, s7, s8, s9}. In summary, some results for the structural base experiments
are as follows (e.g., see right Figure of 1).

- Structural distribution in a practical transition of states is a hidden periodic distri-
bution with a periodic length function f(t).

- There exist some partial periodic patterns in a practicular transition of states based
on a distance shifting function d(t).

- There also exist some similarity patterns with a small distance shifting in a practicular
transition of states.

. . . -0.0.. 1

60 '• O 1. 1• 20 14. 1 80 0 ý 6r • ' . 1• 12. 1

Fig. 1. Left: 200 business days of daily U.S. dollar exchange rate against Canadian dollar in states
base. Right: After removal the trend effect represented by linear regression function w(t) for the
1257 business days.

Value-point pattern discovery experiments. Suppose the exchange rate value can be
modelled as

Yi = m(t)Yi+k + Ei, (k > 0 and fixed integer)

We then adjust off the trend by the linear regression function Yi and a new series

w(t) = v(t) - Y(t), t 1,2,...,N

may be obtained, where v(t) is the original record.
Then we may use the linear regression by hidden perodicity analysis for the new

value base series w (t). Some results for the value-point of experiments are given below:

58 W. Lin and M.A. Orgun

- there does not exist any full periodic pattern, but there exist some partial periodic
patterns with a distance shifting function dj (t),

- there exist similarity patterns, etc.

5 Concluding Remarks

This paper has reviewed current research problems and challenges in temporal data

mining. It has also presented a new method based on Hidden Periodicity Analysis for
finding patterns in discrete-valued time series databases. The method described in this
paper is still in its preliminary stages. But it guarantees finding different patterns with
structural and valued probability distribution of a real-dataset. The method can be im-
plemented using a straightforward algorithm, and the results of preliminary experiments
are promising.

Acknowledgements. This research has been supported in part by an Australian Research
Council (ARC) grant and a Macquarie University Research Grant (MURG). Thanks are
also due to for Chit Swe many fruitful discussions.

References

1. R. Agrawal and R. Srikant. Mining sequential patterns. In International Conference on
Database Engineering, pages 3-14. IEEE Computer Society, 1995.

2. C. Bettini. Mining temportal relationships with multiple granularities in time sequences.
IEEE Transactions on Data & Knowledge Engineering, 1998.

3. R. Snodgrass. Temporal databases. IEEE Computer, 19, 1982.
4. S.Gadia S.Jajodia A.Segev A.U.Tansel, J.Clifford and R. Snodgrass, editors. Temporal

databases theory, design and implementation. Benjamin Publishing Compang, 1993.
5. S.Jajodia andS.Sripada O.Etzion, editor. Temporal databases: Research and Practice.

Springer-Verlag,LNCS 1399, 1998.
6. J. Y. Lee, R.Elmasri, and J.Won. An integrated temporal data model incorporating time

series concept. 1997.
7. Michael K. Ng and Zhexue Huang. Temporal data mining with a case study of astronomical

data analysis. In G. Golub, S. H. Lui, F Luk, and R. Plemmons, editors, Proceedings of the
Workshop on Scientific Computing 97, pages 258-264. Springer-Verlag, Hong Kong, March
1997.

8. M.J.Zaki. Fast mining of sequential patterns in very large databases. Uni. of Rochester
Technical report, 1997.

9. R. Agrawal, K.I.Lin, H.S.Sawhney, and K.shim. Fast similarity search in the presence of
noise, scaling, and translation in time-series databases. In 21th International Conference on
Very Large Data Bases proceedings, 1995.

10. Grenander U and Rosenblatt M, editors. Statistical analysis of stationary time series. Wiley,
1957.

11. W. Lin and M. A. Orgun; Applied hidden periodicity analysis for mining discrete-valued
time-series databases. In M. Gergatsoulis and P. Rondogiannis (editors), Intensional Pro-
gramming II, World-Scientific Publishing Company, Singapore, ISBN 981-02-4095-3, Sche-
duled Spring 2000.

Mining N-most Interesting Itemsets

Ada Wai-chee Fu Renfrew Wang-wai Kwong Jian Tang

Department of Computer Science and Engineering
The Chinese University of Hong Kong, Hong Kong

{adafu, wwkvong}@cse.cuhk .edu.hk

Abstract. Previous methods on mining association rules require users
to input a minimum support threshold. However, there can be too many
or too few resulting rules if the threshold is set inappropriately. It is
difficult for end-users to find the suitable threshold. In this paper, we
propose a different setting in which the user does not provide a support
threshold, but instead indicates the amount of results that is required.

1 Introduction

In recent years, there have been a lot of studies in association rule mining. An
example of such a rule is :

Vx e persons, buys(x, "biscuit") r2' buys(x, "orangejuice")

where x is a variable and buy(x, y) is a predicate that represents the fact that the
item y is purchased by person x. This rule indicates that a high percentage of
people that buy biscuits also buy orange juice at the same time, and there are
quite many people buying both biscuits and orange juice.

Typically, this method requires the users to specify the minimum support
threshold, which in the above example is the minimum percentage of transactions
buying both biscuits and orange juice in order for the rule to be generated.
However, it is difficult for the users to set this threshold to obtain the result
they want. If the threshold is too small, a very large amount of results are
mined. It is difficult to select the useful information. If the threshold is set too
large, there may not be any result. Users would not have much idea about how
large the threshold should be. Here we study an approach where the user can
set a threshold on the amount of results instead of the threshold.

We observe that solutions to multiple data mining problems including min-
ing association rules [2,4], mining correlation [3], and subspace clustering [5],
are based on the discovery of large itemsets, i.e. itemsets with support greater
than a user specified threshold. Also, the mining of large itemsets is the most
difficult part in the above methods. Therefore, we would like to mine the inter-
esting itemsets instead of interesting association rules with the constraint on the
number of large itemsets instead of the minimum support threshold value. The

Z.W. Rai and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 59-67, 2000.
© Springer-Verlag Berlin Heidelberg 2000

60 A.W.-c. Fu, R.W.-w. Kwong, and J. Tang

resulting interesting itemsets are the N-most interesting itemsets of size k for
each k > 1.

2 Definitions

Similar to [4], we consider a database D with a set of transactions T, and a set
of items I = il, i2, ... , i,,. Each transaction is a subset of I, and is assigned a
transaction identifier < TID >.

Definition 1. A k-itemset is a set of items containing k items.

Definition 2. The support of a k-itemset (X) is the ratio of number of trans-
actions containing X to the total number of transactions in D.

Definition 3. The N-most interesting k-itemsets : Let us sort the k-itemsets
by descending support values, let S be the support of the N-th k-itemset in the
sorted list. The N-most interesting k-itemsets are the set of k-itemsets having
support > S.

Given a bound m on the itemset size, we mine the N-most interesting k-
itemsets from the transaction database D for each k, 1 < k < m.

Definition 4. The N-most interesting itemsets is the union of the N-most
interesting k-itemsets for each 1 < k < m. That is, N-most interesting itemset
= N-most interesting 1-itemset U N-most interesting 2-itemset U ... U N-most
interesting m-itemset. We say that an itemset in the N-most interesting itemsets
is interesting.

Definition 5. A potential k-itemset is a k-itemset that can potentially form
part of an interesting (k+l)-itemset.

Definition 6. A candidate k-itemset is a k-itemset that potentially has suf-
ficient support to be interesting and is generated by joining two potential (k - 1)-
itemsets.

A potential k-itemset is typically generated by grouping itemsets with sup-
port greater than a certain value. A candidate k-itemset is generated as in the
apriori-gen function.

3 Algorithms

In this section, we propose two new algorithms, which are Itemset-Loop and
Itemset-iLoop, for mining N-most interesting itemsets. Both of the algorithms

Mining N-most Interesting Itemsets 61

have a flavor of the Apriori algorithm [4] but involve backtracking for avoiding
any missing itemset. The basic idea is that we automatically adjust the support
thresholds at each iteration according to the required number of itemsets. The
notations used for the algorithm are listed below.

Pk Set of potential k-itemsets, sorted in descending order of the support values.
supportk The minimum support value of the N-th k-itemset in Pk.
lastsupportk The support value of the last k-itemset in Pk.
Ck Set of candidate k-itemsets.
Ik Set of interesting k-itemsets.
I Set of all interesting itemsets. (N-most interesting itemsets)

3.1 Mining N-most Interesting Itemsets with Itemset-Loop

This algorithm has the following inputs and outputs.

Inputs : A database D with the transaction T, the number of interesting
itemsets required (N), the bound on the size of itemsets (m).

Outputs N-most Interesting k itemsets for 1 < k < mn

Method: In this algorithm, we would find some k-itemsets that we call the
potential k-itemsets. The potential k-itemsets include all the N-most interesting
k-itemsets and also extra k-itemsets such that two potential k-itemsets may be
joined to form interesting (k + 1)-itemsets as in the Apriori algorithm.

First, we find the set P1 of potential 1-itemsets. Suppose we sort all 1-itemset
in descending order of support. Let S be the support of the N-th 1-itemset in
this ordered list. Then P1 is the set of 1-itemsets with support greater than or
equal to S. At this point P1 is the N-most interesting 1-itemsets. The candidate
2-itemsets (C2) are then generated from the potential 1-itemsets.

The potential 2-itemsets P 2 are generated from candidate 2-itemsets. P 2 is the
N-most interesting 2-itemsets among the itemsets in C2. If support 2 is greater
than lastsupportl, it is unnecessary for looping back. This is the pruning effect.
If support 2 is less than or equal to lastsupportl, it means that we have not
uncovered all 1-itemsets of sufficient support that may generate a 2-itemset with
support greater than support 2 . The system will loop back to find new potential
1-itemsets whose supports are not less than support 2. P1 is augmented with
these 1-itemsets, and the value of lastsupport, is also updated. C2 is generated

again from P 1 . The new potential 1-itemsets may produce candidate potential
2-itemsets having support > the value of support 2 in the above. P 2 is generated
again from C2, it now contains the N-most interesting 2-itemsets from C 2 . The
values of support 2 and lastsupport2 are updated.

For mining potential 3-itemsets, the system will find the candidate 3-itemsets
from P 2 with the Apriori-gen algorithm. After finding 3-itemsets, support3 , and
lastsupport3 , it will compare support3 and lastsupportl.

62 A.W.-c. Fu, R.W.-w. Kwong, and J. Tang

Algorithm I : Itemset-Loop
var: 1 < k < m, supporth, lctstSUPPOrth, N, Ck, Pk, D

(Ps ,supportijoastsupporti) = find potential-litemset(D N);
C2 = gen-.candidate(Pi);
for (k=2;k < m;k++){

(Ph ,supportk ,Iastsupporth) = find-N.potential-kcitemset(Ch ,N,k);
if k <C m then Ck+s = gen-candidate(Pk);

Ik= N-most interesting k-itemnsets in Pk;
I = Uk, 'k;

return MI;

find..N.-potential -kjtemnset(CkN/c)

(Ph ,supportk ,las ts upport k)n=find..-potential -(Jtemset(Ch N);
new support =supportk;

for(i=2;i <= k;i++) updatedi = FALSE;
for(izol;i <C k;i++){

if (i = 1) {
if(uewsupport < Iastsupporti){

(Pi,supporti ,1astsupporti) =find..potential-iitemeets-.with..support(D,new support);
if i < kc then C,+j = gen-candidate(Pi);
if

0
i+1 is updated then updatedi+s = TRUE;}}

else {
if (newsupport < tastsupporti or updatedi TRUE){

(P. supporti,lastsupporti) =find..potential-k-itemsets-with-support(Ci,new support);
if i < kc then Cip1 = gen-candidate(Pi);
if Ciqa is updated then updatedi~s = TRUE; --

if (no. of k-itemnsets < N and i = k and kc = m){
newsupport = reduce(n ew support);
for(j=2;j <= k;j-f-f) up dated1 = FALSE;
i = 1; }}

return(Pk,supportk las tsupportk);

Fig. 1. Itemset-Loop

With new potential l-itrmstrt

With threhold gerenoto new ptentrial
sfrom 4-itotosers 2-ite-tots

genenate ex1w
2 potential)2

t-itontot With new potential 2-itenreots
generate nrow potential
3_ite-mot

With row poeoriat 3-iee
grenerat N-most intenresring

4 ~4-iremserts4

(a) Itemset-Loop (b) Itemset-tLoop

Fig. 2. Sketch of the iterations in the step for mining N-most interesting 4-itemsets

Mining N-most Interesting Itemsets 63

- If lastsupport, is greater than support 3 , it means that there may be some
relevant 1-itemsets missing. P1 will be augmented by including 1-itemsets
whose supports are > support 3 . The value of lastsupport, is updated ac-
cordingly. The set C2 candidate 2-itemsets will be generated from P1 again.
After that P 2 is generated from C2 including all itemsets with support >
support3 , lastsupport2 is updated accordingly.

- If lastsupport, is not greater than support3, support3 will be compared with
lastsupport2 of P2 . similar processing is applied to update P 2 , C3 and P 3 .

This process is iterated with larger and larger itemsets and stops at the user
specified bound m on the itemset size. Figure 2 (a) illustrates the idea. Next we
describe the functions used.

findLpotential-itemset(D,N) : This function finds the N-most interest-
ing 1-itemsets and returns these itemsets as the potential 1-itemsets together
with their supports. The itemsets are sorted in descending order of the supports
and are placed in P 1. In order to obtain the support values, this function scans
all the transaction records in the database.

The minimum support among the return itemsets is recorded as support1

and also lastsupport1 .

gen-candidate(Pk) :This function generates the candidate (k+l)-itemsets
from potential k-itemsets using the Apriori-gen function [4]. It will also scan the
database to count the support for the newly generated candidate itemsets. A
hash tree is used in this process as in [4].

findN-potentialiktemset(Ck,N,k) : This function finds the N-most in-
teresting k-itemsets. The system will first compare supportk with lastsupportl.
If supportk < lastsupporti, the potential 1-itemset is updated by adding all 1-
itemsets with support > supportk. Then candidate 2-itemsets C2 will be updated
if necessary. The process is repeated with l-itemsets for 2 < I < k.

findcpotentialkcitemset(Ck,N) : This function finds potential k-itemsets
from the candidate k-itemsets in Ck. The N-most interesting k-itemsets in Ck

is returned. The values of supportk and lastsupportk are also returned.

find-potential -itemset with-support (D ,newsupport) : This function
finds all potential 1-itemsets with the support > newsupport. All itemsets with
sufficient support are stored into the potential 1-itemset (P 1). These itemsets
are returned together with lastsupport, and support1 .

find-potentialkitemsets -with-support (Ci ,ne'wsupport) :This function
finds the potential k-itemsets with the newsupport value and the candidate k-
itemsets. The candidates in Ci are scanned and those having support > newsupport
are returned. These are returned as Pk, the values of lastsupportk, and supportk
are also updated and returned.

reduce(newsupport) : This function reduces the newsupport value for min-
ing N potential k-itemsets if there are no enough N potential k-itemsets.

64 A.W.-c. Fu, R.W.-w. Kwong, and J. Tang

Correctness: The correctness of the algorithm is based on the downward
closure of large itemsets : If a k-itemset X = {X1, ... , Xk} is large, then a (k - 1)-
itemset Y C X must also be large. When we compute the N largest k-itemsets,
and discovers the smallest support of the itemsets is S, then for a (k - 1)-
itemset, if the support is less than S, it cannot form part of an interesting
k-itemset. Hence if we have considered all the (k - 1)-itemsets with support > S
in the generation of candidate k-itemsets, we have not missed any interesting k-
itemsets. Otherwise, the algorithm loops back to uncover all the smaller itemsets
to uncover all l-itemsets I < k which have support > S.

3.2 Second Algorithm: Itemset-iLoop

The first approach requires loop back in the k-th iteration to generating item-
sets of size 1, 2, ... , k - 1 in that order, using a support bound S generated at
the k-itemsets. One alternative is the following : we loop back first to generate
extra (k - 1)-itemsets using S, then using these extra (k - 1)-itemsets, we may
generate more k-itemsets. With the newly generated k-itemsets, if any, we may
be able to to come up with a support bound S' greater than S. With S, we
may require the generation of less itemsets of size less than k - 1. This process
can be repeated with itemsets of size k - 2, k - 3, ... 1. Hence we propose a
second algorithm based on this technique. The second proposed algorithm is
similar to the first algorithm except that at the k-th iteration, instead of loop
backing to the generation of potential 1-itemsets, we loop back first to examine
(k - 1)-itemsets. The algorithm is called ltemset-iLoop. This algorithm has the
same inputs and outputs as Algorithm itemset-Loop.

Method : The functions in the algorithm are the same as the corresponding
functions in Itemset-Loop algorithm except for the following:

find__Npotential-k-itemset(Ck,N,k) : This function finds n potential k-
itemsets given the candidate k-itemsets Ck and a new support, Supportk. If
supportk > lastsupportka1, it is not necessary to update Pk-1. If supportk <
lastsupportk_1, the potential (k - 1)-itemsets (Pk-1) will be updated. The miss-
ing (k - 1)-itemsets, which have support greater than or equal to supportk,
will be inserted into (Pk-1). Then candidates Ck and Pk with supportk, and
lastsupportk will be updated. After this, the system will compare supportk with
lastsupportk_2, the potential (k - 2)-itemsets (Pk-2) may be updated in a sim-
ilar manner. Then the potential (k - 1)-itemsets, supportk-1, lastsupportk1l,
the potential k-itemsets, supportk, and lastsupportk will be updated accordingly.
This is repeated with lastsupport for indices k - 3, k - 4, ... 1. In each case, we
compare supportk with all lastsupporti where i < k, and update Pi if necessary.
Pj may be updated at every pass, where j > i, if Pi is updated.

Note that the first two iterations are the same as that in Algorithm Itemset-
Loop. Figure 2 (b) is a sketch of the iterations for mining potential 4-itemset.

Mining N-most Interesting Itemsets 65

Algorithm 2 : Itemset-iLoop
findNtpotentialc.kitemset(Ck ,N,k)
{

(Pk ,supportk ,lastsupportk)=find-potentialk-itemset(Ck ,N);
newsupport = supportk;
for(i=k - 1;i > 1;i=i - 1)

if(newsupport < lastsupporti) {
for(j=i;j < k;j---++) {

if(j = 1) 1
Pj = find-potentiall-itemset.with-support(Dnew support); }

else {
Pj = find-potential-k-itemset-with-support(Cy,newsupport); }

if(j = k) {
newsupport = supportk; }

if(j • k) {
Cj+j = gen.candidate(Pj);}}}

if (no. of k-itemsets < N and i = 1 and k = m) {
newsupport = reduce(newsupport);
i = k - 1; }

return(Pk,supportk lastsupportk);

Fig. 3. Itemset-iLoop

4 Experimental Results

In this section, we present the performance analysis of the algorithms Itemset-

Loop and Itemset-iLoop and comparison with the Apriori algorithm [4]. All ex-
periments were carried out on a SUN ULTRA 5-10 machine running SunOS 5.6.
The workstation has 128MB memory. The hash-tree data structure [4] is used
for keeping candidate itemsets. Both synthetic datasets and real datasets were
used.

The real data comes from census of United States 1990. The US census
database is available at the web site of IPUMS-98 1. The experiments are based
on two sets of real data: a small database with 5577 tuples and 77 different
items, and a large database with 57972 tuples and 77 different items. For each
database, we investigate the performance under different values of N in the N-
most interesting itemsets. The different values of N are 5, 10, 15, 20, 25, and
30. We mine itemsets up to size 4, hence k-itemsets are mined for 1 < k < 4.
For the function reduce (newsupport) in our proposed algorithms, we choose a
factor of 0.8, meaning that when the function is called, the value of newsupport
is reduced to be 0.8 times its original value.

In Figure 4(a) and 4(b), we show the performance of the Itemset-Loop al-
gorithm, the Itemset-iLoop algorithm, and the Apriori algorithm with different
support thresholds for the small and the large databases respectively. We per-
form the algorithms Itemset-Loop and Itemset-iLoop first and take the minimum
support thresholds under every N, where N are 5, 10, 15, 20, 25, and 30 after min-
ing 4-itemsets. And we use the notations minsup to represent these thresholds.

The URL of IPUMS-98 is http://www.ipums.umn.edu/.

66 A.W.-c. Fu, R.W.-w. Kwong, and J. Tang

25A220210022,o 2025w1 .ss0050m 0dof' ,s n (I .0 200o,5122.502wlth 05(0,15 2(5,.h,.sho•in 2 2

. . .

-....- --. --- --------------- ----------

5 4o

i t -.... , , ,2 5 1 IS 20 25 25 0 12 IS 20 2 5 30

(a) small database (b) large database

Fig. 4. Performance with the growth of the number of N-most interesting itemsets

For the tiny database, the thresholds are found to be {0.097, 0.069, 0.062, 0.06,
0.058, 0.054} for N = 5,10,15, 20, 25, 30, respectively. For the large database,
the thresholds are found to be {0.22, 0.22, 0.22, 0.14, 0.13, 0.11}. 2 We apply
the Apriori algorithm with these thresholds to measure the execution time. We
also apply the Apriori algorithm with 0.8, 0.6, 0.4, and 0.2 of these thresholds,
which we call minsupo.s, minsipo. 6 , minsupo,4, and minsupo. 2 , respectively.

In general, the performance of Itemset-Loop algorithm is better than that
of Itemset-iLoop algorithm. This is because the Itemset-Loop algorithm loops
back to the 1-itemset first every time and updates k-itemset for k > 1 if nec-
essary. On the other hand, the Itemset-iLoop algorithm loops back to check
(k-1)-itemsets first and does comparisons. Then it loops back to check (k-2)-
itemsets and updates (k-1)-itemsets and k-itemset if necessary, and so on so for.
It may involve more back-tracking than the Itemset-Loop algorithm. The Apriori
algorithm can provide the optimum results if the user knows the exact maximum
support thresholds that can generate the N-most interesting results. We refer
to this threshold as the optimal threshold. Otherwise, the proposed algorithms
perform better.

We have studied the execution time for every pass using the Itemset-Loop
and the Itemset-iLoop algorithms. Since we only record N or a little bit more
for each itemsets for every k-itemset at the first step, it may be necessary to
loop back for updating the result in both algorithms proposed. In general the
increase of N leads to the increase of execution time. However, sometimes less
looping back is necessary for a greater value of N and a decrease in execution
time is recorded.

Table 1 shows the total number of unwanted itemsets generated by the Apri-
ori algorithm in the large database when the guess of the thresholds is not
optimal. The thresholds of minsupi, where i=0.8, 0.6, 0.4 and 0.2, are used,

2 Notice that the optimal thresholds can vary by orders of magnitude from case to

case, and it is very difficult to guess the optimal thresholds.

Mining N-most Interesting Itemsets 67

N Ilminsupo.8 lminsupo.6 Iminsupo.4 minsupo.2
5[1 251 395 583 1236

101 255 379 567 1220
151 105 250 437 947
201 372 541 921 1624
251 374 587 957 1854
TO01 467 800 1016 2322

Table 1. Number of unwanted itemsets generated by Apriori (large database)

minsupi is i times the optimal minimum support thresholds. We can see that
the unwanted information can increase very dramatically with the deviation from
the optimal thresholds.

We have also carried out another set of experiments on synthetic data. The
results are similar in that the proposed method is highly effective and can outper-
form the original method by a large margin if the guess of the minimum support
threshold is not good. For the interest of space the details are not shown here.

5 Conclusion

We proposed two algorithms for the problem of mining N-most interesting k-
itemsets. We carried out a number of experiments to illustrate the performance
of the proposed techniques. We show that the proposed methods do not introduce
much overhead compared to the original method even with the optimal guess of
the support threshold. For thresholds that are not optimal by a small factor, the
proposed methods have much superior performance in both efficiency and the
generation of useful results.

References

1. N. Megiddo, R. Srikant : Discovering Predictive Association Rules. Proc. of the
4th Int'l Conf. on Knowledge Discovery in Databases and Data Mining (1998)

2. J. Han, Y. Fu : Discovery of Multiple-Level Association Rules from Large
Databases. Proc. of the 21st Int'l Conf. on Very Large Data Bases (1995) 420-
431

3. S. Brin, R. Motwani, C. Silverstein : Beyond Market Baskets: Generalizing As-
sociation Rules to Correlations. Proc. of the 1997 ACM SIGMOD International
Conference on Management of Data (1997) 265-276

4. R. Agrawal, R. Srikant : Fast Algorithms for Mining Association Rules. Proc. of
the 20th Int'l Conf. on Very Large Data Bases (1994) 487-499

5. R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan : Automatic Subspace Clus-
tering of High Dimensional Data for Data Mining Application. Proc. of the 1996
ACM SIGMOD Int'l Conf. on Management of Data (1998) 94-105

Repository Management in an Intelligent Indexing
Approach for Multimedia Digital Libraries

B. Armani ' , E. Bertino2, B. Catania', D. Laradi 3, B. Marin3 , and G.P. Zarri3

'Dipartimento di Informatica e Scienze dellInformazione, University of Genova, Italy
{armani, catania}@disi.unige. it

2Dipartimento di Scienze dellInformazione, University of Milano, Italy
bertino@dsi .unimi .it

3 Centre National de]a Recherche Scientifique (CNRS), Paris, France
{laradi,marin,zarri}@ivry.cnrs.fr

Abstract. Metadata represent the vehicle by which digital documents can be
efficiently indexed and retrieved. The need for such kind of information is
particularly evident in multimedia digital libraries, which store documents
dealing with different types of media (text, images, sound, video). In this
context, a relevant metadata function consists in superimposing some sort of
conceptual organization over the unstructured information space proper to these
digital repositories, in order to facilitate the intelligent retrieval of the original
documents. To this purpose, the usage of conceptual annotations seems quite
promising. In this paper, we propose a two-steps annotation approach by which
conceptual annotations, represented in NKRL [7], [8], are associated with
multimedia documents and used during retrieval operations. We then discuss
how documents and metadata can be stored and managed on persistent storage.

Introduction

It is today well recognized that an effective retrieval of information, from large bodies
of multimedia documents contained in current digital libraries, requires, among other
things, a characterization of such documents in terms of some metadata. A relevant
metadata function consists in superimposing some sort of conceptual organization
over the unstructured information space often typical of digital libraries, in order to
facilitate the intelligent retrieval of the original documents. Querying or retrieving
various types of digital media is executed directly at the metadata level.

Among the classes of metadata proposed by the scientific literature, only content-
specific metadata ,,reflect the semantics of the media object in a given context" and
provide a sufficient degree of generality [1]. Unfortunately, as well known, a veritable
access by semantic content is particularly difficult to achieve, especially for non-
textual material (images, video, audio). In those cases, content-based access is often
supported by the use of simple keywords, or of features mainly related with the
physical structure of multimedia documents (such as colour, shape, texture, etc.) [4].
In order to overcome the limitations of such approaches, conceptual annotations have
been introduced for describing in some depth the context of digital objects [2], [3],
[6]. However, the current approaches, often based on the use of simple ontologies in a

Z.W. Ra9 and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 68-76, 2000.
@ Springer-Verlag Berlin Heidelberg 2000

Repository Management in an Intelligent Indexing Approach 69

description logic style, have several limitations in terms of description of complex
semantic contents (e.g., of complex events) events.

To alleviate these problems, we propose a different approach for building up
conceptual annotations to be used for indexing documents stored in a thematic
multimedia library. With thematic multimedia library we mean a library storing
documents concerning a given application domain. Our approach is based on a two
steps annotation process:

"* During the first step, any interesting multimedia document is annotated with a
simple Natural Language (NE) caption in the form of a short text, representing a
general, neutral description of the content of the document. In the case of textual
documents, the interesting parts of the text, or the text itself, could represent the
NL caption. This approach corresponds to the typical process of annotating a paper
document, by underlying the interesting parts or writing down remarks and
personal opinions. In the case of other media documents, the NE caption may
represent the semantic content of the document and additional observations
associated with it.

"* During the second phase, annotations represented by NL captions are (semi-
automatically) converted into the final conceptual annotations. We propose to
represent the final conceptual annotations in NKRL (Narrative Knowledge
Representation Language) [7], [8]. In NKRL, the metaknowledge associated with a
document consists not only in a set of concepts and instances of concepts
(individuals) but also in a structured set of more complex structures (occurrences)
obtained through the instantiations of general classes of events called templates.
This approach is actually tested in the context of an European project,
CONCERTO [9].

Note that the use of a two-steps annotation process guarantees a high level of
flexibility in querying. First of all, this approach provides a general solution for the
mixed media access. This means that a single metadata query can retrieve information
from data that pertain to different media since the same mechanism is used to
represent their content. Moreover, the first annotation step is quite useful in
supporting a similarity-based indexing. Indeed, by associating similar captions to
different documents we make them ,,similar" from the point of view of the content
and therefore of the retrieval.

In designing an architecture supporting the approach described above, the
component dealing with the storage and the management of all the types of
knowledge (documents, templates, concepts, and conceptual annotations) on
secondary storage plays a fundamental. role, since its implementation strongly
influences the performance of the overall system. The aim of this paper is that of
presenting a proposal for designing and implementing such component, that we call
Knowledge Manager. For this task, we have followed a Web-Based approach. In
particular, the Knowledge Manager has been implemented as a true server manager
that can be hosted on a generic machine connected over Intranet/Internet networks to
the clients requiring such services. The advantage of this approach is that the software
component we have designed can be easily used by other architectures, based on the
use of NKRL or similar languages for encoding conceptual annotations.

70 B. Armani et al.

The paper is organized as follows. Section 2 introduced NKRL whereas Section 3
introduces an approach for the internal representation of such language. The
Knowledge Manager architecture is then presented in Section 4. Finally, Section 5
presents some concluding remarks.

NKRL as a Metalanguage for Document Annotations

In the following, we briefly review the basic characteristics of NKRL (Narrative
Knowledge Representation Language) (we refer the reader to [7], [8], [10] for
additional details).

The core of NKRL consists of a set of general representation tools that are
structured into four integrated components, described in the following.

Definitional and enumerative components. The definitional component of NKRL
supplies the tools for representing the important notions (concepts) of a given domain.
In NKRL, a concept is, therefore, a definitional data structure associated with a
symbolic label like human-being, ci ty , etc. Concepts (definitional
component) and individuals (enumerative component) are represented essentially as
frame-based structures. All NKRL concepts are inserted into a
generalization/specialization hierarchy that corresponds to the usual ontology of terms
and is called HCLASS(es).

The enumerative component of NKRL concerns the formal representation of the
instances (individuals) (lucy_, wardrobe_23) of the concepts of HCLASS.
Throughout this paper, we will use the italic type style to represent a concept and
the roman style to represent an individual_
Descriptive and factual components. The dynamic processes describing the
interactions among the concepts and individuals in a given domain are represented by
making use of the descriptive and factual components. The descriptive component
concerns the tools used to produce the formal representations (predicative templates
or simply templates) of general classes of narrative events, like 'moving a generic
object', 'formulate a need', 'be present somewhere'. In contrast to the binary structure
used for concepts and individuals, templates are characterized by a threefold format
where the central piece is a predicate, i.e., a named relation that exists among one or
more arguments introduced by means of roles. The general format of a predicative
template is therefore the following:

(Pi (Ri al) (R2 a2)... (R. a.))

In the previous expression, P, denotes the symbolic label identifying the predicative
template, Rk, k = 1,...,n, denote generic roles, and ak, k = 1,...,n, denote the role
arguments. The predicates pertain to the set BEHAVE, EXIST, EXPERIENCE,
MOVE, OWN, PRODUCE, RECEIVE, and the roles to the set SUBJ(ect), OBJ(ect),
SOURCE, BEN(e)F(iciary), MODAL(ity), TOPIC, CONTEXT. Templates are
structured into an inheritance hierarchy, HTEMP(lates), which corresponds to a
taxonomy (ontology) of events. The instances (predicative occurrences) of the
predicative templates, i.e., the representation of single, specific events like

Repository Management in an Intelligent Indexing Approach 71

,,Tomorrow, I will move the wardrobe" or ,,Lucy was looking for a taxi" are in the
domain of the factual component.

Example 1. The NKRL sentence presented in Figure 1 codes an information like:
,,On April 5th, 1982, Gordon Pym is appointed Foreign Secretary by Margaret
Thatcher", that can be directly found in a textual document, contained in an historical
digital library. The subject of this event is Gordon Pym, represented as a
particular instance (gordon-pym) of the concept individual-person. The
object of this event is the position Gordon Pym is appointed to, represented by the
concept foreign secretary pos. Finally, the source of this event is Margaret
Thatcher (represented by the instance margaretthatcher) since she is
responsible for the event. In the predicative occurrence, temporal information is
represented through two temporal attributes, date-1 and date-2. They define the
time interval in which the meaning represented by the predicative occurrence holds.
In ci, this interval is reduced to a point on the time axis, as indicated by the single
value, the timestamp 5-april-8 2, associated with the temporal attribute date-i;

this point represents the beginning of an event because of the presence of begin (a
temporal modulator).

cl) OWN SUBJ gordon-pym
OBJ foreign-secretary pos
SOURCE margaretthatcher
[begin]
date-i: (5-april-82)
date-2:

Fig. 1. Annotation of a WWW textual document

In the previous example, the arguments associated with roles are simple. However,
NKRL also provides a specialized sublanguage, AECS, supporting the construction of
structured arguments by using four operators: the disjunctive (ALTERNative)
operator, the distributive (ENUMerative) operator, the collective (COORDination)
operator, and the attributive (SPECIFication) operator.

Predicative occurrences can also be combined together, through the use of specific
second order structures, called binding occurrences. Each binding occurrence is
composed of a binding operator and a list of predicative or binding occurrences,
representing its arguments. Each document (NL caption, in the considered
framework) is then associated with a single conceptual annotation, corresponding to
the binding occurrence representing its semantic content.

In order to query NKRL occurrences, search patterns have to be used. Search
patterns are NKRL data structures representing the general framework of information
to be searched for, within the overall set of conceptual annotations. A search pattern is
a data structure including, at least, a predicate, a predicative role with its associated
argument, where it is possible to make use of explicit variables, and, possibly, the
indication of the temporal interval where the unification holds. As an example, the
conceptual annotation in Figure 1 can be successfully unified with a search pattern
like: ,,When was Gordon Pym appointed Foreign Secretary?", presented in Figure 2.
The variable ?x means that we want to know the instant when the event happened.

We refer the reader to [7], [8] for additional details on these topics.

72 B. Armani et al.

(?w IS-PRED-OCCURRENCE
:predicate OWN
:SUBJ gordonpym
:date-1 ?x

Fig. 2. A simple example of an NKRL search pattern

A Representation Language for NKRL

The usual way of implementing NKRL has been, until recently, that of making use of
a three-layered approach: Common Lisp + a frame/object oriented environment (e.g.,
CRL, Carnegie Representation Language, in the NOMOS project) + NKRL. In order
to ensure a high level of standardization, we are now realizing, in the context of the
CONCERTO project [9], a new version of NKRL, implemented in Java and RDF-
compliant (RDF = Resource Description Format) [5].

RDF is a proposal for defining and processing WWW metadata that is developed
by a specific W3C Working Group (W3C = World Wide Web Consortium). The
model, implemented in XML (eXtensible Markup Language), makes use of Directed
Labeled Graphs (DLGs) where the nodes, that represent any possible Web resource
(documents, parts of documents, collections of documents, etc.) are described
basically by using attributes that give the named properties of the resources. No
predefined 'vocabulary' (ontologies, keywords, etc.) is in itself a part of the proposal.
The values of the attributes may be text strings, numbers, or other resources. In the
last versions of the RDF Model and Syntax Specifications new, very interesting,
constructs have been added [5]. Among them, of particular interest are the
'containers', i.e., tools for describing collections of resources. In an NKRL context
the containers are used to represent the structured arguments created by making use of
the operators of the AECS sublanguage (see Section 2).

A first, general problem to be solved to set up an RDF-compliant version of NKRL
has concerned the very different nature of the RDF and NKRL data structures. The
first are 'binary' ones, i.e., based on the usual organization into 'attribute - value'
pairs. The second are 'tripartite', i.e., are organized around a 'predicate', whose
'arguments' are introduced through a third, functional element, the 'role'. To provide
the conversion into RDF format, the NKRL data structures have been represented as
intertwined binary 'tables' that describes the RDF-compliant, general structure of an
NKRL template.
Example 3. Consider the predicative occurrence presented in Figure 1. The
RDF/XML description of cl is presented in Figure 3. In general, the RDF text
associated with each predicative occurrence is composed of several tags, all nested
inside the <CONCEPTUALANNOTATION> tag and belonging to two different
namespaces: rdf and ca. The first namespace describes the standard environment
under which RDF tags are interpreted. The second namespace describes specific tags
defined in the context of our specific application. More precisely, the tag
<ca: Templatei> is used to specify that the predicative occurrence is an instance
of the template identified by Template-i. The identifier of the occurrence is an
attribute of such tag (oc c 118 2 4 in our example). The other tags specify the various
roles of the predicative occurrence, together with the associated arguments.
Additional tags are used to represent temporal information and modulators.

Repository Management in an Intelligent Indexing Approach 73

The Knowledge Manager Architecture

Four main modules compose the architecture supporting our approach:
<?xml version="l.0" ?>
<!DOCTYPE DOCUMENTS SYSTEM "CA_RDF.dtd"'>
<CONCEPTUALANNOTATION>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:ca="http://projects.pira.co.uk/concerto#">

<rdf :Description about= "occ11824">
<rdf:type resource="ca:Occurrence"/>

<ca: instanceOf>Template43</ca: instanceOf>
<ca :predicateName>Own</ca :predicateName>
<ca: subject rdf : ID="Subj43" rdf :parseType="Resource">

<ca: filler>gordon-pym</ca: filler>
</ca: subject>
<ca:object rdf:ID•"Obj43" rdf:parseType="Resource">

<ca: filler>foreign-secretary-pos<ca: filler>
</ca:object>
<ca:source rdf:ID= "Source43" rdf:parseType="Resource">

<ca: filler>margaretthatcher</ca: filler>
</ca: source>
<ca: listOfModulators>

<rdf : Seq><rdf : li>begin</rdf : li></rdf : Seq>
</ca: listOfModulators>
<ca:datel>05/04/1982</ca:datel>
</rdf :Description>

</rdf :RDF>
</CONCEPTUALANNOTATION>

Fig. 3. The RDF format of a predicative occurrence

"* Acquisition module, providing a user-friendly interface by which the user can insert
documents and associate with them some short NL captions.

"* Annotation module, that is in charge of the translation of the NL captions into the
NKRL format.

"* Knowledge Manager module, implementing the basic features for storing and
managing NKRL concepts, templates, original documents, and the associated
conceptual annotations on persistent storage.

"* Query module, applying sophisticated mechanisms to retrieve all documents
satisfying certain user criteria, by using conceptual annotations.
In the context of the proposed architecture, the Knowledge Manager plays a

fundamental role. Indeed, since it manages the repositories on secondary storage, its
implementation strongly influences the performance of the overall system. In the
current architecture, the Knowledge Manager has been implemented as a server,
following a Web-based approach, by using Internet derived technologies for the
communication protocol and metadata representation. In particular, the Knowledge
Manager is organized according to a three-tier architecture, represented in Figure 4.
The first level corresponds to the repository management on persistent storage,
through the use of a specific database management system (IBM DB2 in our case);
the second level is an application level, providing an easy programming interface
(through a Java API) to the repository. Finally, the third level consists of a specific
interface language (called KMIL) to provide access to the Knowledge Manager
through a Web-Based approach. In the following, the repositories and their
management as well as the communication protocol are described in more details.

74 B.Armani et a].

Web server Level 3
KMIL document through 1 -]HlTT prtoo Serviet enginte

E l CP/P potoolJava API Level 2

Repository
CLIENT gitLevel 1

Conceta

Fig. 4. General architecture of the Knowledge Manager

The Repositories and Their Management

In order to deal with NKRL data structures, we designed three distinct but interrelated
repositories. The first repository is the Document Repository, storing the original
documents, together with the corresponding NL captions. In order to deal with
conceptual annotations, the HTEMP and HCLASS ontologies are stored in the
Ontology Repository. The concrete conceptual annotations, generated by the
Annotation Module, are then stored in the Conceptual Annotation Repository.

The Conceptual Annotation Repository is certainly the most critical one since user
queries are executed against it. It contains two main types of data: predicative
occurrences and binding occurrences. Each predicative occurrence is characterized,
among the others, by its XMLIRDF text and the identifier of the template it is an
instance of. For each template, we also maintain the set of predicative occurrences
representing the leaves of the subtree rooted by it in the HTEMP. The use of this
information optimizes query processing since a search pattern always selects a set of
predicative occurrences that are instances of a single template. Each binding
occurrence is internally characterized, among the others, by the binding operator and
the identifiers of its arguments (i.e., binding or predicative occurrences).

Each document is then associated with a single conceptual annotation, arbitrarily
complex, describing atomic information, through the use of predicative occurrences,
and combined information, through the use of binding occurrences. The repository
maintains the relationship between documents and the associated conceptual
annotations. It is important to note that, to guarantee a high level of flexibility, we
assume that each occurrence can be associated with different documents. This
corresponds to the situation in which different documents refer similar or equal events
or contain similar or equal images or sound.

Since RDF can be implemented by using XML, in order to store conceptual
annotations and templates, we choose IBM DB2 Universal Database together with the
XML extender, recently released by IBM. The repositories are then managed through
the use of a Java API, implementing specific operation to be executed against the
repositories. Each operation, before execution, is translated into some SQL commands
to be executed by DB2. The use of a Java API provides a high level of portability for
the system we have developed. Moreover, since several packages for implementing an

Repository Management in an Intelligent Indexing Approach 75

XMIL parser in Java are currently available, this choice fits well in the overall system
architecture. Among the supported operations, queries against the Conceptual
Annotation Repository intensively use the functionalities supported by IBM DB2 and
IBM DB2 XML Extender to retrieve predicative occurrences starting from given
selection conditions.

The Communication Protocol and the Interface Language

The Knowledge Manager services can be executed under two different modalities (see
Figure 4). In a local environment, the Java API operations are directly called and
executed. In a remote environment, communication is performed through the HTTP
protocol. The use of HTTP guarantees an efficient access to the Knowledge Manager
from any software module located at any site on the Internet. In order to guarantee a
standard communication between modules, services have to be expressed by means of
an XML document. Such document has to be constructed according to a specific
XML language, called Knowledge Manager Interface Language (KMIL). KMIL
requests can be sent by using an HTTP post action to a Knowledge Manager front-end
Servlet running under a specific HTTP servlet engine. This solution has the advantage
that the Knowledge Manager can be hosted on a generic machine, becoming strongly
independent from other modules of the architecture. All requests sent to the
Knowledge Manager are then captured by a Web Server that activates a specific Java
Servlet for the execution of the requested services, through the use of the Java API, on
the underlying DBMS. As a result, an XML document containing the result of the
computation is returned to the calling module.
Example 4. Suppose that the conceptual annotation of Figure 1 has to be inserted into
the Conceptual Annotation Repository. This can be specified by using the KMIL
document presented in Figure 5. Such document contains a <KMIL-ACTION> tag for
the document and the predicative occurrence that have to be inserted, respectively,
together with all the required information. This information is then used to
consistently update the content of the Conceptual Annotation and Document
repositories.

<?xml version=" 1.0" ?>
<!DOCTYPE KMIL-SESSION SYSTEM "KmilIn.dtd">

<KMIL- SESSION>
<EMIL-ACTION serial_nurnber="l'">

<KMIL-INSERT-Document IdDoc="docl32" >
<TEXT>

On April 5th, 1982, Gordon Pym is appointed Foreign
Secretary by Margaret Thatcher

</TEXT>
</KMIL-INSERT-Document>

</KMIL-ACTION>
<KMIL-ACTION serial number="2">

<KMIL-INSERT-PredOcc IdPO="occ11824" Doc="docl32">
<TEXT> RDF Text </TEXT>

</KMIL-INSERT-PredOcc>
</KMIL-ACTION>

</KMIL-SESSION>
Fig. 5. Example of a KMIL request

76 B. Armani et al.

Concluding Remarks

In this paper we have presented an approach for indexing and retrieving multimedia
digital documents through the use of conceptual annotations, describing in details the
component entrusted with the management of documents and conceptual annotations
in secondary storage. The techniques presented in this paper are now being exploited
in the framework of the Esprit project CONCERTO (CONCEptual indexing, querying
and ReTrieval Of digital documents, Esprit 29159) [9]. The aim of such project is to
improve current techniques for indexing, querying and retrieving textual documents,
mainly concerning the socio-economical and the biotechnology contexts. Future work
includes the definition of specialized techniques for storing and indexing conceptual
annotations. In particular, disk placement and caching techniques for conceptual
annotations are currently under investigation in order to improve the performance of
the system.

Acknowledgements. We would like to thank Pietro Leo, from IBM, for several
useful comments and suggestions about the design of the proposed architecture.

References

1. S. Boll, W. Klas, and A. Sheth. Overview on Using Metadata to Manage Multimedia Data.
In Multimedia Data Management, pages 1-24, 1998. McGraw Hill, New York.

2. D. Fensel, S. Decker, M. Erdmann, M., and R. Studer. Ontobrocker: Or How to Enable
Intelligent Access to the WWW. In Proc. of the l1th Banff Knowledge Acquisition for KBSs
Workshop, KAW'98. University of Calgary, 1998.

3. J. Heflin, J. Hendler, and S. Luke. SHOE: A Knowledge Representation Language for
Internet Applications. Technical Report CS-TR-4078, Univ. of Maryland, College Park
(MA), 1999.

4. IEEE Computer - Special Issue on Content-Based Image Retrieval Systems. IEEE
Computer, 28(9), 1995.

5. 0. Lassila and R. Swick. Resource Description Framework (RDF) Model and Syntax
Specification. Technical report, W3C, 1999.

6. A. Levy, A. Rajaraman, and J. Ordille. Querying Heterogeneous Information Sources Using
Sources Descriptions. In Proc. of the 22nd Int. Conf. on Very Large Databases (VLDB-96),
pages 251-262, 1996.

7. G. Zarri. NKRL, a Knowledge Representation Tool for Encoding the Meaning' of Complex
Narrative Texts. Natural Language Engineering - Special Issue on Knowledge
Representation for Natural Language Processing in Implemented Systems, 3:231-253, 1997.

8. G. Zarri. Representation of Temporal Knowledge in Events: The Formalism, and Its
Potential for Legal Narratives. Information & Communications Technology Law - Special
Issue on Models of Time, Action, and Situations, 7:213-241, 1998.

9. G. Zarri et al. CONCERTO, An Environment for the 'Intelligent' Indexing, Querying and
Retrieval of Digital Documents. In LNCS 1609: Proc. of the 11th Int. Symp. on
Methodologies for Intelligent Systems, pages 226-234, Varsavia, Poland, 1999. Springer
Verlag.

10.G. Zarri and L. Gilardoni. Structuring and Retrieval of the Complex Predicate Arguments
Proper to the NKRL Conceptual Language. In LNCS 1079: Proc. of the 9th Int. Symp. on
Methodologies for Intelligent Systems, pages 398-417, Zakopane, Poland,' 1996. Springer
Verlag.

Logic-Based Approach to Semistructured Data
Retrieval

Mohand-Sa'id HacidI and Farouk Toumani 2

Department of Computer Sciences, Purdue University

West Lafayette, IN 47907, USA
E-mail: mshacidfcs. purdue. edu

2 LIMOS-ISIMA

Campus des Cezeaux - B.P. 125
63173 AUBIERE - France

E-mail: ftoumanisp, isima. fr

Abstract. We investigate logic-based query language for semistructured
data, that is data having irregular, partial or only implicit structure. A
typical example is the data found on the Web. We present the syntax and
semantics of SemLog, a logic for querying and restructuring semistruc-
tured data, and show how this language can be used to query video data.

Keywords: Intelligent information retrieval, Logic for databases, Inte-
grating navigation and search, Video retrieval.

1 Introduction

Semistructured data models are intended to capture data that are not intentionally
structured, that are structured heterogeneously, or that evolve so quickly that the
changes cannot be reflected in the structure. A typical example is the World-Wide
Web with its HTML pages, text files, bibliographies, biological databases, etc. A semi-
structured database essentially consists of objects, which are linked to each other by
attributes.

Semistructured Data represent a particularly interesting domain for query languages.
Computations over semistructured data can easily become infinite, even when the un-
derlying alphabet is finite. This is because the use of path expressions (i.e., compositions
of labels) is allowed, so that the number of possible paths over any finite alphabet is in-
finite. Query languages for semistructured data have been recently investigated mainly
in the context of algebraic programming [2,4].

In this paper, we explore a different approach to the problem, an approach based on
logic programming, instead of algebraic programming. In particular, we develop an
extension of Datalog1 for manipulating semistructured data. It has both a clear decla-
rative semantics and an operational semantics. The semantics are based on fixpoint
theory, as in classical Logic programming [9]. The language of terms uses five coun-
table, disjoint sets: a set of atomic values (Di), a set of objects (ED2), a set of labels
(D3), a set of object variables (V), and a set of path variables (V). A path variable is

1 Database logic

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 77-85, 2000,
@) Springer-Verlag Berlin Heidelberg 2000

78 M.-S. Hacid and F. Toumani

a variable ranging over paths. The universe of paths over D3 is infinite. Thus, to keep
the semantics of programs finite, we do not evaluate rules over the entire universe,
D3, but on a specific active domain. We define the active domain of a database to
be the set of constants (objects and labels) occurring in the database. We then define
the extended active domain to include both the constants in the active domain and all
path expressions resulting from the composition of labels in the active domain. The
semantics of our language is defined with respect to the extended active domain. In
particular, substitutions range over this domain when rules are evaluated.

The extended active domain is not fixed during query evaluation. Instead, whenever a
new path expression is created, the new path and all paths resulting from its concate-
nation with already existing paths are added to the extended active domain.

Paper outline: In Section 2, we introduce the data model. In Section 3, we develop
our language and give its syntax and semantics. Section 4 provides an application
example. We conclude in Section 5 by anticipating on the necessary extensions.

2 Data Model

Recent research works propose to model semnistructured data using "lightweight" data
models based on labeled directed graphs [4,1]. Informally, the vertices in such graphs
represent objects and the labels on the edges convey semantic information about the
relationship between objects. The vertices without outgoing edges (sink nodes) in the
graph represent atomic objects and have values associated with them. The other ver-
tices represent complex objects. An example of a semnistructured database in the style
of OEM [13] is given figure 1.

Fig. 1. Example Semnistructured Data

Path expressions describe path along the graph, and can be viewed as compositions of
labels. For example, the expression

Residence.Ctty

describes a path that starts in an object, continues to the residence of that object, and
ends in the city of that residence.
In this paper, we assume that the usual base types String, Integer, Real, etc., are avai-
lable. In addition, we shall use a new type Feature for labels that would correspond
to attribute names. We write numbers and features literally (the letter usually capi-
talized) and use quotation marks for strings, e.g., "car". In what follows we make the
simplifying assumption that labels can be symbols, strings, integers, etc; in fact, the

Logic-Based Approach to Semistructured Data Retrieval 79

type of labels is just the discriminated union of these base types. In addition, we con-
sider only semistructured data whose graph is acyclic.

Like [11] we represent the graph using two base relations:

- link(FromObj, ToObj, Label): This relation contains all the edge information. For
instance, link(orgi, e2, Employee) refers to an edge labeled Employee from the
object orgl to the object e2. There may be more than one edge from orgi to e2.

- atomic(Obj, Value): It contains all the value information. For instance, the fact
atomic(ni, "Ullman") states that object nl is atomic and has value Ullman.

We assume that each atomic object has exactly one value, and each atomic object has
no outgoing edges. We consider that the data comes in as an instance over link and
atomic satisfying these two conditions. We use the term database in the following for
such a data set.

Let p be a path expression of the form al.a2 ... an, where each ai is a label.

Then, link(ol, 02, p) holds if there are objects ol,..., on-1 such that link(ol, ol, al),
... link(o-1, 02, an) hold.

3 The Language

This section develops the syntax and semantics of the language for specifying programs
over semistructured data.

3.1 Syntax

The language of terms uses three countable, pair-wise disjoint sets:

1. A set D of constant symbols. This set is the union of three pair-wise disjoint sets:
- DI: a set of atomic values
- V)2 : a set of entities, also called object entities
- V)3 : a set of labels

2. A set V of variables called object variables and value variables, and denoted
X,y,...

3. A set V of variables called path variables, and denoted a, 3,.

Definition 1. (Predicate Symbol) we define the following predicate symbols:

- The predicate symbol link with arity 3
- The binary predicate symbol atomic
- The user specified intentional predicates (ordinary2 predicates)

We model semistructured data by a program P which contains, besides the set of facts
built from link and atomic, the following rule :

link(X, Y, a./3) : -link(X, Z, a), link(Z, Y, /3)

2 Ordinary predicates can be of any arity.

80 M.-S. Hacid and F. Toumani

This rule says that if an object Z can be reached from an object X by a path a and
from Z we can reach an object Y by a path f3, then there is a path a.)3 from X to Y.

Other ordinary facts can be specified by rules of the form:

H(X)•):L(1,. L(

for some n > 0, where X, is,..., Y', are tuples of variables or constants. We require
that the rules are safe, i.e., a variable that appears in X must also appear in F.U... UYF,.
The predicates L1 , ... , Ln may be either link or atomic, or ordinary predicates. In the
following, we use the term (positive) atoms to make reference to L 1 ,.. . , Ln.

Example 1. Figure 2 shows a fragment of semistructured data of figure 1.

link(orgi , el, Employee)
atomic(oi, 25) link(orgi, di, Dept)
atomic(n2, "Turing") link(el, nli, Name)
atomic(li1, "BatA") link(di, n3, Name)

link(di, el, Head)

Fig. 2. A set of facts

The intensional part of the program P contains the single rule

link(X, Y, a.0) : - link(X, Z, a), link(Z, Y,/3)

Given the semistructured data of figure 1, the query:

Answer(X) : -link(orgi, Y, a.Author.Name), atom(Y, X)

returns all the author names, reachable from the root object orgi by any path having
as prefix any path (here given by the (possible) value of the path variable a), and as
suffix the path Author.Name.

3.2 Semantics

Our language has a declarative model-theoretic and fixpoint semantics.

Model-theoretic semantics. Recall that V denotes a set of variables called object
and value variables, and V/ denotes a set of variables called path variables. Let V =

VuVf.
Let varl be a countable function that assigns to each syntactical expression a subset
of V corresponding to the set of object and value variables occurring in the expression,
and var2 be a countable function that assigns to each expression a subset of V corre-
sponding to the set of path variables occurring in the expression.

Let var = varl U var2. If E,....., E. are syntactic expressions, then var(Ei, ... , E,)
is an abbreviation for var(EI) U ... U var(E,).

A ground atom A is an atom for which var(A) = 0. A ground rule is a rule r for which
var(r) = 0.

Logic-Based Approach to Semistructured Data Retrieval 81

Definition 2. (Extension) Given the set D 3 of labels, the extension of D93, written
Dext is the set of path expressions containing the following elements:

- each element in 93
- for each ordered pair P1, p2 of elements of D3'xt, the element pl.p2

Definition 3. (Extended Active Domain) The active domain of an interpretation
1, noted D.T is the set of elements appearing in _i, that is, a subset of DI U 12 U D3. The
extended active domain of T, denoted D'e", is the extension of Dx, that is, a subset of
D U D2 UD••D .

Definition 4. (Interpretation) Given a program P, an interpretation I of P con-
sists of:

- A domain 19
- A mapping from each constant symbol in P to an element of domain E)
- A mapping from each n-ary predicate symbol in P to a relation in (Dext)n

Definition 5. (Valuation) A valuation v, is a total function from V to the set of

elements VD U ED2 . A valuation v2 is a total function from V to the set of elements
D)et . Let v = Vl U U2 . v is extended to be identity on E) and then extended to map free
tuples to tuples in a natural fashion.

Definition 6. (Atom Satisfaction) Let I be an interpretation. A ground atom L is
satisfiable in 1 if L is present in 5.

Definition 7. (Rule Satisfaction) Let r be a rule of the form:

r : A +-- L1,..., Ln

where L 1 , . . . , L. are (positive) atoms. Let 5I be an interpretation, and v be a valuation
that maps all variables of r to elements of Dy-j. The rule r is said to be true (or
satisfied) in interpretation -1 for valuation v if v[A] is present in I whenever each
v[Le], i G [1, n] is satisfiable in 1.

Fixpoint Semantics. The fixpoint semantics is defined in terms of an immediate
consequence operator, Tp, that maps interpretations to interpretations. An interpre-
tation of a program is any subset of all ground atomic formulas built from predicate
symbols in the language and elements in D"'t. Each application of the operator Tp may
create new atoms. We show below that Tp is monotonic and continuous. Hence, it
has a least fixpoint that can be computed in a bottom-up iterative fashion.
Recall that the language of terms has three countable disjoint sets: a set of atomic
values (Di), a set of entities (D 2), and a set of labels (D 3). A path expression is an
element of E)3". We define 1D"' = V1 U D2 U E)•X'.

LatLemma 1. If 111 andT52 are two interpretations such that 1•1 g 1[2, then Dlxit C_ :D2.

82 M.-S. Hacid and F. Toumani

Definition 8. (Immediate Consequence Operator) Let P be a program and I
an interpretation. A ground atom A is an immediate consequence for I and P if either
A E I, or there exists a rule r : H *-- L 1,... , L. in P, and there exists a valuation v,
based on D't, such that:

- A = v(H), and
- Vi E [1, n], v(Li) is satisfiable.

Definition 9. (T-Operator) The operator Tp associated with program P maps in-
terpretations to interpretations. If I is an interpretation, then Tp'(I) is the following
interpretation:

Tp (I) = I U {A I A is an immediate consequence for 11 and P}

Theorem 1. (Continuity & monotonicity) The operator Tp is continuous and
monotonic.

In the following, we illustrate the use of our query language for video data retrieval.

4 An Example: Video Databases

Digital video is content-rich information carrying media of massive proportion. In fact,
the data volume of video is about seven orders of magnitude larger than a structured
data record [6]. Video data also carries temporal and spatial information. Moreover,
the structure of video data and the relationships among them is very complex and
ill-defined. These unique characteristics pose great challenges for the management of
video data in order to provide efficient and content-based user access. One of the main
problems is that defining schema information for some video data in advance turns out
to be very difficult [5] and thus a semistructured approach has to be considered.

We consider two layers for representing video content (figure 3):

(1) Feature & Content Layer. It contains video visual features (e.g., color, shape,
motion). This layer is characterized by a set of techniques and algorithms allowing
to retrieve video sequences based on the similarity of visual features.

(2) Semantic Layer. This layer contains objects of interest, their descriptions, and re-
lationships among objects based on extracted features. Objects in a video sequence
are represented in the semantic layer as visual entities. Instances of visual objects
consist of conventional attributes (e.g., name, actorID, date, etc.).

Semantic Layer

Objects, their descriptions, mutual reltio-ships.

Feature & Content Layer

Color•. nofions, spatial relationships,

Algoritlansfor sitolarity ofphysicolfeoatres

Fig. 3. Two layers for video content

Logic-Based Approach to Semistructured Data Retrieval 83

Figure 4 shows a fragment of the semantic content of a video database. Although a
real-world video database would of course he much, much larger, this example conci-
sely captures the sort of structure (or lack thereof) needed to illustrate the features
of our language. As illustrated by figure 4, the structure of the content describing a
video differs from a category to another, and even within the same category. Here,
the attribute name Frames links an abstract object to a concrete object name which
denotes the name of the image sequences stored in the Feature & Content Layer.

It is easy to see that the proposed query language can be used to navigate the Semantic
Layer of this database. In the following, we extend the language to accommodate the
Feature &Content Layer.

Fig. 4. A fragment of a video database content

Extension to Feature & Content Layer

Video data in the Feature & Content Layer can be organized in a hierarchy of units with
individual frames at the base level, and higher level segments such as shots, scenes,
and episodes. This model facilitates querying and composition at different levels and
thus enables a very rich set of temporal and spatial operations. Examples of temporal
operations are "follows", "contains", and "transition". Examples of spatial operations
are "parallel to" and "below".

If we can regard a piece of video data as a set of images, then Query-by-Example me-
thods developed for images (see, for example, [8]) can be used to retrieve video data
by audiovisual content. For example, [12] implemented a system which makes retrieval
of video data possible by specifying the motion of an object observed in video data by
giving an example. An example of an object motion is specified by making a mouse
move, and then a trajectory and velocity are sampled in accordance with the movement.

In the following, by exploiting this notion of procedural attachment [10], we provide an
extension of our language, leading to a rule-based, constraint query language for video
data retrieval.

84 M.-S. Hacid and F. Toumani

Definition 10. (Rule) A rule in our extended language has the form:
r : H +- L1,... ,Ln&cl,... ,cm

where H is an atom, n,m > 0, L.,... ,L. are (positive) literals, and cl,... ,Cm are
constraints.

Definition 11. (Rule Satisfaction) Let r be a rule of the form:
r : A +- Ll,... ,Ln&Cl,.. - , Cm

LI,.. ,Ln are (positive) atoms, and Cl, . . . , c, are constraints. Let 1 be an interpre-
tation, and v be a valuation that maps all variables of r to elements of Dext. The rule
r is said to be true (or satisfied) in interpretation _I for valuation v if v[A] is present
in I whenever:

- each v(ci), i E [1, m] is satisfiable, and
- each v[Li], i E [1, n] is satisfiable in I.

Given the previous database fragment, the query:

q(Y) :- link(X, Y, a.sequences), link(Y, Z, duration),
atomic(Z, Z'), link(Z, Z",frames), atomic(Z", F) &
Z' < 20, similar-color(F, fd)

Would be "Find a set of sequences, with a duration below 20, and the video clip (i.e.,
the filler of the attribute frames, here F) of each sequence in the answer set is similar
to the video clip fd regarding color". Here fd is the name of a video clip stored in the
Feature & Content Layer. similar-color is a symbol with an attachment. The attached
program will be executed in the Feature & Content Layer.

5 Conclusion

There is a growing interest in semistructured data, and this field offers many new chal-
lenges to IR research. As semistructured data proliferate, aids to browsing and filtering
become increasingly important tools for managing such exponentially growing infor-
mation resources and for dealing with access problems. We believe that formal settings
will help understanding related modeling and querying problems. This will lead to the
development of robust systems in order to effectively integrate, retrieve and correlate
semistructured data.

We have presented a logic-based language for querying semistructured data, given its
formal semantics, and applied it to video data. Several interesting directions to pursue:

- In the language we presented, navigational queries are expressed using variables
ranging over path expressions in the graph representing the data. An important
aspect to be considered is the use of path constraints [3] to take advantage of local
knowledge about the data graph.

- An important and critical problem is the discovery of the structure implicit in our
video data. This is especially important, since video data are often accessed in an
explorative or browse mode. For that, it may be useful to build a layer of classes
on top of our data model. The classes can be defined by rules and populated by
computing a greatest fixpoint [11].

- Due to the visual nature of video data, a user may be interested in results that are
similar to the query. Thus, the query system should be able to perform exact as
well as partial or fuzzy matching. The first investigations reported in [7] constitute
a nice basis.

Logic-Based Approach to Semistructured Data Retrieval 85

References

1. Serge Abiteboul. Querying Semi-Structured Data. In Proceedings of the Inter-
national Conference on Database Theory (ICDT'97), Delphi, Greece, pages 1-18,
Janvier 1997.

2. Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and Janet L.
Wiener. The Lorel Query Language for Semistructured Data. International Journal
on Digital Libraries, 1(1):68-88, 1997.

3. Serge Abiteboul and Victor Vianu. Regular Path Queries with Constraints. In Pro-
ceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Prin-
ciples of Databasests (PODS'97), Tucson, Arizonaem Sy, pages 122-133. ACM
Press, May 1997.

4. Peter Buneman, Susan Davidson, Gerd Hillebrand, and Dan Suciu. A Query Lan-
guage and Optimization Techniques for Unstructured Data. In Proceedings of the
A CM SIGMOD International Conference (SIGMOD'96), Montreal, Canada, pages
505-516, June 1996.

5. Cyril Decleir, Mohand-Said Hacid, and Jacques Kouloumdjian. A Database Ap-
proach for Modeling and Querying Video Data. In In Proceedings of the 15th In-
ternational Conference on Data Engineering (ICDE'99), Sydney, Australia, March
1999.

6. Ahmed K. Elmagarmid and Haitao Jiang. Video Database System: Issues, Products
and Applications. Kluwer, 1997.

7. Ronald Fagin. Fuzzy Queries in Multimedia Database Systems. In Jan Paredaens,
editor, Proceedings of the 1998 ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS'98), pages 1-10, Seattle, Washington, USA,
1998. Invited Paper.

8. Myron Flickner, Harpreet Sawhney, Wayne Niblack, Jonathan Ashley, Qian Huang,
Byron Dom, Monika Corkani, Jim Hafner, Denis Lee, Dragutin Petkovic, D. Steele,
and P. Yanker. Query by Image and Video Content: The QBIC System. In Marc T.
Maybury, editor, Intelligent Multimedia Information Retrieval, chapter 1, pages 7-
22. 1996.

9. John W. Lioyd. Foundations of Logic Programming. Springer-Verlag, 1987. Second
edition.

10. Karen L. Myers. Hybrid Reasoning Using Universal Attachment. Artificial Intel-
ligence, (67):329-375, 1994.

11. Svetlozar Nestorov, Serge Abiteboul, and Rajeev Motwani. Extracting Schema
from Semistructured Data. In Laura M. Haas and Ashutosh Tiwary, editors, Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data
(SIGMOD'98), pages 295-306, Seattle, Washington, USA, June 1998. ACM Press.

12. A. Yoshitaka, Y. Hosoda, M. Yoshimitsu, M. Hirakawa, and T. Ichikawa. VIO-
LONE : Video Retrieval by Motion Example. Journal of Visual languages and
Computing, 7:423-443, 1996.

13. J.Widom Y.Papakonstantinou, H.Garcia Molina. Object Exchange Across Hetero-
geneous Information Sources. In Proceedings of the 11th International Conference
on Data Engineering (ICDE'95), Taipei, Taiwan, pages 251-260, Mars 1995.

High Quality Information Retrieval for Improving
the Conduct and Management of

Research and Development

Ronald N. Kostoff 1

Office of Naval Research, 800 N. Quincy St., Arlington, VA 22217
Internet: kostofr@onr.navy.mil

Abstract. The purpose of the present paper is to convey the importance of high quality
information retrieval for maximizing progress in R&D, and to present generic protocols
for constructing high quality literature queries. The paper begins with an example of the
information retrieval limitations characteristic of present R&D practices, describes
requirements for conducting high quality information retrieval, and presents a proposal
for expanding dissemination and widening access to high quality information retrieval
methods. Retrieval of medical R&D information was selected as an illustrative example.

1. Introduction

For the past decade, the author has been developing methods for extracting useful
information from large S&T text databases [1, 2]. These methods have been based
upon the latest information technology concepts and algorithms, and can offer
literature searches that are extremely comprehensive with high signal-to-noise ratios.
As part of a recent assessment of information retrieval techniques [3], the author
examined many biomedical studies that included literature searches. The Science
Citation Index (SCL) Abstracts of these studies contained the queries used for the
literature surveys. These queries had the following characteristics:
1) The source data came almost exclusively from Medline alone, except for those
studies whose objective was to survey the Web resources available for the target
medical issue;
2) The focus of most of the studies seemed to concentrate around narrowly defined
medical problems, with little indication offered that supporting or related medical/
technical areas were of any interest;
3) The reported queries contained 3-6 phrases on average;
4) The phrases were either searcher-generated, or were the indexed terms from the
Medline Mesh taxonomy. No evidence was presented that an exhaustive search of
author-generated terms was performed.

1 THE VIEWS PRESENTED IN THIS PAPER ARE SOLELY THOSE OF THE AUTHOR AND DO

NOT REPRESENT THE VIEWS OF THE DEPARTMENT OF THE NAVY.

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 86-96, 2000.
© Springer-Verlag Berlin Heidelberg 2000

High Quality Informnation Retrieval 87

Queries with the above characteristics result in a deficient retrieved information base.
These deficiencies translate into limitations on the credibility and quality of study
results and subsequent research and development (R&D), for the following reasons.
1) Searches that do not access the myriad databases available, and queries that do not
result in comprehensive retrievals of the information available in the databases actually
searched, result in only a fraction of the existing knowledge being available for study
and R&D exploitation.
2) Searches and queries not designed to a) access literatures directly supportive of the
target literature and b) access literatures related to the target literature by some
common or intermediary thread, will not provide the insights and discoveries from
these other disciplines that often result in innovations in the target discipline of
primary interest [4]
3) Queries that are severely restricted in length, that rely in large measure on generic
indexer- supplied terms, and have not been extensively iterated with the author-
supplied language in the source database, will be inadequate in capturing the myriad
ways in which different authors describe the same concept, and will also yield many
records that are non-relevant to the main technical themes of the study.
In summary, these types of simple limited queries can result in two serious problems: a
substantial amount of relevant literature is not retrieved, and a substantial amount of
non-relevant literature is retrieved. As a result, the potential user is either
overwhelmed with extraneous data, or is uninformed about existing valuable
information, leading to potential duplication of effort and/ or R&D based on
incomplete use of existing data. All the subsequent data processing, both human and
computerized, cannot compensate for these deficiencies in the base data quality. In
contrast to these typical biomedical study Medline queries reported in the SCI
Abstracts, the author's group has been developing information retrieval techniques [1,
2] using an iterative relevance feedback approach. The source database queries result
in retrieval of very comprehensive source database records that encompass direct and
supporting literatures with very high ratios of desired/ undesired records. Some of the
queries consist of hundreds of terms [5, 6]. In those specific cases, queries of this
magnitude are necessary to achieve the retrieval comprehensiveness and 'signal-to-
noise' ratio required. Queries of a specific size are not a query development target;
rather, the query development process produces a query of sufficient magnitude to
achieve the target objectives of comprehensiveness and high relevance ratio.
The reader interested in more details about the query development protocols discussed
above, as well as the larger text mining context in which they are imbedded, is
encouraged to contact the author. An excellent overview of information retrieval
techniques is contained in [7]. Many detailed information retrieval technique
descriptions can be found in the TREC Conferences' Proceedings on the NIST Web
site, and the SIGIR Conferences' Proceedings on the ACM Web site.

88 R.N. Kostoff

2. Importance of High Quality Information Retrieval to Support
S&T

Information retrieval is one component of a larger information extraction and
integration process. To extract useful information from large volumes of semi-
structured and unstructured S&T text, sophisticated text mining (TM) techniques have
been generated [5, 8, 9, 10, 11, 12]. TM could address the following specific issues
that arise repeatedly in the conduct and management of R&D:

What R&D is being done globally; Who is doing it; What is the level of effort;
Where is it being done; What are the major thrust areas; What are the relationships
among major thrust areas; What are the relationships between major thrust areas and
supporting areas, including the performing and archiving infrastructure; What is not
being done; What are the promising directions for new research; What are the
innovations and discoveries?

These issues can be divided into two categories: infrastructure (who, where, when) and
technical (what, why). To address these issues comprehensively, TM techniques
typically have four major generic components:
(1) Information retrieval to select raw textual data on which the information processing
will be performned;
(2) Bibliometrics to identify the people, archival, institutional, and regional
infrastructure of the topical domain being analyzed;
(3) Computational linguistics to extract topical themes of interest, and relationships
among these themes and the infrastructure components:
(4) Visualization and/or other types of information display that summarize the TM
analyses and results for the users/ customers.

While all four data mining components are important for a high quality useful product,
good information retrieval is fundamental to the quality of the results and the latter
three components. All the sophisticated bibliometrics and computational linguistics
processing cannot compensate for insufficient or unfocused base data.
In order to maintain awareness of global R&D, effectively exploit its results, and
remain at the cutting edge of R&D, the medical researchers, clinicians, and sponsors
need to understand:
1) R&D done in the past, to both exploit it presently and not repeat mistakes that were
made in the previous development;
2) R&D being conducted presently, to both leverage existing programs for optimal
resource use and avoid duplication;
3) R&D planned to be conducted, to allow a) strategic budgetary planning for future
R&D transitions; b) planning strategic cost-sharing in areas of common interest; and c)
withdrawal of planned budgets from areas of peripheral interest that will be addressed
elsewhere.

High Quality Information Retrieval 89

Any technology specialty community requires this information both in R&D areas
directly related to its technologies of interest, and in allied and disparate technical
fields as well. These supporting technical areas can serve as sources of innovation and
discovery for advancing the prime technical areas (4), and can help remove the
underlying critical path barriers that serve as roadblocks to progress along the primary
technical paths. Some of the most revolutionary discoveries from TM! information
retrieval have occurred in the medical field, resulting from linking disparate literatures
to the primary target literature [1- 161.
Because of this interlocking nature of R&D, results from many different types of R&D
efforts are required to produce advances in any specific area. For example, advances
in biomedical instrumentation require underlying advances in materials, electronics,
signal processing, mathematical analysis, physics, chemistry, energy conversion,
radiation sciences, solid and fluid mechanics, robotics and micro-technology, and other
technologies depending on specific applications. Maximum advances in non-invasive
medical diagnostics require access to the latest science and engineering literature in
remote sensing, non-destructive evaluation, signal and image processing, pattern
recognition, multi-source data fusion, fluid dynamics, acoustics, robotics, materials,
electronics, and many other disciplines.
R&D sponsors with broad mission areas have an additional problem; their R&D needs
are very eclectic. Results from many different types of R&D are required in order to
accomplish the overall objectives of the sponsoring organizations. However, any
organization can afford to sponsor only a small fraction of the R&D necessary to
provide the technical foundations for accomplishing its broader mission objectives. It
is imperative for any organization (that requires significant technological advances to
accomplish its broad mission objectives) to maintain awareness of all the R&D being
performed globally. This continual awareness will allow the agency or company to
leverage and exploit the results of externally-sponsored R&D in a timely manner for
its own and national benefit.
The technical community needs access to a variety of sources for this global R&D
information, to gain the full spectrum of perspectives on available R&D. These
sources include human contacts, literature, multi-media, and physical sources.
Advanced informnation retrieval techniques that can address the literature in particular
are becoming available. These advanced information retrieval methods could be used
as the cornerstone of a process that would both extract information directly from the
text sources as well as use the preliminary extracted information as a gateway to the
other data sources. For example, simple processing of the very comprehensive
information retrieved by these advanced methods will identify R&D performers,
journals, organizations, and sponsors [5, 6, 8]. These sources can then be contacted to
provide a more personal type of information retrieval, and supplement the literature-
based approach extensively.

90 R.N. Kostoff

3. Problems with Present Information Retrieval Approaches

The information retrieval/literature surveys performed by the R&D community have
not kept pace with the breadth and expansion of literature available. Present
information retrieval approaches have four major intrinsic limitations:
1) They access only a fraction of available source databases, due to a combination of
lack of knowledge of the existing databases, lack of interest in making the effort
required to identify the complete scope of existing databases, and lack of appropriate
tools and techniques to readily access the full spectrum of available data sources.
2) They are typically limited to narrowly focused literatures, either due to the
surveyor's lack of interest in going beyond the directly focused target area, or the
surveyor's lack of knowledge about techniques and tools available to readily access
allied and disparate literatures from which insights and discovery could be
extrapolated.
3) They devote insufficient effort to query development, due to lack of time and other
resources and/ or lack of understanding of the consequences of severely deficient
queries on the quality of their subsequent R&D.
4) They are typically based on user-supplied terminology rather than database author-
supplied terminology, due to lack of understanding the value of using author generated
terms and! or lack of knowledge of the tools and techniques available to extract query
terms efficiently from the authors' own writings.

4. Requirements and Mechanics of High Quality Information
Retrieval

4.1. Requirements

A high quality query should have the following operational characteristics:
1) Retrieve the maximum number of records in the technical discipline of interest
2) Retrieve substantial numbers of records in closely allied disciplines
3) Retrieve substantial numbers of records in disparate disciplines that have some
connection to the technical discipline of interest
4) Retrieve records in aggregate with high signal-to-noise ratio (number of desirable
records large compared to number of undesirable records)
5) Retrieve records with high marginal utility (each additional query term will retrieve
large ratio of desirable to undesirable records)
6) Minimize query size to conform to limit requirements of search engine(s) used

Development of a high quality query requires:
1) Incorporation of technical experts;

High Quality Information Retrieval 91

2) In-depth understanding by the study performers of the contents and structure of the
potential databases to be queried;
3) Sufficient technical breadth of the study performers in aggregate to understand the
potentially different meanings and contexts that specific technical phrases could have
when used in different technical areas and by different technical cultures (e.g., SPACE
SATELLITES, SATELLITE CLINICS, SATELLITE TUMORS);
4) Understanding of the relation of these database contents to the problem of interest;
and
5) Substantial time and effort on the part of the technical expert(s) and supporting
information technologist(s).

Development of a high quality query is complex and time consuming, with
attendant non-negligible costs. The stringent and complex development
requirements run counter to the unfounded assertions being promulgated by
information technology algorithm developers and vendors: sophisticated tools
exist that will allow low-cost non-experts to perform comprehensive and useful
data retrieval and analysis with minimal expenditures of time and resources.

4.2. Mechanics

In order to meet the requirements for a high quality information retrieval process
described in the previous section, the query development process generically needs to
be full-text based and iterative, with relevance feedback and associated query
expansion occurring during each iteration. A small core group of documents relevant
to the topic of interest is identified using a test query. Unique characteristics of these
core documents are identified from bibliometrics (authors, journals, institutions,
sponsors, citations) and computational linguistics (phrase frequency and phrase
proximity) analysis. Patterns of bibliometrics and phrase relationships in existing
fields are identified, the test query is modified (by some combination of human experts
and intelligent agents) with new search term combinations that follow the newly
identified patterns, and the process is repeated. In addition, patterns of bibliometrics
and phrase relationships that reflect extraneous non-relevant material are identified,
and search terms that have the ability to remove non-relevant documents from the
database are added to the modified query. This iterative procedure continues until
convergence is obtained, where relatively few new documents are found or few non-
relevant documents are identified, even though new search terms are added.

The specific steps used in these generic relevance feedback approaches are
summarized as follows:
1) Definition of study scope;
2) Generation of query development strategy;
3) Generation of test query;
4) Retrieval of records from database; selection of sample;
5) Division of sample records into relevant and non-relevant categories, or
gradations of relevance;
6) Identification of bibliometric and linguistic patterns characteristic of each category.

92 R.N. Kostoff

In addition to using computational linguistics for characteristic pattern matching in the
semi-structured databases' text fields, the author has used bibliometrics for pattern
matching in the following other fields to retrieve more relevant records:
6a) Author Field; 6b) Journal Field; 6c) Institution Field; 6d) Sponsor Field;
6e) Citation Field;

There are at least three ways in which the citation field can be used to help identify
additional relevant papers.
6ei) Papers that Cite Relevant Documents;
6eii) Papers Cited by Relevant Documents;
6eiii) Other Papers Cited by Paper that Cites Relevant Documents;

7) Identify marginal value of adding bibliometric and linguistic patterns to the query;
8) Construct modified query;
9) Repeat process until convergence obtained.

While the generic query development process is systematic as presented, it is neither
mechanistic nor automated easily. Judgement must be used at each detailed step,
especially when using the linguistic patterns from the text fields to assist in the
generation of new query terms. Some of the complexities in the linguistics pattern
identification will be summarized.

Linguistic patterns uniquely characteristic of each category (relevant and non-relevant
records) are selected to modify the query. The underlying assumption is that records
in the source database that have the same linguistic patterns as the relevant records
from the sample will have a high probability of being relevant, and records in the
source database having the same linguistic patterns as the non-relevant records from
the sample will also be non-relevant. Linguistic patterns characteristic of the relevant
records modify the query such that additional relevant records are retrieved from the
source database. Linguistic patterns characteristic of the non-relevant records modify
the query such that existing and additional non-relevant records are not retrieved.
To expand the relevant records retrieved, a phrase from the sample records should be
added to the query if it:
1) appears predominately in the relevant record category;
2) has a high marginal utility based on the sample;
3) has reasons for its appearance in the relevant records that are understood well; and
4) IS PROJECTED TO RETRIEVE ADDITIONAL RECORDS FROM THE
SOURCE DATABASE (E.G., SCI) MAINLY RELEVANT TO THE SCOPE OF
THE STUDY.

If the candidate query phrase extracted from the sample was part of the test query, the
source database occurrence projection is straight-forward. If the candidate query
phrase extracted from the sample was not part of the test query, the actual source
database occurrence ratio in relevant and non-relevant records may be far different
from the projection based on the ratio of frequency of occurrence in each sample

High Quality Information Retrieval 93

category. The IR example discussed in the next paragraph is an excellent
demonstration of the mis-estimate of total source database occurrence possible with
use of a phrase derived from the linguistic patterns of the sample but not part of the
initial test query.
As an example from the query development in a recent TM study on the discipline of
TM (3), the phrase IR (an abbreviation for information retrieval used in many SCI
Abstracts) was characteristic of predominantly relevant sample records, had a very
high absolute frequency of occurrence in the sample, and had a high marginal utility
based on the sample. However, it was not 'projected to retrieve additional records from
te source database mainly relevant to the scope of the study'. A test query of JR in the
Science Citation Index source database showed that it occurred in 65740 records

dating back to 1973. Examination of only the first thirty of these records showed that
JR is used in science and technology as an abbreviation for InfraRed (physics),
Immuno-Reactivity (biology), Ischemia-Reperfusion (medicine), current(I) x
resistance(R) (electronics), and Isovolume Relaxation (medical imaging). IR occurs as
an abbreviation for information retrieval in probably one percent of the total records
retrieved containing IR, or less. As a result, the phrase JR was not selected as a stand-
alone query modification candidate.
Consider the implications of this real-world example. Assume a query consists of 200
terms. Assume 199 of these terms are selected correctly, according to the guidelines
above. If the 2 00 "h term were like JR above, then the query developer would have been
swamped with an overwhelming deluge of unrelated records. ONE MISTAKE IN
QUERY SELECTION JUDGEMENT can be fatal for a high signal-to-noise product.
Careful judgement must be exercised when selecting each candidate phrase. When
potentially dominant relevant query modification terms extracted from the sample are
being evaluated, one has to consider whether substantial amounts of non-relevant
records will also be retrieved from use of the query term in the source database.
When potentially dominant non-relevant query modification terms extracted from the
sample are being evaluated, one has to consider whether substantial amounts of
relevant records will not be retrieved.
Thus, the relation of the candidate query term to the objectives of the study, and to the
contents and scope of the total records in the full source database (i.e., all the records
in the Science Citation Index, not just those retrieved by the test query), must be
considered in query term selection. The quality of this selection procedure will depend
upon the expert(s)' understanding of both the scope of the study and the different
possible meanings of the candidate query term across many different areas of R&D.
This strong dependence of the query term selection process on the overall study
context and scope makes the 'automatic' query term selection processes reported in
the published literature very suspect.

94 R.N. Kostoff

5. Improving the Dissemination of High Quality Information
Retrieval Processes and Queries

This final section proposes an option for increasing the dissemination of technical
discipline queries to relevant communities. The background, need, and proposed
alternatives are outlined. Finally, one specific additional application is addressed
briefly.

5.1. Background

The previous sections of this paper have shown the importance and complexity of, and
effort required to develop, high quality database queries. Yet, the dissemination of
these queries to other potential users by their developers leaves much to be desired.
Other than inclusion in published papers, the queries are essentially not distributed.

A fundamental axiom in the R&D community is that a comprehensive literature survey
should be performed before R&D is proposed and initiated. Some if not most, Federal
agencies require that such surveys be performed before R&D is started. The degrees
to which these requirements are enforced and the survey quality and
comprehensiveness are assessed, are unknown. Thus, there may be a lot of 're-
inventing of the wheel', as each research group conducts surveys in topical areas
similar to those surveyed previously. In addition, if the 're-invented' literature search
is not of the same caliber as the original (due to poorer queries), the prospective
researcher will not have the comprehensive global data to exploit, and the possibility
for duplication of effort increases.

5.2. Need

If there were some type of query repository, with stringent query quality requirements,
much of this redundancy could be avoided. Even if the objectives of the prospective
literature survey were somewhat different from the objectives used to develop a
previous query, the completed query could be used as a credible starting point for the
desired query. Many researchers will have neither the time nor tools nor specialized
information technology capability to perform comprehensive queries. Especially for
resource intensive queries of the type described previously, widespread availability of
these substantive queries could be of high value for a wide variety of researchers. The
question arises as to how best to make these substantive resource-intensive queries
widely available to the potential user community.
One feasible method would be to establish a Web site at one of the existing data
repositories (e.g., NTIS, DTJC). Queries would be submitted to the site manager,
subjected to some review, then posted on the site. Sample guidance for query
submission and content is shown below. Both the broad-based technical journals
(e.g., Science, Nature) and the specialty technical journals (e.g., JAMA, NEJM,
Journal of Aircraft) would be used to inform readers of the new query titles that have
been added to the repository. This option does not over-burden the expensive journal
real estate, but does inform interested readers of the full query's location.

High Quality Information Retrieval 95

5.3. Guidance for Submitting Queries to Repository

One component of the overall repository maintenance protocol would be guidance to
the query developers for submitting their completed query to the repository. The query
developers would supply information describing the values of each of the parameters
on which the query depends. The required information follows.
1) Identify Contents of Specific Source Databases Used;
2) Specify Fields of Source Database Used to Develop Query;
3) Specify Goals and Objectives of the Study whose Literature will be Retrieved by
the Query;
4) Specify the Philosophy and Strategy used to Develop the Query;
5) Specify the Technical Backgrounds and Perspectives of Query Developers;
6) Describe the Features of the Search Engine Used, and any Limitations that Impacted
the Final Query;
7) Describe any Other Events or Phenomena Pertinent to the Final Query Form;
8) Describe the Query Metrics (Records Retrieved, Relevant Fraction).

5.4. Specific Additional Application

One of the functions of the repository could be to serve as an enforcement mechanism
for credible literature surveys for Federal grant recipients, if the repository operation is
designed properly. Each prospective researcher would perform the requisite literature
search, and submit the query and associated documentation to the repository gate-
keepers. The query and supportive documentation would be reviewed by topical
domain experts, and any deficiencies due to poor technique, game-playing, or other
reasons, would result in rejection of the query. Not until a credible high quality query
were accepted would the R&D be allowed to proceed. This would insure that
duplications of effort are minimized, and the latest documented findings of the global
R&D community are available to the prospective R&D performer(s) for exploitation.

6. Summary and Conclusions

Information retrieval plays a central role in modem day R&D. Present-day
information retrieval techniques in wide use have limited capabilities compared to
what the state of information technology can provide. Use of these inadequate
retrieval techniques can result in an excess of non-relevant records, and retrieval of a
fraction of the relevant records available, all of which translates into waste of limited
R&D resources. State-of-the-art information retrieval capabilities require time for
high quality query development, and the costs of this development are not negligible.
The potential for net cost savings, due to the elimination of duplication and use of
complete data possible with use of advanced queries, is high. Once these high quality
queries have been developed, they should be disseminated to the broadest segment of
the technical community, and archived. One mechanism for accomplishing this

96 R.N. Kostoff

dissemination and archiving is through establishment of a query repository, with
attendant advertising of the repository's contents through the technical journals,
bulletin boards, professional society home pages, and other dissemination forums.

References

1. Kostoff, R.N., Eberhart, H.J., and Toothman, D.R., "Database Tomography for Information
Retrieval", Journal of Information Science, 23:4, 1997

2. Kostoff, R.N., and Toothman, D.R., "Simulated Nucleation for Information Retrieval" to
be Submitted for Publication, 2000

3. Kostoff, R.N., Toothman, D.R., and Humenik, J.A., " A Text Mining Study of Text
Mining", to be Submitted for Publication, 2000

4. Kostoff, R.N., "Science and Technology Innovation". Technovation. 19 October 1999.
Also, www.dtic.mil.dtic/kostoff/index.html

5. Kostoff, R.N., Green, K.A., Toothman, D.R., and Humenik, J.A., "Database Tomography
Applied to an Aircraft Science and Technology Investment Strategy". Journal of Aircraft.
23:4, July-August 2000

6. Kostoff, R.N., Coder, D., Wells, S., Toothman, D.R., and Humenik, J., "Surface
Hydrodynamics Roadmaps Using Bibliometrics and Database Tomography". Submitted
for Publication, 2000

7. Greengrass, E., "Information Retrieval: An Overview", National Security Agency, TR-
R52-02-96, 28 February 1997

8. Kostoff, R.N., Braun, T., Schubert, A., Toothman, D.R., and Humenik, J., "Fullerene
Roadmaps Using Bibliometrics and Database Tomography". JCICS, Jan-Feb 2000

9. Kostoff, R.N., Eberhart, H.J., and Toothman, D.R.,"Hypersonic and Supersonic Flow
Roadmaps Using Bibliometrics and Database Tomography". Journal of American Society
for Information Science. 15 April 1999

10. Watts, R.J., Porter, A.L., Cunningham, S., and Zhu, D.H., "TOAS Intelligence Mining;
Analysis of Natural Language Processing and Computational Linguistics" Principles of
Data Mining and Knowledge Discovery, 1263:323-334-1997

11. Smalheiser, N.R., Swanson, D.R., "Using ARROWSMITH: A Computer Assisted
Approach to Formulating and Assessing Scientific Hypotheses" Comput Meth Prog Bio 57:
(3), 1998

12. Smalheiser, N.R., Swanson, D.R., " Assessing a Gap in the Biomedical Literature -
Magnesium - Deficiency and Neurologic Disease", Neurosci Res Commun 15: (1), 1994

13. Swanson, D.R., "Fish Oil, Raynauds Syndrome, and Undiscovered Public Knowledge",
Perspect Biol Med .30: (1), 1986

14. Smalheiser, N.R., Swanson, D.R., "Calcium-Independent Phospholipase A (2) and
Schizophrenia". Arch Gen Psychiat 55 (8), 1998

15. Swanson, D.R., Smalheiser, N.R., "An Interactive System for Finding Complementary
Literatures: A Stimulus to Scientific Discovery". Artif Intell 91 (2), 1997

16. Swanson, D.R., "Computer - Assisted Search for Novel Implicit Connections in Text
Databases". Abstr Pap Am Chem S 217, 1999

Signature-Based Indexing for Retrieval by Spatial
Content in Large 2D-String Image Databases

Essam A. EI-Kwae
University of North Carolina at Charlotte

Department of Computer Science
9201 University City Boulevard

Charlotte, NC 28223
eelkwae@uncc.edu

http://www.coe.uncc.edu/-eelkwae

Abstract. Image matching and content-based spatial similarity assessment based
on the 2D-String image representation has been extensively studied. However,
for large image databases, matching a query against every 2D-String has
prohibitive cost. Indexing techniques are used to filter irrelevant images so that
image matching algorithms can only focus on relevant ones. Current 2D-String
indexing techniques are not efficient for handling large image databases. In this
paper, the Two Signature Multi-Level Signature File (2SMLSF) is used as an
efficient tree structure that encodes image information into two types of binary
signatures. The 2SMLSF significantly reduces the storage requirements, responds
to more types of queries, and its performance significantly improves over current
techniques. For a simulated image databases of 131,072 images, a storage
reduction of up to 35% and a querying performance improvement of up to 93%
were achieved.

1. Introduction

Several logical image representation techniques for spatial similarity retrieval have
been previously proposed such as 0R-Strings [1], Spatial Orientation Graphs (SOG)
[2,3] and the symbolic image [4]. Efforts are underway within the MPEG-7 (formally
called the Multimedia Content Description Interface) standard to standardize
multimedia content description [5]. Symbolic projection methods for image
representation based on the 2D-String were introduced in [6]. Among those
techniques, the 2D-String is the most studied. Various extensions of 2D-Strings have
been proposed as the 2D-G String [7], the 2D-C String [8] and the 2D-C' String [9] to
deal with situations of overlapping objects with complex shapes. The 2D-String
representation changes the problem of pictorial information retrieval into a problem of
2D sub-sequence matching. 2D-Strings allow for matching images based on the
perception of the objects and the spatial relations that exist between them, thus
providing high-level object-oriented search rather than search based on the low-level
image primitives of objects such as color, texture, and shape.

Z.W. Rai and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 97-108, 2000.
) Springer-Verlag Berlin Heidelberg 2000

98 E.A. E1-Kwae

To extract the 2D-String of a grayscale image, image understanding and pattern
recognition techniques [e.g. 10] are used to extract the pictorial objects included in the
image. In spite of the amount of image segmentation research in the past years, a
general algorithm for segmenting general images has not yet been developed.
However, segmentation has been somewhat successful on specific applications such as
medical imaging, e.g. in brain MR images [11]. Although computationally expensive,
the process of image understanding is performed only once when the image is inserted
into the database.

In a large image database, matching a query image sequentially with every
database image is not feasible. Indexing techniques are used to filter out irrelevant
images to improve the search speed. A successful indexing mechanism should not drop
relevant images (true disposals), and should try to minimize the number of irrelevant
images (false alarms). The index should be dynamic, capable of answering different
types of queries, and should be efficient in terms of performance and storage space
required. Several techniques for indexing 2D-String databases have been proposed [12-
14]. However, those techniques may only be used for answering specific queries and
their performance degrades considerably in large image databases.

Signature files have been widely employed in information retrieval of both
formatted and unformatted data [14-18] and recently to image databases [19,20].
Signatures are commonly calculated using superimposed coding in which each object
(or object pair) in an image is hashed into a word signature. An image signature is
generated by superimposing (ORing) all its individual signatures. To resolve a query,
the query signature is generated and matched (ANDed) against image signatures. Fig. 1
shows an example for generating an image signature from object signatures and the
results of matching different query signatures to the image signature.

The main contribution of this paper is introducing an efficient indexing technique
for large 2D-String image databases based on the two-signature multi-level signature
file (2SMLSF) [19] and providing comparisons of the 2SMLSF to existing indexing
techniques using a large simulated image database. Comparisons of the 2SMLSF to
existing 2D-String indexing techniques revealed that the 2SMLSF tree significantly
reduces the storage requirements, responds to more types of queries and significantly
improves the search performance. The rest of this paper is organized as follows: In
section 2, an overview of 2D-Strings is given. In section 3, several 2D-String indexing
techniques are discussed. The 2SMLSF technique is introduced in section 4.
Comparisons of the 2SMLSF to existing techniques are given in section 5 followed by
conclusions in section 6.

2. 2D-String Overview

The 2D-String of a symbolic picture [6] transforms an image into a two dimensional
string by projecting the objects of that picture along the x- and y- coordinates. Thus,
the 2D-String is a pair of ID strings (u, v), u represents the spatial relationships
between the pictorial objects along the X-axis while v, represents those along the Y-
axis. In u and v, "<" denote is-west-of and is-south-of relationships, respectively. For

Signature-Based Indexing for Retrieval by Spatial Content 99

example, consider the symbolic picture f shown in Fig.2.(a) The symbols a, b, c and d

represent pictorial objects. The 2D-String representation off is S=(d<ab<c, a<bc<d).

A spatial query is also represented by a 2D-String. Thus, the problem of image

retrieval becomes that of 2D subsequence matching. In [6], three types of 2D

subsequences were defined, namely, type-0, type-1 and type-2. A string u is a type-i

subsequence of string v, if u is contained in v and if a~wlb, is a substring of u, a,
matches a 2 in v and b, matches b2 in v, then:

(type-O) r(b2) - r(a2) _>r(b) - r(a) or r(b) - r(a) = 0

(type-l) r(b2) - r(a2) ?r(b,) - r(a) > 0 or r(b2) - r(a 2) = r(b) - r(a) = 0

(type-2) r(b2) - r(ad) = r(b) - r(a,)

where r(x), the rank of a symbol x, is defined to be one plus the number of "<"

symbols preceding x. Let (u, v) and (u', v') be the respective 2D-String representations

of f and f. Then, (u', v') is a type-i 2D subsequence of (u, v), if u' is type-i ID
subsequence of u and v' is type-i ID subsequence of v. The picture f is then said to be
type-i subpicture of f In this paper, type-2 spatial relationships are used in all the

experiments performed. For example, consider the four images f, f, f 2 and f3 shown in
Fig.2 [6]. The 2D-String representation off, f,,f2 andf 3 are: f: (d < ab < c, a < bc <

d), f,: (a < c, a < c), f2: (d < a, a < d) and f3: (d < ac, a < dc), then: the type-0

subpictures of f are f, f, and f 3, the type-] subpictures of f are f, and f 2, and the type-2

subpicture off is f,

Object Sigs.: (D): 001 000 110 010
(E): 010 001 100 010
(H): 001 000 110 010
(J) :001010 110 000

Image Signature: 011 011 110 010

(c) Object and image signatures

(a) Example Image Queries Signature Result
with 4 objects: Dog(D), 1) Deer 010 001 100 010 Match
Deer (E), Jockey (J) and 2) Desk 000 010 100 101 No Match

Horse (H) 3) Deer & Jockey 011 011 110 010 Match

4) Car 010 010 100 000 False Drop
{E<JH<D, H<D<EI
(b) 2D-String rep. (d) Sample queries and matching results

Fig. 1. Signature generation and comparison based on superimposed coding

d

b c c d d c

a a a a

(a) f (b) f, (c) f, (d) f3
Fig.2. 2D-String example

100 E.A. El-Kwae

3. Previous Work on Indexing 2D-String Image Databases

In [21], the 2D longest common subsequence method for 2D-String matching was
proposed. The problem of string matching is transformed into a maximal common
subgraph (clique) which has exponential complexity. In addition, each query must be
matched against all images in the 2D-String database.

In [12], a 2D-String was indexed based on all object pairs included in the image.
For each pair o, and oý, an ordered triplet is created (o,, oý, r1) and entered into a hash
table, where r. is the spatial relationship between the two objects. Each pair of query
objects acts as a separate query used to retrieve the set of images stored at the
corresponding hash table address. The intersection of the retrieved sets constitutes the
candidate set of images. This addressing scheme requires that all images are known in
advance. A preprocessing step is needed to derive a perfect hash function, which
ceases to be perfect when new images are inserted into the database.

Another approach is based on groups of two or more objects, called "image
subsets", was introduced [13]. All image subsets from 2 up to a specified size K, are
produced. The number of image subsets becomes very large especially when K > 5
and n (the number of objects per image) > 10 which renders this method unsuitable for
large image databases. A separate hash table is created for image subsets with the
same number of objects up to a K_ objects. Queries with a number of objects >K,
have to be decomposed into multiple smaller queries. In a simulation test on a 1000
image database, the retrieval response time was slower, in some cases, than that of a
sequential search. In addition, this technique has a significant storage overhead.

The two level signature file (2LSF) [20] uses a two level signature file to represent
the 2D-Strings in the image database. In 2LSF, several 2D-Strings are grouped as a
block. Each 2D-String is associated with a record (leaf) signature and a block (root)
signature. The bit-sliced two-level signature file (BS2LSF) introduced in [22] uses bit-
transposed files to improve the performance of image retrieval of the 2LSF at the
expense of insertion cost. The S-tree [23] is a multilevel signature file that creates
higher level signatures by superimposing signatures at lower levels. As more
signatures are included, the bit density of the signatures will increase rendering the
method useless due to a large number of false alarms. The multilevel signature file
(MSLF) [14] is a multi-level extension to the 2LSF for text retrieval. The bit density
problem of the S-tree does not exist in the MLSF since signatures at higher levels have
longer lengths and are generated independently from those at lower levels.

4. The Two Signature Multi-level Signature File Technique
(2SMLSF)

The Two Signature Multi-Level Signature File (2SMLSF) (Fig.3.) [19] creates a tree
structure where images or groups of images are represented by binary signatures,
namely TypeS at the leaf level and TypeO at all other levels. The equations used to
calculate w, the signature weight or the number or ones, and m, the signature width at
different levels of the tree, are obtained so that the global false drop probability is

Signature-Based Indexing for Retrieval by Spatial Content 101

minimized [17,18]. The one bits are randomly chosen and each of the possible
signatures is equally likely to be chosen, then m and w may be calculated as follows:

1 -1
w(in,) ln(7I (1)

m=('n2}skl-P--) (2)

where pf is the false drop probability and s is the number of distinct items to be
encoded to create a signature.

A multilevel signature file is a forest of b-ary trees with every node, except leaf
nodes, in the structure having b child nodes. The number of levels in the structure is h.
The trees are assumed to be complete b-ary trees (n = bh). Local parameters
representing the value of some global parameter p at level i are denoted p,. To further
simplify the analysis, it is assumed that the local false drop probability is the same at
every level. The relationship between the global and local false drop probabilities is:

Apf V"ij then pf- 1 =, _i2 i pi. and Af=(pf)I/h (3)n M~

The 2SMLSF uses two types of signatures for each image. Type_O signatures used
at all levels except the leaf level and are based only on the objects included in the

image while TypeS signatures are used only at the leaf level and are based on the
included objects in addition to their spatial relationships. For an image I with x objects,
there exists x(x-1)/2 object pairs. From equation (2), the storage requirement of the two
types of signatures is given by the following equations:

= 1 •2)xlýPf) _' =(1--•2x -llfl

The ratio of storage requirement of both types of signatures is then calculated as:
ms (x- 1)
mo 2 (4)

A TypeS signature requires more storage than a Type_0 signature whenever x >

3. For large image databases, a substantial reduction in storage and improvement in
query performance will be achieved when TypeO signatures are used. However,
TypeS signatures may answer exact queries about the included objects and their
spatial relationships while TypeO signatures may only answer existential queries
about the objects included in an image. Current signature based methods for 2D-String
indexing [20,22] use only TypeS signatures for indexing. In the 2SMLSF, both types
of signatures are used for image encoding, which allows the 2SMLSF to respond to
both types of queries.

4.1. Index Creation in the 2SMLSF

The algorithm used to create the 2SMLSF signature tree (Fig.4.) creates h independent
signatures for each image, one for each level in the tree. At the leaf level, each
pairwise spatial relationship contained in a 2D-String is represented by a spatial string.
For any two objects A and B where A is less than B in alphabetical order, let r(x) be the

102 E.A. E1-Kwae

rank of object x in a 1D string. The type-2 spatial character, V(A, b), denoting the
type-2 spatial relationship between A and B is defined as follows [22]:

fii171

Type-0 Signatures ~ i i ~ i
Level I signatures ------- Level h-1 signatures Level h signatures 2D-Strings

TypeS

- access pointers

P signature generation Two Signature Multi Level Signature (2SMLSF)

Fig.3. The Two Signature Multi Level Signature File (2SMLSF)

(type-2) V2(A, b) = "00" if r(A) = r(B)
V2(A, b) = "I" + Str(r(B) - r(A)) if r(A) < r(B)
V2(A, b) = "2" + Str(r(B) - r(A)) if r(A) > r(B)

where "+" denotes string concatenation and Str(x) is a transformation function from

integer x into string "x". The type-2 spatial string, S2(A, B), is the concatenation of the
two symbols A, B and the two type-2 spatial characters V2,(A,B) and V2V(A,B), where
V.,(A,B) and V,(A,B) are the type-2 spatial characters of A, B in 1D strings u and v,
respectively. For example, in S=(u, v) = (ad < b < c, ac < b < d), r,(a) = 1 < r,(c) = 3
and ri(a) = 1 = rý(c) = 1. The type-2 spatial string S2(a, c) representing the type-2
spatial relationships between a and c is: S2(a, c) = "ac 1200"

The leaf signature for an object pair of width m, and weight w, is calculated using
equations (1) and (2) using w, hash functions. The image signature is created by
superimposing (ORing) all object pair signatures in the image. For any other level in
the tree, an image signature of width mi, and weight w, is based only on the objects
included in the image. Object signatures are then superimposed to generate the image
signature at level i. All the signatures of images in the same block are then
superimposed to generate the block signature. In general, 2' image signatures are
superimposed to generate the block signature at level h-i. A pointer to the signatures at
the next lower level is associated with each non-leaf block signature and a pointer
from the leaf signature to the corresponding 2D-String is created. The 2D-String then
points to the corresponding physical image.

An example image database of 8 images is shown in Fig.5.(a). Each image has
between 4 and 6 objects selected from 10 distinct objects. The corresponding MLSF
has 3 levels (log 2 8). The total number of signature bits in the tree (excluding pointers)
is 278 bits. The corresponding 2SMLSF (Fig.5.(b)) also has 3 levels (log2 8). The total

Signature-Based Indexing for Retrieval by Spatial Content 103

number of signature bits in the tree (excluding pointers) is 192 bits, a saving of about

30% over the MLSF. Note that the leaf level signatures in both techniques are the same

since both techniques use Type-S signatures at the leaf.

4.2. Query Processing in the 2SMLSF

Two types of queries may be submitted to the 2SMLSF, the first, TypeS queries,
"Find all images which include the set of objects and satisfy all spatial relations in the
query image", and the second, Type_0 queries, "Find all images which include the set
of objects in the query image". Only TypeS queries may be submitted to the 2LSF, the

MLSF, and most other indexing techniques discussed above.
When a query image q is submitted to the 2SMLSF, a 2D-String representation is

created for q, then h signatures labeled q,, q2, .., q, are generated for q using the
algorithm in Fig.4. Starting at the root, the query signature q, is ANDed to all root
signatures. If the result is not exactly q1, it is certain that there are no images

underneath the root that satisfy this query (unsuccessful search). If for a certain root
signature, the result is exactly q1, there is a chance that some images underneath this
signature satisfy the query. The search then resumes with the signatures in the next
level underneath qualifying root signatures.

For a TypeS query, the search is repeated until the leaf level is reached. All leaf
signatures that match the q, signature are query candidates. For a TypeO query, the
search is repeated until the level right above the leaf level is reached since this is the
last level that uses TypeO signatures. All matching signatures at this level are query

candidates. The false drop probability of the TypeS queries is pf while that for the
TypeO queries is slightly higher since the search stops above the leaf level.

h-1
P o. = P i , = (P , (-1 /

i=1 (5)
since pi < 1 and h>1, then (p)(-

1m, > p/. The difference between the two probabilities
decreases by increasing the number of levels in the tree. Due to the information loss in
representing images by signatures, a false drop may occur. The 2D-String pointed to
by the query candidates are passed to a spatial similarity algorithm [e.g.3,12], which
performs a detailed checking in order to exclude false drops and rank the other
candidates based on their degree of similarity to the query image.

5. Evaluation of the 2SMLSF

In [19], analytical comparisons were performed between the 2SMLSF, the 2LSF
[14,201, and the MLSF [14]. In this paper, simulations of a large image database were

carried out. Two criteria were used for comparison, the amount of storage required
(M) and the total number of bits (B) compared during query processing. Two
parameters were used to quantify the comparisons, the storage reduction ratio (SRR)
and the computation reduction ratio (CRR) calculated as follows:

104 E.A. El-Kwae

SRR = M2LSF - M2SMLSF CRR - BELSF - B2SMLSF

M2LSF B2LSF

Input Given the values of: n : number of images in the database
P, : global false drop probability
x average number of objects per image

Procedure
Step1 : //initialization

h = logn and b=2. H/h is the number of levels
Vi, i= 1,2 ... , h

Aif = (pf)l/h //local false drop probability at leveli

W=(1 -')n(f

w ln 2) ,-) //signature weight

I = 2) As I /! signature width

Step 2: I/For every image I, create a leaf Type-S signature (SIG,,)
V Image I, I = 1, 2 ... , n

SIGQ=0
VObject i El,i= 1, 2 ... , x,

VObjectj EI,j = 2, 3, ... , xI
SP~ih= f(IDi, IDR, SpatialRelation1 J)
SIGiJh = createsignature(wh, m,, SPijh) H as in section 4.1.

SIGIh= OR(SIG,, SIGiih)

Add a pointer from the leaf signature to the 2D-String of this image.
Step 3: H create h-1 signatures at other levels as follows

V Level L, L =h-1, h-2, ... , 1
n, = 2I H number of images per block
V Block B, B = 1, 2, ... , n/nb

SIGBL=0
V Image IlB, I = 1, 2 ... , n,

SIGIL= 0

"V Object i EI, i = 1, 2 ... , x,

SPiL= f(IDi)
SIGiL = create signature(w,, mh, SPJL H as in section 4.1.
SIGIL = OR(SIGIL, SIGiL)

SIGBL= OR(SIGIL, SIGIL)

Adjust pointers to next level.

Fig.4. The 2SMLSF tree creation algorithm

Signature-Based Indexing for Retrieval by Spatial Content 105

5 2 I0 7 10

3,6 1,7 5 9 4 8

1 3 3 7 1,8

{1,3,6 <5; 1<3,6<5) 11,2,7<3,5,10; 3<1,5,7 <2,10} {9 <4,7< 3,8; 3<4,8,9 <7} {7,10 <1,8; 1,7,8 <10)

5 7 3 5 3 2,10

3 4 2 1 6,7 1,10 3

6 6 5 9 6 4

13<4,5,6<7; 6<3,4< 5,7) (2,3< 1,5,6; 6<1,2< 3,5} 16,7 <3,5<1,10; 5<1,6,7,10 <3} {3,9 <6<2,4,10; 4,6,9<3< 2,10)

(a) The example image database and 2D-String representation

m,=24 400084 440300

mz=12 024 262 420

M3=12 56 673 1DC AlA B7 E9r 7

(b) The corresponding 2SMLSF representation
Fig.5. Image database example

In [14], it was shown that the storage requirement for the SLSF (Single Level
Signature File), 2LSF, and MLSF is the same, if they all have the same global false
drop probability while the MLSF significantly reduces the number of bits compared
during query processing. It was also shown that the optimum blocking factor is b=2,
i.e. when each node in the MLSF includes exactly 2 signatures.

Several simulations were carried out between the 2SMLSF and the MLSF [14]. In
the first simulation, the number of objects per image was chosen at random between 5
and 9 objects, images were divided into 3x3 blocks while the false drop probability
was chosen to be 0.1. The simulation studied the effect of increasing the number of
images on the storage requirement and the query performance. The number of images
was changed from 8K (8192) images to 128K (131,072) (Fig.6.). The average SRR
improvement for this experiment was 35%. For performance comparisons, two types
of queries were considered, random queries in which query images are created
randomly and selected queries, in which query images are selected from images in the
image database. Thus, selected queries are guaranteed to be in the database, while
random queries may lead to unsuccessful searches. The CRR was 89.19% on the
average for random queries (Fig.7) and 50.12% on the average for selected queries
(Fig.8).

In the second simulation, the number of images in the database was kept constant
at 32K (32768 images) while the number of objects per image was varied from 3 to 7

106 E.A. El-Kwae

objects. Again, images were divided into 3x3 blocks while the false drop probability
was chosen to be 0.1. The average SRR for this experiment was 24% (Fig.9.). The CRR
was 79.39% on the average for random queries (Fig. 10) and 38.32% on the average for
selected queries (Fig.10). Those results confirm the significant performance
improvement of the 2SMLSF for indexing large 2D-String image databases.

1 7

S4 4 < -- l 4

"is1
isii ,

8M• IM 3M EE V 81M2 163R4 3 SS 13M07 $192 1M 384 e SS6 13107

F
Fig.6. Tree size comparison Fig.7. Random queries ig.8. Selected queries

(fixed objects) (fixed objects) (fixed objects)

4-- 1 80I4
.1(0....i.

3 4 5 6 7 to 0 0 _ OF-F
I 2M 13 4A_5

N••~S3 4 5 6 7

NDý 1 2 3 3U,, 4 5 7

Fig.9. Tree size comparison g. 10. Random queries ig. 11. Selected queries
(fixed images) (fixed images) (fixed images)

6. Conclusions

The Two Signature Multi-Level Signature File (2SMLSF) was used for indexing large
2D-String image databases. The 2SMLSF is based on signature representation, which
does not allow any true dismissals. However, false alarms may occur with a certain
controlled probability /f. The value of pf may be reduced on the expense of additional
storage. Two types of signatures are generated for each 2D-String. TypeS signatures
stored at the leaf and are based on the included domain objects and their spatial
relationships and Type-O signatures used at all the other levels of the signature tree
and are based only on the domain objects included in the image. Simulation
comparisons of the 2SMLSF to the MLSF in terms of storage requirements (SRR) and
search performance (CRR) were performed. Simulations of image databases with a
variable number of images up to 128K images and a variable number of objects per
image have confirmed that the proposed indexing technique significantly improves
both the SRR (up to 35%) and the CRR (up to 93%) of existing techniques. In addition,
the 2SMLSF can answer both general and exact queries while the MLSF can only

Signature-Based Indexing for Retrieval by Spatial Content 107

answer exact queries. Future extension of this work includes testing the indexing
technique in a real environment such as medical image databases and extending the
2SMLSF to other 2D-String types such as 2D-G, 2D-C, and 2D-C+ strings.

References

[1] GUDIVADA, V. N., " R-String: A Geometry-Based Representation for Efficient and Effective
Retrieval of Images by Spatial Similarity," Technical Report CS-95-02, School of Electrical
Engineering and Computer Science, Ohio University, 1995.

[2] GUDIVADA, V. N. and RAGHAVAN, V., "Design and Evaluation of Algorithms for Image
Retrieval by Image Similarity," ACM Trans. on Info. Sys. 13, April 1995, 115-144.

[3] EL-KWAE, E. and KABUKA, M., "A Robust Framework for Content-Based Retrieval by
Spatial Similarity in Image Databases," ACM Trans. on Info. Sys. 17(2), April 1999, 174-198.

[4] GUDIVADA, V. N. and JUNG, G. S., "An Algorithm for Content-Based Retrieval in
Multimedia Databases," Proc. of the Intl Conf. on MM Comp. and Sys., Japan, June 17-23,
1995, 90-97.

[5] Jane Hunter, "MPEG-7 Behind the Scenes," D-Lib Magazine, 5(9), Sep. 1999.
[6] CHANG, S. K., SHI, Q. Y., and YAN, C. W., "Iconic Indexing by 2-D Strings," IEEE

Transactions on Pattern Analysis and Machine Intelligence 9(3), May 1987, 413-428.
[7] CHANG, S. K. and JUNGERT, E.,"Pictorial Data Management Based Upon the Theory of

Symbolic Projections," Journal of visual Languages and Computing 2(3), Sep. 1991, 195-215.
[8] LEE, S. Y. and HSU, S. Y., "Spatial Reasoning and Similarity Retrieval of Images Using 2D-C

String Knowledge Representation," Pattern Recognition 25(3), 1992, 305-318.
[9] HUANG, P. W. and JEAN, Y. R., "Using 2D C÷-Strings As Spatial Knowledge Representation

For Image Database Systems," Pattern Recognition 27(9), 1994, 1249-1257.
[10] EL-KWAE, E. and KABUKA, M., "A Boolean Neural Network Approach for Image

Understanding," Proc. of Artificial Neural Network in Engineering Con. (ANNIE'96), St Louis,
Missouri, Nov. 10-13, 1996, 437-442.

[11] C. Tsai, B. S. Manjunath, and R. Jagadeesan, "Automated Segmentation of Brain MR Images,"
Pattern Recognition 28(12), 1995, 1825-1837.

[12] CHANG, C. C. and LEE, S., "Retrieval of Similar Pictures on Pictorial Databases," Pattern
Recognition 24(7), 1991, 675-680.

[13] PETRAKIS, E. and ORPHANOUDAKIS, s., "A Generalized Approach for Image Indexing and
Retrieval Based on 2-D Strings," First Workshop on Spatial Reasoning, Norway, Aug. 1993.

[14] LEE, D. L., KIM, Y. M. and PATEL, G., "Efficient Signature File Methods for Text Retrieval,"
IEEE Transactions on Knowledge and Data Engineering 7(3), Jun. 1995, 423-435.

[15] Faloutsos, C., "Access Methods for Text," ACM Computing Surveys 17, 1985, 49-74.
[16] FALOUTSOS, C. and CHRISTODOULAKIS, S., "Signature Files: An Access Method for

Documents and Its Analytical Performance Evaluation," ACM Trans. on Ofc. Info. sys. 4, Oct.
1984, 267-288.

[17] ROBERTS, C. S., "Partial-Match Retrieval via Method of Superimposed Coding," Proceedings
of IEEE 67(12), Dec. 1979, 1624-1642.

[18] DAVIS, R. S. and K. RAMAMOHANARAO, K,.A, "Two-Level Superimposed Coding Scheme
for Partial Match Retrieval," Information Systems 8(4), 1983, 273-280.

108 E.A. El-Kwae

[191 EL-KWAE, E. and KABUKA, M., "Efficient Content-Based Indexing of Large Image
Databases," ACM Transactions on Information Systems, (to appear).

[20] LEE S. Y. and SHAN, M. K., "Access Methods of Image Databases," International Journal of
Pattern Recognition and Artificial Intelligence 4, 1990, 27-44.

[21] LEE, S.Y., SHAN, M. K. YANG, W., "Similarity Retrieval of Iconic Image Databases," Pattern
Recognition 22(6), 1989, 675-682.

[22] TSENG, J., HWANG, T. and YANG, W., "Efficient Image Retrieval Algorithms for Large
Spatial Databases," Intl Journal of Pattern Recognition and Art. Int. 8(4), 1994, 919-944.

[23] DEPPISCH, U., "S-Tree: A dynamic balanced signature index for office retrieval," Proc. of the
ACM Conf. on Research and Development in Info. Ret., Pisa, Italy, Sep. 1986, 77-87.

Refining Logic Theories under OI-implication

F. Esposito, N. Fanizzi, S. Ferilli, G. Semeraro

Dipartimento di Informatica - Universith di Bari
{esposito, fanizzi, ferilli, semeraro}Cdi.uniba.it

Abstract. We present a framework for theory refinement operators ful-
filling properties that ensure the efficiency and effectiveness of the learn-
ing process. A refinement operator satisfying these requirements is de-
fined ideal. Past results have demonstrated the impossibility of defining
ideal operators in search spaces ordered by the logical implication or the
0-subsumption relationships. By assuming the object identity bias over
a space defined by a clausal language ordered by logical implication, we
obtain 01-implication, a novel ordering relationship, and show that ideal
operators can be defined for the resulting search space.

1 Introduction

In this paper we continue our work presented in [4, 14, 3] on the definition of a
framework fulfilling properties that are deemed as desirable for the incremental
inductive synthesis of logic-based knowledge. Such properties are ensured by the
notion of ideality of the definable refinement operators, that provides efficiency
and effectiveness of the learning process.

Ideal operators have been proven not to exist in the spaces ordered by the
classical notions of implication or O-subsumption [15]. Our framework relies on
the Object Identity assumption, that, when applied to the standard ordering
relationships, induces changes upon the corresponding search spaces that allow
for the existence of ideal operators.

After introducing the assumption for the search space induced by 0-sub-
sumption, yielding the %o-subsumption relationship [4, 14], we now weaken the
implication ordering, obtaining a 01-implication [5, 3]. It has been shown how
to define ideal operators in clausal spaces ordered by 06o-subsumption [4, 14].
Extending our framework to spaces ordered by O-implication, we intend to
investigate whether even in these search spaces ideal operators can be specified.

The remainder of the paper is organized as follows. Section 2 recalls the basic
notions of the representation language and introduces the new ordering relation-
ships that we propose, while Section 3 deals with the operators for searching in
the resulting spaces. In Section 4, a novel framework, based on Object Identity,
that overcomes negative results on standard search spaces is presented. Lastly,
Section 5 draws some conclusions.

Z.W. Rai and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 109-118, 2000.
(Springer-Verlag Berlin Heidelberg 2000

110 F. Esposito et al.

2 Preliminaries

In our framework, we adopt a representation language L expressing theories
as logic programs made up of clauses'. It is based essentially on the following
assumption.

Assumption 2.1 (Object Identity). In a clause, ternms denoted with different
symbols must be distinct, i.e. they represent different entities of the domain.

This notion constitutes the basis of the novel generality orderings proposed
in the paper.

2.1 Generality Orderings

Essentially, generalization can be cast as a search problem [9]. Hence, a major
issue is the algebraic organization underlying the search space.

Definition 2.2. Given a set S, a binary relation -< on S is a quasi-ordering
on S iff it is reflexive and transitive; a quasi-ordering - induces an equivalence
relationship, denoted with -, such that: VC, D E S : C D iff C - D A D -< C.
Given two clauses C and D, we say that such a relationship holds properly,
denoted with C -- D, when C -< D A D A C.

Implication and 0-subsumption are the standard ordering relationships in-
vestigated in inductive logic programming. We weaken them in order to obtain
more manageable relationships leading to the definition of a form of implication
that complies with the object identity assumption.

00 1-subsumption. In order to cope with the object identity principle, we have
derived a new ordering relationship from the classic 0-subsumption, that induces
a quasi-ordering upon the (Datalog [2]) clausal spaces [14, 3].

We discuss further properties required to substitutions in order to fulfill ob-
ject identity. In fact, a substitution can be regarded as a function mapping vari-
ables to terms. In particular, we are interested here in a specific type of injective
mappings.

Definition 2.3. Given a set of terms T, let a be a substitution. We say a is an
01-substitution w.r.t. T iff Vtl,t 2 C T : t, 4 t 2 =:> t1 a 9 t 2a.

Hence, we introduce a new relationship, based on 0-subsumption, which com-
plies with Assumption 2.1:

Definition 2.4. Given two clauses C and D, C 9-subsumes D under object
identity (C 0,,-subsumes D) iff la 01-substitution w.r.t. terms(C) such that
Ca C D. Then, we say that C is more general or equivalent to D (resp. D is
more specific or equivalent to C) under object identity and we write D•DIC.

1 Basic notions about clausal representation can be found in [8, 11].

Refining Logic Theories under 01-Implication 111

0o.-subsumption is strictly a weaker relationship than standard implication
and 0-subsumption [14].

Since 0o-subsumption maps each literal of the subsuming clause onto a single
literal in the subsumed one, equivalent clauses under _, must have the same
number of literals. Thus, a search space ordered by 0o,-subsumption is made up
of non-redundant clauses'. As a consequence, it is possible to prove the following

result:

Proposition 2.1. Let C and D be two clauses. Then C-oD iff they are alpha-
betic variants.

Implication and 0-subsumption. A characterization of implication with re-
spect to 0-subsumption was given by Bain and Muggleton [1]. This result bridges
the gap between these two relationships. Indeed, it states that logical implication
between clauses can be divided in two separate steps: a derivation by resolution
[8] and then a subsumption step.

We recall a special case of the subsumption theorem, recently re-proven
with respect to various resolution mechanisms (general, linear, SLD) [11]. In
our framework, we deal with linear resolution, hence the following definition is
needed:

Definition 2.5. Let T be a set of clauses. Then, the n-th linear resolution of
T, denoted by £n(T), is defined inductively as follows:
"* £'(T) = T
"* Ln(T) = {R I C E n-x1(T), D C T U £k(T), k < n, and R is a resolvent of

C and D} (nn> 1)

Now we can state the corresponding subsumption theorem as follows:

Theorem 2.1 (Subsumption Theorem). Let C, D be clauses (D non-tauto-
logical). Then C > D iff IE E C2({C}) (n > 0) such that E 0-subsumes D.

C can be resolved with itself only, or with one of its resolvents. Self resolution
is possible when C is a recursiveO clause. Otherwise, implication for non recursive
(or even non ambivalent) clauses is equivalent to 0-subsumption [6].

2.2 01-implication

Derived forms of implication are studied here in order to comply with the object
identity assumption. Given a notion of %,-subsumption, and using Theorem
2.1, we can define a novel generalization ordering. The goal here is to define
constructively implication under object identity.

First, we have to define a form of resolution coping with the object identity
assumption. From the notion of OI-substitution, we can specify a notion of a
unifier fulfilling Assumption 2.1:

2 A clause is called redundant when it is equivalent, w.r.t. a given ordering, to one of

its subsets.
3 A clause is recursive iff there exist literals A, -B such that A is unifiable with a

variant of B.

112 F. Esposito et al.

Definition 2.6. Given a finite set of simple expressions S, we say that 0 is
an OI-unifier iff AE VEi C S : EiO = E and 9 is an 01-substitution w.r.t.
terms(Ei). An OI-unifier 9 for S is called a most general OI-unifier (mguo,)
for S iff, for each 01-unifier o of S, there exists an OI-substitution r such that
0"= 07-.

Differently from [3], we derive our definition of OI-resolution from [13]:

Definition 2.7. Given the clauses C and D, standardized apart, the clause R
is an OI-resolvent of C and D iff, given two subsets M C C and N C D such

that {M, N} 4 is unifiable via the mguo, 9, it holds that:

R = ((C \ M) U (D \ N))O.

As mentioned before, we will consider only the case of linear resolution [11].
We will denote with £C, the linear OI-resolution operator, and with £o* its
closure. If C can be derived by means of zero or more (linear) resolution steps
from the set of clauses T, this will be denoted with T I-oi C or C E £ni (T), n > 0.
We can now define the form of implication, that copes with object identity.

Definition 2.8. Let C and D be any two clauses. C implies D under object
identity (equivalently, C 01-implies D), denoted C z,, D iff either D is a tau-
tological clause or there exists a clause E E £o,({C}) such that E Oo-subsumes
D. In this case we say that C is more general or equivalent to D (resp. D is
more specific or equivalent to C) under OI-implication. Equivalence under 01-
implication is denoted by ,#>

It is easy to see that 01-implication is strictly a stronger ordering relationship

than 0o 1-subsumption.

3 Refinement Operators

Our learning problem is cast as a search problem. In this section we focus on
the properties of the operators that perform this search.

Theory refinement is triggered by new evidence made available to be assimi-

lated in a knowledge base. Generally speaking, the canonical inductive paradigm
requires the fulfillment of the properties of completeness and consistency for the
synthesized theory with respect to a set of input examples. When an inconsistent
(respectively, incomplete) hypothesis is detected, a specialization (respectively,
generalization) of the hypothesis is required in order to restore this property
of the theory. Roughly speaking, in the former case weaker clauses must be
searched; in the latter, stronger clauses are needed or new ones are to be intro-
duced. Formally, in terms of the adopted ordering:

Definition 3.1. Given a quasi-ordered set of clauses (L _), a refinement oper-
ator is a mapping from £ to 2L such that:
"* VC G £ : p(C) C {D E £[D -_ C} (downward refinement operator)
"* VC E £: 6(C) C {D c 41 C -_ D} (upward refinement operator)

4 We indicate with L the complement of a (set of) literal(s).

Refining Logic Theories under 01-Implication 113

A notion of closure upon refinement operators will be useful when proving
the completeness property for the operators.

Definition 3.2. Given a quasi-ordered set (4, -<), let -T be a refinement operator
and C G £. The closure of T (in symbols -r*) for C is such that:
"T*(C) =Un> 0orn(C) = T°(C) U TI(C) U... U "T(C) U ...

where rT(C)is inductively defined as:
T '(C) = {C}

* rT(C) = {DI]E G 7-n- -(C) : D G T(E)}

Ultimately, refinement operators should construct chains of refinements from
the initial hypotheses to target ones. The next definition introduces this notion.

Definition 3.3. In a quasi-ordered set (4, -), given a refinement operator -T, a
sequence of clause Co, C1,... ,Cn in L is a T-chain iffCi C -T(Ci-1), 1 < i < n.

Properties of the Refinement Operators. We specify the properties that
confer ideality to a refinement operator by recalling the definitions in [15]. First,
we define the property that is fundamental to construct refinement operators
that are actually mechanizable.

A major source of inefficiency in computing refinements may come from
clauses that turn out to be equivalent to the starting ones. Indeed, it is de-
sirable that the chain of refinements leads directly to target elements. Depend-
ing on the search algorithm adopted, refinements that are equivalent to some
element already discarded introduce a lot of useless computation. As to the ef-
fectiveness of the search, a refinement operator should be able to build chains

between two any comparable elements of the search space (or their equivalent
representatives). This means that a complete refinement operator can derive any
comparable element in a finite number of steps.

The following definitions formally specify these concepts:

Definition 3.4. In a quasi-ordered set (4, -<), a refinement operator -T is locally
finite iff VC E L : r(C) is finite and computable.

A downward (resp. upward) refinement operator p (6) is proper iff VC C :
D c p(C) implies D -< C (resp. VC C £ : D C 6(C) implies C -< D).

A downward (resp. upward) refinement operator p (6) is complete iff VC, D e
4, D -< C implies 1E C £: E C p*(C) and E - D (resp. C -< D implies
1E C L : E E 6*(C) and E - D).

The combination of these three properties confers effectiveness and efficiency
to an operator. Indeed, local finiteness and completeness ensure the presence of a
computable refinement chain to a target element. Besides, properness makes the
refinement process more efficient, by avoiding the search of equivalent clauses.
The following definition accounts for all of them.

Definition 3.5. In a quasi-ordered set (, -<), a downward (resp. upward) re-
finement operator p (6) is ideal iff it is locally finite, proper and complete.

114 F. Esposito et al.

Nonexistence conditions for ideal refinement operators in unrestricted set of
clauses ordered by 0-subsumption are given in [15]:

Theorem 3.1. In an unrestricted search space (C, <o), with at least one predi-

cate symbol of arity > 1, an ideal upward refinement operator does not exist.

Similar results apply for downward refinement in the same search space or
also when a stronger ordering relationship like implication is adopted.

4 Ideal Operators for OI-implication

In this section we propose refinement operators for spaces ordered by 9oi-sub-

sumption and OI-implication for an unrestricted search space. We also present
the results on their ideality, though for brevity the proofs are omitted, but they
can be found in [5].

We show here how it is possible to define ideal refinement operators in
function-free clausal spaces under the weaker, but more mechanizable, order-
ing induced by 09oi-subsumption. Ideal refinement operators in this space have
been defined in [14, 3].

Given the notion of OI-substitution, we extend the definition of the relation-

ship •0i (and then the refinement operators) to the case of unrestricted search
spaces ordered by 0 ,-subsumption. Indeed, an easy characterization that can be

made is that D 0o.-subsumes C whenever an OI-substitution a exists, such that
Da C C. We extend the definition of the refinement operators to include also
the case of functions.

Definition 4.1. Let C be a clause. Then D G poi(C) when one of these condi-
tions holds:

1. D = CO, where 0 {X/a}, X C vars(C), a 5 consts(C);
2. D CO, where 0 = {X/f(Y1 ,...,Yn)}, f is an n-ary function symbol

(n > 0) and X c vars(C);
3. D = C Uf {L}, where L is a literal, such that: L 0 C.

D C &o,(C) when one of these conditions holds:

1. D = Ca, where a = {a/X}, a E consts(C), X 0 vars(C);
2. D Ca, where 09 = {f(Y1 ,...,Y 0)/X}, f is an n-ary function symbol

(n > 0) such that f(Yi,... , Yr,) G terms(C) and X ý vars(C);
3. D = C \ {L}, where L is a literal, such that: L E C.

Even in this case, we obtain ideal refinement operators for this search space.

Theorem 4.1. In an unrestricted clausal space, the operators p,, and (5, are
ideal refinement operators.

When dealing with non recursive clauses, generalization and specialization
under implication (respectively OI-implication) correspond to the cases consid-
ered for the 0-subsumption (0%o-subsumption), because of Gottlob's theorem [6].

Refining Logic Theories under 01-Implication 115

Now, we want an operator for computing the resolution and inverse resolution

steps, in the case of recursive clauses (for the subsumption theorem). [10] intro-

duced the notions of powers and roots as operations where a clause is resolved
with itself. They can be considered as refinement operators.

Definition 4.2. Let C be a clause. A clause D is an n-th power of C iff D is a

variant of a clause in £n(C) (n > 1). We also say that C is an n-th root of D.

By exploiting the subsumption theorem, a way to obtain downward refine-

ments of a clause in a search space ordered by implication is to self-resolve a

clause n times to obtain an n-th power or to apply the downward refinement
operator used for 0o-subsumption. Conversely, upward refinements require to

compute an n-th root of a clause, and again, to employ an upward refinement

operator for 0o 1-subsumption. Both cases are not practically feasible, since we
do not know a priori the n to stop at in the process of self-resolution. Moreover,
while it is clear how to compute n-th powers by using linear resolution, in order

to find downward refinements of a clause, the dual is a more complex task since
it yields inversion steps.

Inverting 01-Resolution. We deal with the problem of inverting resolution

by adapting the technique presented in [7] to our framework. Specifically, we
start by defining a way to construct parent clauses given the resolvent, then we

generalize this process with the aim of constructing OI-ancestors of the starting
clause.

Given a clause R, it can be considered as the resolvent of two clauses C and
D according to the definition of resolution, such that:

R = ((C \ M) U (D \ N))O.

where C and D are standardized apart and 0 is an mgu.i both for {M, N}.

Besides, the most specific parent clauses resolve upon just one literal - M

and N are singletons Lc and LD, respectively - and inherit all literals from
the OI-resolvent, hence 0 has to be an mguo1 also for {C \ {Lc}, D \ {LD}} 5:

(C \ {Lc})O = (D \ {LD})O = R

Thus:
C = RU{L} and D = RuTJ{L}.

where L = Lc = LD.
Hence, by introducing a new literal, we have obtained two parent clauses.

This applies to the cases of ambivalent clauses. It holds:

Proposition 4.1. Let R be a clause and L be a literal. Then: {R} #=,, (R U
{L}, R U {L}).

It is also provable [5] that:

Proposition 4.2. Let C and D be two clauses and R an OI-resolvent of C and

D. Then there exists a literal L such that C >,, R uI {L} and D >o, Ru {L}.

5 The extension of unifiers to from simple expressions formulm is straightforward.

116 F. Esposito et al.

By using the same technique iteratively, applied this time to invert more
than just one resolution step, we compute clauses from which R follows in two
steps and so on, by introducing other literals. Namely, given: {R U {L}, R U {L}}
we can decide to invert either of the two parent clauses. Then we can apply the
or-introduction technique to the clause chosen (say, the first), obtaining:

{R U {L} U {L'}, RU {L} U {L }, R U {L}}.

This technique can be extended by defining the following notion:

Definition 4.3. Let C be a clause and 9 be a sequence of literals. Then, a set
of clauses S is or-introduced from C by S2 iff:

1. S = {C} and 9 = [] or
2. S = (S'\D) U {DU{L},DU {g}} and 9 = [L 1 ,...,LnL], where S' is a

set of clauses or-introduced from C by [I,... , Ln] and D C S'.

Logical equivalence holds after this step of inversion [5]:

Theorem 4.2. Let S be a set of clauses or-introduced from clause C. Then
S =-o, {C}.

A sequence of resolutions can be inverted by applying or-introduction of a
sequence of literals [5]:

Theorem 4.3. Let T be a set of clauses, D a clause in Lo,(T). Then there
exists a set of clauses S or-introduced from D, IC C T such that VE c S : C
0,,-subsumes E.

OI-Expansions. We have seen how starting from a clause it is possible to obtain
a set of generalizations that is logically equivalent to an n-th power of the clause
while this 0o,-subsumes the clauses in the set. The goal is to reduce resolution
to subsumption mechanisms. Thus, we come to the actual computation of the
upward refinements of clauses by using the notion of expansions.

Definition 4.4. Let C be a clause and 9 a sequence of literals. Then a clause
E is an OI-expansion of C by 9? iff E is a least general generalization under
0o1-subsumption of a set of clauses or-introduced from C by the sequence 9.

The notion of least general generalization under Oo-subsumption (lggo1) [14]
used in this definition is a transposition of Plotkin's Igg [12].

Idestam-Almquist shows that his technique is practically infeasible, since it
leads to an exponential growth of the computed expansion. Indeed, he proves
that if n is the number of literals or-introduced to compute an expansion E of a
clause C such that C1 = m, then the maximal cardinality of E is (m + n)"+'.
Instead, in our framework [5]:

Theorem 4.4. Let C be a clause (ICI = m), S a set of clauses or-introduced
from C by [L 1 ,...,La], and E an lggoi of S. Then Ej < (m, + n).

Another important property about 01-expansions of a clause is that they are
logically equivalent to it.

Refining Logic Theories under 01-Implication 117

Theorem 4.5. Let C be a clause and E its OI-expansion by some sequence Q2.
Then C •=•oI E.

The main result is the following [5].

Theorem 4.6. Given two clauses C and D, D non tautological, if C 01-implies
D then there exists an expansion E of D such that C 0o,-subsumes E.

Hence, we can define refinement operators 56i and p', for spaces ordered by
OI-implication:

Definition 4.5. Let C be a clause, then:

"* D E 5f,(C) iff 1E, E expansion of C, and D E 6o,(E);
"* D c po,(C) iff E E Io,({C}), for some n, and D G po,(E).

As regards the properties of these operators, we have already remarked as
computing the n-th powers of a clause in the definition of p'/o is a merely the-
oretical issue, for the algorithm cannot know a priori which n to stop at. This
yields a non locally finite operator. It is, instead, surely a proper and complete
operator for the properness and completeness of Poi. Conversely,

Theorem 4.7. In a space ordered by 01-implication, d6, is an ideal upward
refinement operator.

5 Conclusions and Future Work

Many problems encountered in ILP are theoretically or practically infeasible.
Therefore, biasing them can help to find solutions in significant, yet restricted
cases. This work is an effort in this direction: in our framework, the language was
not deprived of representation power, however the complexity of the refinement
operators was reduced because of the bias on the search space.

The work presented regarded the definition of a framework fulfilling the prop-
erty of ideality of refinement operators, that guarantees for the efficiency and
effectiveness of the learning process. While such operators have been proven not

to exist in the spaces ordered by the notions of implication or 0-subsumption,
in our framework, relying on the Object Identity assumption, we have weakened
the implication ordering, obtaining OI-implication, that allows for the existence
of ideal operators in the corresponding search spaces.

Future work will concern a deeper investigation of the properties of 01-
implication. OI-implication seems to be promising since it appears more mecha-
nizable than implication, yet the relationships holding between this ordering and
the others presented in this work deserve further study. For the moment, we have
stated that OI-implication is strictly weaker than unconstrained implication and
stronger than 0o-subsumption. In addition, we have given an ideal upward refine-

ment operator for search spaces ordered by 01-implication. A model-theoretic
definition of this notion ought to be given together with the proof of its decid-
ability. Hence, it should be easy to define ideal downward operators.

118 F. Esposito et al.

References

[1] M. Bain and S.H. Muggleton. Non-monotonic learning. In S.H. Muggleton, editor,
Inductive Logic Programming. Academic Press, London, U.K., 1992.

[2] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer,
1990.

[3] F. Esposito, N. Fanizzi, S. Ferilli, and G. Semeraro. Ideal theory refinement under
object identity. In Proceedings of the 17th International Conference on Machine
Learning - ICML2000. Morgan Kaufmann, 2000. (forthcoming).

[4] F. Esposito, A. Laterza, D. Malerba, and G. Semeraro. Locally finite, proper
and complete operators for refining datalog programs. In Z.W. Raý and
M. Michalewicz, editors, Proceedings of the 9th International Symposium on
Methodologies for Intelligent Systems - ISMIS96, volume 1079 of LNAI, pages
468-478. Springer, 1996.

[5] N. Fanizzi. Refinement Operators in Multistrategy Incremental Learning. Ph.D.
thesis, Dipartimento di Informatica, Universith di Bari, Italy, 1999.

[6] G. Gottlob. Subsumption and implication. Information Processing Letters,
24(2):109-111, 1987.

[7] P. Idestam-Almquist. Generalization of Clauses. Ph.D. thesis, Stockholm Univer-
sity and Royal Institute of Technology, Kiesta, Sweden, 1993.

[8] J.W. Lloyd. Foundations of Logic Programming. Springer, 2nd edition, 1987.
[9] T.M. Mitchell. Generalization as search. Artificial Intelligence, 18:203-226, 1982.

[10] S.H. Muggleton. Inverting implication. In S. Muggleton and K. Furukawa, editors,
Proceedings of the 2nd International Workshop on Inductive Logic Programming,
ICOT Technical Memorandum TM-1182, 1992.

[11] S.-H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Program-
ming, volume 1228 of LNAL Springer, 1997.

[12] G.D. Plotkin. A note on inductive generalization. Machine Intelligence, 5:153-
163, 1970.

[13] J.A. Robinson. A machine-oriented logic based on the resolution principle. Journal
of the ACM, 12(1):23-41, January 1965.

[14] G. Semeraro, F. Esposito, D. Malerba, N. Fanizzi, and S. Ferilli. A logic framework
for the incremental inductive synthesis of datalog theories. In N.E. Fuchs, editor,
Proceedings of the 7th International Workshop LOPSTR97, volume 1463 of LNCS,
pages 300-321. Springer, 1998.

[15] P.R.J. van der Laag. An Analysis of Refinement Operators in Inductive Logic
Programming. Ph.D. thesis, Erasmus University, Rotterdam, NL, 1995.

Rule Quality Measures Improve the Accuracy of
Rule Induction: An Experimental Approach

Aijun An and Nick Cercone

Department of Computer Science, University of Waterloo
Waterloo, Ontario N2L, 3G1 Canada

Email: { aan, ncer cone 1Duwaterloo. ca

Abstract. Rule quality measures can help to determine when to stop ge-
neralization or specification of rules in a rule induction system. Rule qua-
lity measures can also help to resolve conflicts among rules in a rule clas-
sification system. We enlarge our previous set of statistical and empirical
rule quality formulas which we tested earlier on a number of standard
machine learning data sets. We describe this new set of formulas, perfor-
ming extensive tests which also go beyond our earlier tests, to compare
these formulas. We also specify how to generate formula-behavior ru-
les from our experimental results, which show the relationships between
a formula's performance and the characteristics of a dataset. Formula-
behavior rules can be combined into formula-selection rules which can
select a rule quality formula before rule induction takes place. We report
the experimental results showing the effects of formula-selection on the
predictive performance of a rule induction system.

1 Introduction

A rule induction system generates decision rules from a set of training data. The
set of decision rules determines the performance of a classifier that exploits the

rules to classify unseen objects. It is therefore important for a rule induction
system to generate decision rules that have high predictability or reliability.
These properties are commonly measured by a function called rule quality. A rule
quality measure is needed in both the rule induction and classification processes.
In rule induction, a rule quality measure can be used as a criterion in the rule
specification andor generalization process. In classification, a rule quality value
can be associated with each rule to resolve conflicts when multiple rules are
satisfied by the example to be classified.

We survey a number of statistical and empirical rule quality measures, some
of which have been discussed by Bruha [7,8] and An and Cercone [3]. In our
earlier work [3], we evaluated some of these formulas on a smaller collection of
data sets. One contribution of this paper is to include more formulas in our
experiments and the tests also go beyond our earlier tests by including data sets
in the experiments. In our evaluation, ELEM2 [2] is used as the basic learning and
classification algorithms. We report the experimental results from using these
formulas in ELEM2 and compare the results by indicating the significance level
of the difference between each pair of the formulas. In addition, the relationship
between the performance of a formula and a dataset is obtained by automatically

Z.W. Ra.4 and S. Obauga (Eds.): ISMIS 2000, LNAI 1932, pp. 119-129, 2000.
©g Springer-Verlag Berlin Heidelberg 2000

120 A. An and N. Cercone

generating formula-behavior rules from a dataset that describes the experimental
results for the formulas and the characteristics of the datasets. The formula-
behavior rules are further combined into formula-selection rules which can be
employed by ELEM2 to select a rule quality formula before inducing rules from
a dataset. We report the experimental results showing the effects of formula-
selection on ELEM2's predictive performance.

2 Rule Quality Measures

Many rule quality measures are derived by analyzing the relationship between
a decision rule R and a class C. The relationship can be depicted by a 2 x 2
contingency table [4,7]:

Table 1. Contingency Table with Absolute Frequencies

IClass CINot class C
Covered by rule R nrC 'nrE nr
Not covered by R nTC nf nf

n. nE

where nrc is the number of training examples covered by rule R and belonging to
class C; nrE is the number of training examples covered by R but not belonging
to C, etc; N is the total number of training examples; n,, nf, nc and nE are
marginal totals, e.g., n, = nrc + nE, which is the number of examples covered
by R. The contingency table can also be presented using relative rather than
absolute frequencies as follows:

Table 2. Contingency Table with Relative Frequencies

Class CINot class C
Covered by rule R frc fr f-
Not covered by R f•c fcc ff

where frc = n, fr- n , and so on.

2.1 Empirical Formulas

Empirical rule quality formulas are based on intuitive logic. We describe two
empirical formulas that combine two basic characteristics of a rule: consistency
and coverage. Using the elements of the contingency table, the consistency of a
rule R can be defined as cons(R) = -- and its coverage as cover(R) = n'.n, nc

Weighted Sum of Consistency and Coverage. Michalski [13] proposes to
use the weighted sum of the consistency and coverage as a measure of rule quality
as follows:

Qws = x cons(R) + W2 x cover(R)

Rule Quality Measures Improve the Accuracy of Rule Induction 121

where w, and w2 are user-defined weights with their values belonging to (0, 1)
and summed to 1. This formula is applied in an incremental learning system
YAILS [15]. The weights in YAILS are specified automatically as: w, = 0.5 +
¼cons(R) and w2 = 0.5 - lcons(R). These weights depend on consistency. The
larger the consistency, the more influence consistency has on rule quality.

Product of Consistency and Coverage. Brazdil and Torgo [6] propose to
use a product of consistency and coverage as rule quality:

QProd = consR x f(cover(R))

where f is an increasing function. The authors conducted a large number of
experiments and chose to use the following form of f: f(x) = ex- 1 . This setting
of f makes the difference in coverage have smaller influence on rule quality, which
results in the rule quality formula to prefer consistency.

2.2 Measures of Association

A measure of association indicates a relationship between the classification for
the columns and the classification for the rows in the 2 x 2 contingency table.

Pearson X2 Statistic. The X2 statistic is based on the assumption: if the
classification for the columns is independent of that for the rows, the frequencies
in the cells of the contingency table should be proportional to the marginal
totals. The X2 value is given by

S-2 (n o- n.)2

ne

where no is the observed absolute frequency of examples in a cell, and n, is
the expected absolute frequency of examples for the cell. For example, for the

upper-left cell, n, = nre and n, = n The value (n.-n.) 2 is computed forN~
n,

each cell of the table individually and the values for all cefis are added to yield
the value of X2 . This value measures whether the classification of examples by
rule R and one by class C are related. The lower the X2 value, the more likely it
is that the correlation between R and C is due to chance.

G2 Likelihood Ratio Statistic. The G2 likelihood ratio measures the di-
stance between two distributions: the observed frequency distribution of exam-
ples among classes satisfying the rule R and the expected frequency distribution
of the same number of examples under the assumption that the rule R selects
examples randomly. The value of this statistic can be obtained using the absolute
frequencies in the contingency table as follows:

nrc nhrcN l- nN
G2 = 2(-"log'"N + nzlog nrY

nr n~, nr nrnE

where the logarithm is of base e. The lower the G2 value, the more likely it is
that the apparent association between the two distributions is due to chance.
Both the X2 and the likelihood ratio statistics are distributed asymptotically as

X2 with one degree of freedom.

122 A. An and N. Cercone

2.3 Measures of Agreement

A measure of agreement concerns the association of the elements of a contingency
table on its main diagonal only [7].

Cohen's Formula. We can measure the actual agreement by simply summing
up the main diagonal using the relative frequencies: frc+ffE. A chance agreement
occurs if the row variable is independent of the column variable, which can
measured by ffc + f~fE. Cohen [9] suggests to compare the actual agreement
with the chance agreement by using the normalized difference of the two which
we can use as a rule quality measure:

QCohen = f c + fre- (frfc f4f)
1 - (frfc + fffe)

When both elements fr, and ffz are reasonably large, Cohen's statistic gives a
higher value which indicates the agreement on the main diagonal.

Coleman's Formula. Coleman [5,7] defines a measure of agreement that in-
dicates an association between the first column and any particular row in the
contingency table. Bruha [7] suggests using a modified version of Coleman's mea-
sure for the purpose of rule quality definition, which actually responds to the
agreement on the upper-left element of the contingency table. The formula is also
derived by normalizing the difference between the actual and chance agreement
as follows:

QColemnan - frcfrfcJr - fr "

C1 and C2 Formulas. Further analysis indicates that Coleman's formula
does not properly comprise the coverage (i.e. completeness) of a rule. On the
other hand, Cohen's statistic is more completeness-based. Therefore, Bruha [8]
modified Coleman's formula in two ways, which yields formulas C1 and C2:

Qc1 = QColeman X 2 ± QCohen
3

1 + cover(R)

QC2 QColeman X
2

where the coefficients 2, 3 and 1, 2 are used for the normalization purpose.

2.4 Measure of Information

The measure of information is another statistical measurement that can be used
to define rule quality. Given a class C, the amount of information necessary to
correctly classify an instance into class C whose prior probability is P(C) is
defined as [12] -logP(C) [bit], where the log function is of base 2. Now given
a rule R, the amount of information we need to correctly classify an instance

Rule Quality Measures Improve the Accuracy of Rule Induction 123

into class C is -logP(CIR) [bit], where P(CIR) is the posterior probability of
C given R. Therefore, the amount of information obtained by the rule R is
-logP(C) + logP(CIR) [bit]. Kononenko and Bratko [12] call the value of this
formula the information score, which measures the amount of information the

rule R contributes. Using frequencies to estimate the probabilities, the formula
can be written as

QiS = -log-n, + log nr.

2.5 Measure of Logical Sufficiency

The logical sufficiency measure is a standard likelihood ratio statistic, which
have been applied to measure rule quality [10,1]. Given a rule R and a class C,
the degree of logical sufficiency of R with respect to C is defined by

P(RIC)
P(RIC)

where P denote probability. A rule for which QLS is large means that the ob-

servation of R is encouraging for the class C - in the extreme case of QLS
approaching infinity, R is sufficient to establish C in a strict logical sense. On
the other hand, if QLS is much less than unity, then the observation of R is
discouraging for C. Using frequencies to estimate the probabilities, the formula

nrc

can be expressed as QLS =

2.6 Measure of Discrimination

Another statistical rule quality formula is the measure of discrimination, which
is applied in ELEM2 [2]. The formula was inspired by a query term weighting
formula used in the probability-based information retrieval. The formula mea-
sures the extent to which a query term can discriminate between relevant and
non-relevant documents [14]. If we consider a rule R as a query term in an infor-
mation retrieval setting, positive examples of a class C as relevant documents,
and negative examples as non-relevant documents, then the following formula
can be used to measure the extent to which the rule R can discriminate between
the positive and negative examples of the class C:

QMD = oP(R[C)(1 - P(RIC))

P(R[C)(1 - P(RIC))

where P denotes probability. The formula can be estimated using the frequencies
nrc

as QMD = 1og0 .

124 A. An and N. Cercone

3 Experiments with Rule Quality Measures

3.1 Experimental Design

We evaluate the rule quality formulas described in Section 2 by determining how
different rule quality formulas affect the predictive performance of a rule induc-
tion system, ELEM2. In ELEM2, a rule quality formula is used in both post-
pruning and classification processes. In post-pruning, removal of an attribute-
value pair depends on whether it will decrease the quality value of the rule. In
classification, the rule quality formula is used to help resolve conflicts among
rules. In our experiments, we run versions of ELEM2, each of which uses a diffe-
rent rule quality formula. The X 2 statistic is used in two ways, in both of which
the X2 formula is used as the ELEM2 rule quality measure. They differ in the
method to post-prune a generated rule.

1. Qx2o0 In post-pruning, the removal of an attribute-value pair depends on
whether the rule quality value after removing an attribute-value pair is grea-
ter than X205, i.e., the tabular X 2 value for the significance level of 0.05 with
one degree of freedom. If the calculated value is greater than tabular X.2s,

then remove the attribute-value pair; otherwise check other pairs or stop
post-pruning if all pairs have been checked.

2. QX2o0+ In post-pruning, an attribute-value pair is removed if and only if the

rule quality value Qafter after removing an attribute-value pair is greater
than%.05 and Q(aftr is no less than the rule quality value before removing
the attribute-value pair.

The G2 statistic, denoted as QG2.oS+, is used in the same way as Qx2 0+, i.e.,

a pair is removed in post-pruning if and only if the value of QG2.0 5 + is greater
than X.yo5 and the removal does not cause the rule quality value to decrease.

Our experiments are conducted using 27 benchmark datasets obtained from
the UCI Repository of Machine Learning database. The datasets represent a
mixture of characteristics ranging from 2 to 10 classes, from 4 to 64 condition
attributes, and from 24 to 7491 examples.

3.2 Results

On each dataset, we conduct the ten-fold evaluation of a rule quality measure
using ELEM2. The results in terms of predictive accuracy mean on each dataset
for each formula are shown in Figure 1. The average of the accuracy means for
each formula over the 27 datasets is shown in Table 3, where the rule quality
formulas are listed in decreasing order of average accuracy means. Whether a

Table 3. Average of accuracy means for each formula over the datasets.

Qc 2 Qws Qci QLS QMD QCoicmanQa 2 .05 + Qi- IQProdlQ,2. QeohenlQ 5,2
IAverage 181.89181.71181.61181.38180.951 80.65 1 79.94 179.871 79.591 78.44 1 78.08 172.421

formula with a higher average is significantly better than a formula with a lower
average is determined by paired t-tests. The t-test results in terms of p-values

Rule Quality Measures Improve the Accuracy of Rule Induction 125

11MD mChi.05 OChi05+, 5G2.05+ mCohen OColernan

MIS 0 L$ NWS mProd 5C1 E3C2

95

C 85

5 65E5

45

MIS0 0 a
OMD =h.co 05 Oi05+ 520O5+ =Cohe OColeman

IS SLS EWS Oprod C01 502

95

S85-
75

565i

L
4 55

45-

Fig. 1. Results on the 27 datasets

are reported in Table 4. A small p-value indicates that the null hypothesis (the
difference between the two formulas is due to chance) should be rejected in favor
of the alternative at any significance level above the calculated value. In Table 4,
the p-values that are smaller than 0.05 are shown in bold-type to indicate that
the formula with higher average is significantly better than the formula with the
lower average at the 5% significance level.

Table 4. Significance levels (p-values from paired t-test) of improvement.

QC2 QWS QC1 QLS QMD QColema- QG2.o5 + QIS QProd QX2 05+ QCohen QX205

Q02 NA 0.5483 0.2779 0.1645 0.0261 0.0078 0.0011 0.0016 0.033 0.0017 0.0072 0.0003

qWS NA 0.8074 0.4866 0.072 0.0465 0.0052 0.0086 0.0286 0.0028 0.0107 0.0004

QC1 NA 0.3328 0.0721 0.0094 0.0012 0.0014 0.0871 0.0052 0.0161 0.0006

Q-S NA 0.3665 0.0278 0.0006 0.0022 0.1343 0.0122 0.028 0.0009
Q-M - NA 0.5435 0.0911 0.1037 0.2231 0.0115 0.0336 0.0012

QO -- - NA 0.0378 0.0626 0.3573 0.0609 0.0908 0.0024

02.05-- + NA 0.8234 0.7648 0.2104 0.2295 0.0056

Q[- NA 0.8059 0.2532 0.2632 0.0058

QPo.d NA 0.2213 0.2428 0.0031QX o52 0 NA 0.6246 0.0067

Q hC h _A 0.0083
Qx2 05 N A

Generally speaking, we can say that, in terms of predictive performance,

Qc2, Qws, QcI, QLS and QMD are comparable even if their performance may
not agree on a particular dataset. The same for QColeman, QG2.o5+, Qis and

QProd, and QX2 + and QCoher. The performance of QG2.05 + and QIs are not

only comparable, but also similar on each particular dataset (seen from Figure
1), which indicates that the two formulas have similar trends with regard to
nrc, nr, ne and N in the contingency table.

126 A. An and N. Cercone

4 Learning from the Experimental Results

From the experimental results, we posit that, even if on some datasets (such as
the breast cancer dataset) the performance of the learning system is not very
sensitive to the rule quality formula used, the performance greatly depends on
the formula on most of the other datasets. It would be desirable that we can
apply a "right" formula that gives the best performance among other formulas
on a particular dataset. For example, even though the formula Qxo is not a good
formula in general, it performs better than other formulas on some datasets such
as heart and lenses. If we can find the conditions under which each formula leads
to a good performance of the learning system, we can select "right formulas" for
different datasets and can improve the predictive performance of the learning
system further.

To find out this regularity, we use ELEM2 to learn the formula selection rules
from the experimental results shown in the last section. The learning problem is
divided into (1) learning the rules for each rule quality formula that describe the
conditions under which the formula produces "very good", "good", "medium"
or "bad" results, and (2) combining the rules for all the formulas that describe
the conditions under which the formulas give the "very good" results. The resul-
ting set of rules is the formula-selection rules that can be used by the ELEM2
classification procedure to perform formula selection.

4.1 Data Representation

For the purpose of learning formula-behavior rules, i.e., the rules that describe
the conditions under which a formula leads to "very good", "good", "medium",
or "bad" performance, we construct training examples from the above results
and the dataset characteristics. First, on each dataset, we decide the relative
performance of each formula as "very good", "good", "medium", or "bad". For
example, on the balance-scale dataset, we say that the formulas whose accuracy
mean is above 85% produce "very good" results; the formulas whose accuracy
mean is between 80% and 85% produce "good" results; the ones with the mean
between 75% and 80% are "medium" and other formulas give "bad" results.
Then, for each formula, we construct a training data set in which an training
example describes the characteristics of a dataset and also a description in term
of whether the formula produces "very good", "good", "medium", or "bad" result
on this dataset. Thus, to learn the rules for each formula, we have 27 training
examples. The characteristics of a data set is described in terms of number of
examples, number of attributes, number of classes and the class distribution. A
sample of training examples for learning the behavior rules of the formula Qis
is shown in Table 5.

4.2 The Learning Results

ELEM2 with its default rule quality formula (QMD) is used to learn the "beha-
vior" rules from the training dataset constructed for each formula. Table 6 lists
some of these behavior rules for each formula, where N stands for the number

Rule Quality Measures Improve the Accuracy of Rule Induction 127

Table 5. Sample of training examples for learning the behavior of a formula

Number of Class
Examples Attributes Classes Distribution Performance

4177 8 3 Even Very Good
690 14 2 Even Medium
625 4 3 Uneven Bad
683 9 2 Uneven Medium
1728 6 4 Uneven Good

of examples, NofA is the number of attributes, NofC is the number of classes,
and "No. of Support Datasets" means the number of the datasets that support
the corresponding rule. These rules summarize the predictive performance of
each formula in terms of characteristics of datasets. We further build a set of

Table 6. Formula Behavior Rules

Rule No. of Support
Formula Condition Decision Quality Datasets
Qc2 (768<N_<1728) Very good 1.30 4

(N<653)and(NofA> 10)and(NofC<7) Good 1.36 5
Qws (625<N<1728)and(NofA>8)and(ClassDistr!=Even) Very good 1.48 4

(N>336)and(NofC>5) Good 1.38 4
Qc1 (N>270)and(8<NofA< 15) Very good 1.66 5

(15<NofA<57 Good 1.43 7
QLS (N>2310) Very good 1.45 5

(N<87) Bad 2.41 2
QMD (N>768)and(8<NofA_< 16) Very good 2.04 3

(351<N<4601)and(NofA>13) Good 1.23 6
QColern.. (N>958)and(NofC<5) Very good 1.79 5

(N<87) Bad 1.51 2
QG20 5 + (N> 101)and(10<NofA<18)and(NofC>2) Very good 2.04 3

(270<N<690)and(NofA<15) Medium 2.25 6
QIs (N>150)and(NofC>2)and(ClassDistr=Even) Very good 2.13 4

(N<101) Bad 1.50 3
QProd (N<214)and(NofA>7)and(NofC<6) Very good 1.80 3

(N>768)and(8<NofA<57) Medium 1.70 6
QX2 (N<178)and(NofA>9) Very good 1.67 2

(N<214)and(4<NofA•9) Bad 1.39 3
QCohen (345<N< 1484)and (NofA<8) Very good 1.80 3

(4<NofA_•6) Bad 1.63 3
Q 205 (9<NofA< 14)and(NofC<2)) Very good 1.91 2

(N>24) Bad 0.98 20

formula-selection rules by combining all the "very good" rules, i.e., the rules
that predicts "very good" performance for each formula, and use them to select
a "right" formula for a (new) dataset. For formula selection, we can use the
ELEM2 classification procedure that takes formula-selection rules to classify a
data set into a class of using a particular formula.

4.3 ELEM2 with Multiple Rule Quality Formulas

With formula-selection rules, ELEM2 has the flexibility of using different for-
mulas on different datasets. To see how this strategy works, we conduct ten-fold

128 A. An and N. Cercone

evaluation of the "flexible" ELEM2 on the 27 datasets we used before. The result
is shown in Figure 2, in which the average accuracy mean from the "flexible"
ELEM2 (labeled as "Combine" in the graph) is compared with the ones from
using individual formulas. We also conduct paired t-tests to see how much the

86-

84

820

78

4 76

.9 72

70, ,

Fig. 2. Average of accuracy means of each formula on the 22 datasets

flexible ELEM2 improves over the ELEM2 with a single rule quality formula.
The p-values from the t-test are shown in Table 7. We can see that "Combine"
improves all the single formulas significantly.

Table 7. Significance levels of the improvement of "Combine" over individual formulas

Qc2 Qws QCI QLS QMD jQC.I-mojQG2o
5 + QIS jQP-.d Q,2 QC~hn IQ,2 "

lp-valuelo.0139o0.0009o 0.015410.008o 0.00251 0.0006 10.0002 10.00021 0 10.0001 0.00051 0 I

5 Conclusions

We have described and experimented with various statistical and empirical for-
mulas for defining rule quality measures. All formulas are applicable to a rule
induction system for the purpose of post-pruning and classification, but their per-
formance varies among the datasets. The empirical formulas, especially Qws,
work very well even if they are not backed by statistical theories. Among stati-
stical formulas, Qc2, Qc1, QLS and QMD work the best on the tested dataset
and are comparable with Qws.

To determine the regularity of the rule quality formula's performance in
terms of dataset characteristics, we used our learning system to induce formula-
behaviour rules from a dataset constructed from the experimental results for
different formulas. These rules provided ideas about the situations in which a
formula leads to very good, good, medium or bad performance. These rules were
also combined and used to automatically select a rule quality formula before
rule induction begins. Our experiment showed that this selection of rule quality
formula can lead to significant improvement over the rule induction system using

Rule Quality Measures Improve the Accuracy of Rule Induction 129

a single rule quality formula. Future work includes testing our conclusions on
more datasets to obtain more reliable formula-behavior rules. With more data-
sets available, we will test the formula-selection rules on the datasets that are
different from the datasets used for generating the rules.

Acknowledgment. The authors are members of the Institute for Robotics and
Intelligent Systems (IRIS) and wish to acknowledge the support of the Networks
of Centres of Excellence of the Government of Canada, the Natural Sciences and
Engineering Research Council, and the participation of PRECARN Associates
Inc.

References

1. Ali, K. and Pazzani, M. 1993. "HYDRA: A noise-tolerant relational concept learning
algorithm". Proceedings of the Thirteenth International Joint Conference on Artificial
Intelligence (IJCAI'93), Chambery, France. Morgan Kaufmann.

2. An, A. and Cercone, N. 1998. "ELEM2: A Learning System for More Accurate
Classifications." Lecture Notes in Artificial Intelligence 1418.

3. An, A. and Cercone, N. 1999. "An Empirical Study on Rule Quality Measures",
Proceedings of the Seventh International Workshop on Rough Sets, Fuzzy Sets, Data
Mining, and Granular-Soft Computing, Yamaguchi, Japan.

4. Arkin, H. and Colton, R. R. 1970. Statistical Methods. Barnes & Noble Inc., New
York.

5. Bishop, Y.M.M, Fienberg, S.E. and Holand, P.W. 1991. Discrete Multivariate Ana-
lysis: Theory and Practice. The MIT Press.

6. Brazdil, P. and Torgo, L. 1990. "Knowledge Acquisition via Knowledge Integration".
In: Current Trends in Knowledge Acquisition, IOS Press.

7. Bruha, I. 1993. "Quality of Decision Rules: Empirical and Statistical Approaches".
Informatica, 17, pp. 23 3- 24 3 .

8. Bruha, I. 1996. "Quality of Decision Rules: Definitions and Classification Schemes
for Multiple Rules", in Nakhaeizadeh, G. and Taylor, C. C. (eds.): Machine Learning
and Statistics, The Interface. Jone Wiley & Sons Inc.

9. Cohen, J. 1960. "A Coefficient of Agreement for Nominal Scales". Educational and
Psych. Meas. 22, pp. 3 7-4 6 .

10. Duda, R., Gaschnig, J. and Hart, P. 1979. "Model Design in the Prospector Con-
sultant System for Mineral Exploration". In D. Michie (ed.), Expert Systems in the
Micro-electronic Age. Edinburgh University Press, Edinburgh, UK.

11. Holte, R., Acker, L. and Porter, B. 1989. "Concept Learning and the Problem
of Small Disjuncts". Proceedings of the Eleventh International Joint Conference on
Artificial Intelligence, Detroit, Michigan.

12. Kononenko, I. and Bratko, I. 1991. "Information-Based Evaluation Criterion for
Classifier's Performance". Machine Learning, 6, 67-80.

13. Michalski, R.S. 1990. "Pattern Recognition as Rule-Guided Inductive Inference".
IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-2, 4.

14. Robertson, S.E. and Sparck Jones, K. 1976. "Relevance Weighting of Search
Terms". Journal of the American Society for Information Science. Vol.27. pp.129-
146.

15. Torgo, L. 1993. "Controlled Redundancy in Incremental Rule Learning". ECML-
93, pp.185-195.

A Dynamic Approach for
Knowledge Discovery of Web

Access Patterns *

Alaaeldin Hafez1

ahafez@cacs.louisiana.edu
The Center for Advanced Computer Studies

University of Louisiana at Lafayette
Lafayette, LA 70504, USA

Abstract. The emergence of the World Wide Web (Web) technology and the
advance of data capturing techniques have lead to exponential growth in
amounts of data being stored in Web server logs. This growth in turn has
motivated researchers to seek new techniques for the extraction of knowledge
implicit or hidden in such data. Designing a web site is a complex problem.
Web Server logs provide an opportunity to observe users interacting with the
site and make improvements to that site's structure and presentation. In this
paper, we motivate the need for a Dynamic data mining approach for mining
user access patterns that uses previous mining results during previous time
periods. We present an efficient approach that uses latest results of data mining
and new changes in Web server logs to generate new mining rules. The
proposed approach is shown to be effective for solving problems related to
efficiency of handling data updates and accuracy of data mining results. The
proposed approach does not depend on the technique used to generate new
frequent user access patterns during the current episode (time period). In our
analysis, we have used an Apriori-Like algorithm as a local algorithm to
generate frequent user access patterns. The experimental results show that,
comparing to Apriori-like techniques, our dynamic approach improves the
efficiency of the mining process.

Keywords: Knowledge Discovery, Data Mining, Web Mining, User Access Patterns,
Association Mining, Web Structure.

1 Introduction

With the growing popularity of the World-Wide Web (Web) and the rapid progress of
the Web technology, hundreds of millions of transactions are processed every day
through the Web. Web servers keep log entries (files) for all transactions that are
accessing their sites, and the sizes of those log files are increasing by tens of
megabytes every day. Server logs reveal an enormous amount of information about
users, server behavior, changes in sites, and potential benefits of new technical
developments, Most institutions have not been able to perform an effective use of
Web server log files for enhancing and improving server performance and design

"This research was supported in part by the U.S. Department of Energy, Grant No. DE-FGO2-97ER1220.
I on leave from The Department of Computer Science and Automatic Control, Faculty of Engineering,
Alexandria University, Alexandria, Egypt

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 130-138, 2000.
© Springer-Verlag Berlin Heidelberg 2000

A Dynamic Approach for Knowledge Discovery 131

improvement. Mining information and knowledge from the Web transaction data has
become a prominent and important research and application area.

The behavior of user access patterns can be detected by using the history
contained in Web server log files [10,11,12,13]. Analyzing and capturing similarities
in this behavior can enhance system performance and identify user interests. Many
studies have been conducted to understand user motivation and reaction, analyze
system performance, and improve system design [5,13]. Applying data mining
techniques on Web logs discovers interesting access patterns that can be used to
restructure server sites in an efficient way. Unfortunately most of the existing data
mining techniques are iterative and require many disk scans over transaction (log)
files [1,3,8].

Web applications require up to date mining of information from data that changes
on a regular basis [7]. Thousands of remote sites (URLs) are daily created and
removed. In such an environment, frequent or occasional updates may change the
status of some interesting patterns discovered earlier [13]. Discovering knowledge is
an expensive operation [5,6]. It requires extensive access of secondary storage that
can become a bottleneck for efficient processing. Running of data mining algorithms
from scratch, each time there is a change in data, is not an efficient strategy. Updating
previously discovered knowledge could solve many problems that data mining
techniques have faced for years; that is, inability to handle data updates, lack of
accuracy of data mining results, and poor performance.

Association mining that discovers dependencies among values of an attribute was
introduced by Agrawal et al.[1] and has emerged as an important research area. The
problem of association mining, also referred to as the market basket problem, is

formally defined as follows. Let I =[i1 ,i2 ... , in] be a set of items and

S =[Is, S21 sm] be a set of transactions, where each transaction s i G S is a set

of items that is si C I . An association rule denoted by

X => Y, X, Y c I, and X r- Y = 0, describes the existence of a relationship between
the two itemsets X and Y.

Several measures have been introduced to define the strength of the relationship
between itemsets X and Y such as support, confidence, and interest. The definitions
of these measures, from a probabilistic model are given below.

I. Support (X =* Y) = P(X , Y), or the percentage of transactions in the database that

contain both X and Y.
II. Confidence (X • Y) = P (X , Y) / P(X), or the percentage of transactions

containing Y in those transactions containing X.
III. Interest(X • Y) = P(x, y) / P(X)P(Y) represents a test of statistical

independence.

Agrawal et al [2], introduced the problem of mining sequential patterns over such
databases. Two algorithms, AprioriSome and Apriori-Like [2], have been presented to

132 A. Hafez

solve this problem, and their performances have been evaluated using synthetic data.
The two algorithms have comparable performances. AprioriSome has performed
better when the minimum number of users required to deem a sequential pattern to be
interesting is low.

In this paper, we propose an approach that dynamically updates knowledge
obtained from the data mining process during previous time periods. Transactions
over a long duration are divided into a set of consecutive episodes. We propose a
modified structure for keeping updated log transactions. The proposed structure
facilities the use of different association mining techniques. Our approach discovers
current frequent user access patterns by using updates that have occurred during the
current time period along with the frequent user access patterns that have been
discovered in the previous time period.

In section 2, we give the formal definition of the problem of discovering frequent
user access patterns. The proposed structure of Web transaction log and the dynamic
approach are described in section 3. Our experimental results are presented in section
4. The experimental results are discussed and the paper is concluded in section 5.

2 Problem Definition

In the original Web log file OF, each request received by the Web server creates a
Web log entry e that contains three components: User(e) denotes the user-id of that
user who originated the request, Time(e) is the time-stamp of that request, and url(e)
is the set of requested URLs [2,4,10]. Examples 2.1 and 2.2 demonstrate, for a given
Web server, the original log file OF and the current log file CF.

Example 2.1 The original Web log file OF
e User(e) Time(e) url(e)
1 1 4 [a,b,c,dl
2 2 6 (ac)
3 1 8 [a,b,d]
4 2 10 [a,cf]
5 3 14 {c I
6 2 16 (aIf]
7 3 18 (cif
8 4 20 [a]

Example 2.2 The current Web log file CF
e User(e) Time(e) url(e) e User(e) Time(e) url(e)
1 1 4 [a,b,c,d] 9 3 24 [c,d]
2 2 6 [a,c] 10 5 24 (ad]
3 1 8 {a,b,d] 11 1 26 (a,c]
4 2 10 [a,cJf 12 2 30 [a, cf
5 3 14 [c 1 13 5 32 la,c]
6 2 16 tail 14 3 36 (a,b,c]
7 3 18 [cf} 15 6 36 (b,c]
8 4 20 (a] 16 5 40 (b,c]

We adopt the same definitions used in [2] to define the terms sequential pattern,
support, confidence, and frequent k-sequence.

sequential pattern is defined as a set of one or more URLs that are accessed sequentially.
support(X) is defined as the ratio of users who have requested sequential pattern X.

A Dynamic Approach for Knowledge Discovery 133

confidence(XK=Y) is defined as the ratio of users who have requested sequential pattern X and Y
among users who have requested sequential pattern X.

frequent k-sequence is defined as a set of k urls that are accessed sequentially, and has support
greater than or equal a support threshold minsup

Example 2.3 Let minsup =0.5. The frequent k-sequences derived from Web log file
OF, defined in Example 2.1, are

Frequent 1-sequence a [(1,4),(2,6),(1,8),(2,10), (2,16),(4,20)1 support(a)=0.75
c [(1,4),(2,6),(2,10), (3,14),(3,18)] support(b)=0.75
f 1(2,10),(2,16),(3,18)) support(f)=0.5

Frequent 2-sequence ac [(1,4),(2,6),(2,10)] support(ac)=0.5
cf [(2,10),(3,18)} support(c)=0.5

Example 2.4 Let minsup =0.5. The frequent k-sequences derived from Web log file
CF, defined in Example 2.2, are

Frequent 1-sequence A {(1,4),(2,6),(1,8),(2,10),(2,16),(4,20),(5,24), support(a)=0.833
(1,26),(2,30),(5,32),(3,36)}

B [(1,4),(1,8),[3,36),(6,36),(5,40)) support (b)=0.75
C [(1,4),(2,6),(2,10)(3,14),(3,18),(3,24),(1,26), support (c)=0.833

(2,30),(5,32),(3,36),(6,36),(5,40)1
D [(1,4),(1,8),(3,24),(5,24)] support (d)=0.5

Frequent 2-sequence Ac 1(1,4),(2,6),(2,10),(1,26),(2,30),(5,32),(3,36)1 support (ac)=0.75
Bc [(1,4),(3,36),(6,36),(5,40)1 support (bc)=0.75

3 The Dynamic Approach

Knowledge discovery of patterns is defined as locating those patterns in which
accesses to different resources consistently occurring together, or accesses from a
particular place occurring at regular times [4,11,12]. In our approach, we define a
structure for keeping log transactions. Rather than describing log entries with respect
to their entry order, we map the original structure of Web log files into an equivalent
structure where, for each URL, there exists a set ID(URL) such that each element in
ID(URL) is a pair <user-id, time-stamp>. Formally speaking, for a given log file F
and a Web page URL, ID(URL)= [(User(e),Time(e))I Vec F, URL=Url(e)J. In
examples 3.1 and 3.2, we demonstrate, for a given Web server, the proposed
mappings of original log file OF and the current log file CF, respectively.

Example 3.1 The mapping of the original Web log file OF defined in example 2.1 is
URL ID(URL)
A t(1,4),(2,6),(1,8),(2,10),(2,16),(4,20)}
B t(1,4),(1,8))
C ((1,4),(2,6),(2,10),(3,14),(3,18)1
D [(1,4),(1,8))

F [(2,10),(2,16),(3,18))

Example 3.2 The mapping of the current Web log file CF defined in example 2.2 is
URL ID(URL)
a [(1,4),(2,6),(1,8),(2,10),(2,16),(4,20),(5,24),(1,26),(2,30),(5,32),(3,36)}
b ((1,4),(1,8),[3,36),(6,36),(5,40)j
c [(1,4),(2,6),(2,10)(3,14),(3,18),(3,24),(1,26),(2,30),(5,32),(3,36),(6,36),(5,40)}
d [(1,4%,(1,8),(3,24),(5,24)}
f ((2, 10), (2,16),(3,18),(2,30)]

Web log files keep information of all accesses including those accesses to those
canceled Web pages, that could be canceled along time ago. Mining algorithms
should keep a list of those canceled pages in order to not counting those deleted Web

134 A. Hafez

pages, but still scanning the whole log file is considered. In the context of Web
mining [9,10,11,12], It is a better strategy to use those mining results collected in the
last mining session and only apply the mining procedure only on those transactions
added to the Web log. In this paper, we propose a dynamic algorithm for mining user
access patterns, that treats Web log transactions as sequences over periods of time and
uses the latest discovered (in a previous session) association rules to improve the
efficiency of the mining process.

The storage requirement for keeping the structure of transaction updates is a N

where N is the number of disk blocks needed to store the transaction updates, and
a is the reduction factor caused by grouping user ID's of the same Web page.

In this section, we introduce the notions of continuous pattern, non-continuous
pattern, uprising pattern, and non-uprising pattern.

Definition 3.1 A sequence X is a continuous pattern through two time periods
T1 and T'2 if

support r, (X) > minsup and support T, (X) > minsup

Definition 3.2 A sequence X is a non-continuous pattern through two time
periods T1 and T2 if

support T, (X) > minsup and support r2 (X) < minsup

Definition 3.3 A sequence X is an uprising pattern through two time periods
T1 and T2 if

support T, (X) < minsup and support T2 (X) > minsup

Definition 3.4 A sequence X is a non-uprising pattern through two time
periods T1 and T2 if

support T, (X) < minsup and support r, (X) < minsup

In order to minimize the number of disk scans and keep only the necessary
information, we only consider Web log changes in time period Ti along with the
results obtained during time period T-1 , for i=2,3,.... Time values and repeated user-
id's are omitted from k-sequences. A new parameter dispTI (X) is defined to reflect

the displacement of the k-sequence X in the time period T-.
Definition 3.5 Let X be a k-sequence of URLs and ID(X) be a set of pairs (uj, tj),

j=1,2,..., D, and r-1 <t 1 t it; 5r - + T, where uj and tj are a user-id and its time-

stamp, respectively. Displacement of X in time period Ti is defined as
D

I tj(X
j=1

disp Tj (X) = .,<t. j(X)<_
D

Example 3.3 Let minsup =0.5. The frequent k-sequences derived from transaction file
OF during period T, and those updated transactions in transaction file CF during
period T2, defined in Examples 3.1 and 3.2, respectively, are

A Dynamic Approach for Knowledge Discovery 135

T, disp T, Ts dispr

a 11,2,4] support(a)=0.75 10.66 a (1,2,3,5) Support(a)=0.75 29.6
c (1,2,3) support(b)=0.75 10.4 b (3,5,6] Support(b)=0.5 37.33

f (2,3] support(f)=0.5 14.66 c {1,2,3,5,61 Support (c)=0.833 32
ac (1,2] support(ac)=0.5 6.66 ac (1,2,3,5) Support (ac)=0.75 31
cf (2,31 support(q3l=0.5 14 be (3,5,6] Support (bc)=0.5 37.33

We consider only those patterns defined in definitions 3.1 to 3.3, which are divided
into two categories,

Category I continuous patterns and uprising patterns.
Category 2 non-continuous patterns.

patterns in category 1 are automatically included as frequent k-sequences. non-
continuous patterns (in category 2) are considered frequent k-sequences if

5T(X) suppo _, (X)+(1-6 ,(X))supporf(X)>minsup, where 0 < 0T (X) < 1 (1)

In our experimental work, we choose the value of 6 T, (X) to be dependent on

the behavior of k-sequence X through time periods Ti-l and Ti, where

(I i -dispT,_,(X))

(disp, (X)-disp _' (X))

Algorithm DynamicApriori
fl (T2) = { frequent I -sequences;//cOnftinuOus frequent 1-sequences and uprising frequent 1-sequences,

f,'(T,) = I non - continues 1 -sequences] ;
f,(T 2) = f,*(T2)uIx I xc f,*(T,)r f,-(T 2) and Jr (x) support r, (x)+(1 -3,, (x)) support,., (x) > minsup]

for (k=2,fk.I(T2)•0,'k++) do
begin

Ck=AprioriGen(fk_.(T2));
forall transactions t e FT2 do

forall candidates cECk do
if cq t then c.count++;

fk+ (T5) = [C E Ck I c.count > minsup]

fk(TS)=[cE Ck 13 c- fk-.(T1) and c.count <minsup];

f,(T2 = f,+(T2)U x xc () fk (T,)n fk-(T,) and

,r (x) support r, (x) + (1 -I r (x)) support r= (x) > minsup]
end;

return UJk(T2);

function AprioriGen(fk-,)
insert into Ck
select 11,12 lk-1,ck1

fromfk-i 1, fk-7 c
where l,=ClA 12=c2A . . . A lk_2=Ck_2A lk-1<Ck.1;

delete all items cECk such that (k-1)-subset of c is not in Fk. ;
return Ck;

Figure 3.1 The DynamicApriori Algorithm

As we mentioned before, the Dynamic approach can use any data mining
technique, as a local technique, to generate frequent user access patterns. In this
paper, we demonstrate our dynamic approach using the Apriori-Like algorithm. The
Apriori-Like algorithm is slightly modified to reflect those new factors needed to

136 A. Hafez

perform the dynamic mining. As it is shown in Figure 3.1, The DynamicApriori
algorithm mainly follows the main outlines of the Apriori-Like algorithm. The
DynamicApriori algorithm is decomposed into two modules,

"* Using previous frequent sequences, all sequences that satisfy inequality (1) are generated.
"* From those itemsets generated in the first module, generate all association rules that

satisfy certain minconf value.

In the DynamicApriori algorithm, the number of disk accesses required is

ma N

where N is the number of disk blocks needed to store the transaction updates, a is
the reduction factor caused by grouping user ID's of the same Web page, and m is the
size of maximal frequent user pattern.

4 Performance Results

The DynamicApriori algorithm has been tested and compared to the performance
of the Apriori-Like algorithm, using the following assumptions:

"* Total Time length is one year
"* minsup values are uniformly distributed over the range 0.05 and 0.2
"* Users inter-arrival time is exponentially distributed with means 1 minute and 5 minutes.
"* Users and URLs (Web pages) are normally distributed (generated from uniform distributions

with means 10000 users and 100 URLs, and 50000 users and 250 URLs).
"* Number of URLs per user is uniformly distributed with mean 20.

In the DynamicApriori algorithm, the one year time interval is equally divided
into equal time periods. Five different period sizes; 1,2,3,4 and 6 months, have been
considered.

In our experimental results, we compare the number of disk accesses of the
DynamicApriori algorithm and the Apriori-Like algorithm. Our experiments use the
same time interval in both algorithms. As an example, for 1 month time period, both
algorithms have been executed 12 times, and the accumulated results are compared.
The frequent sequences generated by the two algorithms are compared, and the ratios
between the number of same frequent sequences generated by both algorithms and the
number of frequent sequences generated by each of the two algorithms are calculated.
In figures 4.1 and 4.2, we give the results of our experimental results. In figure 4.1,
the number of disk accesses needed for the Apriori-Like algorithm are compared to
those of the DynamicApriori algorithm. We have found that, for small time periods,
the difference between the two algorithms is large (for 1 month period, almost 120
times), which is acceptable due to the following two factors:

*The dynamic approach uses only those transaction updates, not the whole transaction file.

A Dynamic Approach for Knowledge Discovery 137

*The size of transaction (mapped) file is reduced after eliminating time values and
duplicate user-ids.

--- R aR io :o D ynamicA priori

R t 0o Apriori-Like

, = 0.8

S0.6

"- 1 0.4

0.2

0

Time Periods

Figure 4.2 Matched Frequent Sequences

In figure 4.2, we compare the ratio of matched frequent sequences, i.e., those found
by both algorithms. For time periods greater than or equal 1 month, the results have
shown that the DynamicApriori algorithm has generated most of the frequent

0 t

120

10 - 8

a= -"-- users=1 0000,
o2 60 URLs=1 00,t=1 mrin

0 -&--users=1 0000,
- 40- URLs=100,t=5 mrin

08 A - users=50000,
S. 20 U RLs=250,t=1 minS+n*users =50000,

o0 i , , , , ., U RLs=2500,t=5 min
6 month 4 month 3 month 2 month 1 month

Period Size
Figure 4.1 Performance Evaluation of PeriodicApriori

Algorithm

sequences that have been generated by the Apriori-Like algorithm. For those frequent
sequences that have been generated by the DynamicApriori algorithm and not by the
Apriori-Like algorithm, and vice versa, we have carefully studied their behavior, and
found out that our approach missed only those frequent sequences with low time span.

5 Discussion and Conclusions

In this paper, we have introduced a dynamic approach for Knowledge Discovery
of Web Access Patterns. In this approach, the time space is divided into time periods,
and the association mining procedure is applied only on one time interval and uses
those association rules discovered in the previous time interval. To demonstrate our
dynamic approach, we have used the Apriori-Like algorithm as a local algorithm to
generate frequent user patterns during time periods. A set of experiments has been
performed, and the results of the DynamicApriori algorithm and the Apriori-Like
algorithm are compared. Although we have used synthetic data to run our
experiments, we have carefully chosen the distribution functions that reflect the
behavior of users and Web pages.

138 A. Hafez

In our experimental work, we choose the value of S (X) to be dependent on the
behavior of k-sequence X through the different time periods. We believe that by
applying different techniques to choose the values of J (X), we may much further
improve the performance of our approach.

The experimental results have shown that the DynamicApriori algorithm has
efficiently generated frequent sequences, which are used to generate association rules.
Depending on the time interval length, the ratio between the number of disk blocks
accessed by the two algorithms ranged between 8.0357 and 112.069, in favor of the
DynamicApriori algorithm. For a reasonable time interval (greater than or equal 1
month), DynamicApriori algorithm has generated most of the frequent sequences that
have been generated by the Apriori-Like algorithm. For those frequent sequences that
have been generated by the DynamicApriori algorithm and not by the Apriori-Like
algorithm, and vice versa, we have carefully studied their behavior, and found out that
our approach missed only those frequent sequences with low time span. These results
favor our approach and prove that our algorithm not only produces frequent
sequences but also implicitly performs time analysis on the discovered frequent
sequences.

References

[1] R. Agrawal, T. Imilienski, and A. Swami, "Mining Association Rules between Sets of Items in Large
Databases," Proc. of the ACM SIGMOD Int'l Conf. On Management of data, May 1993.2

[2] R. Agrawal and R. Srikant, "Mining Sequential Patterns", In Proc. 11th Intl. Conf. On Data
Engineering, Taipi, Taiwan, March 1995.3

[3] C. Brunk, J. Kelly, and R. Kohavi, "MineSet: An Inegrated System for Data Mining", In Proc. 3rd

Int. Conf. Knowledge Discovery and Data Mining (KDD'97), NewPort Beach, California , Aug.
1997.9

[4] M. Chen, J. Park, and P. YU, "Data Mining for Path Traversal Patterns in a Web Environment",
Proc. 16"h Untl. Conf. Distributed Computing Systems, May 1996.12

[5] J. Cumming, "Hits and Misses: A Year Watching the Web", In Proc. 6th Int. World Wide Web Conf.,
santa Clara, California, April 1997.14

[6] A. Hafez, J. Deogun, and V. Raghavan ,"The Item-Set Tree: A Data Structure for Data Mining",
DaWaK' 99 Conference, Florence, Italy, Aug. 1999.17

[7] C. Kurzke, M. Galle, and M. Bathelt, "WebAssist: a user profile specific information retrieval
assistant," Seventh International World Wide Web Conference, Brisbone, Australia, April 1998.19

[8] H. Mannila, H. Toivonen, and A. Verkamo, "Efficient Algorithms for Discovering Association
Rules," AAAI Workshop on Knowledge Discovery in databases (KDD-94), July 1994. 21

[9] M. Perkowitz and 0. Etzioni, "Adaptive Sites: Automatically Learning from User Access Patterns",
In Proc. 61h Fit. World Wide Web Conf., santa Clara, California, April 1997.22

[10] 6. Rossi, D. Schwabe, and F. Lyardet, "Improving Web Information Systems with Navigational
Patterns," The Eighth International World Wide Web Conference, Toronto, Canada, May 1999.24

[11] T. Sullivan, "Reading Reader Reaction: A Proposal for Inferential Analysis of Web Server Log
Files", In Proc. 3rd Conf. Human Factors & The Web, Denver, Colorado, June 1997.28

[12] L. Tauscher and S. Greenberg, "How People Revisit Web Pages: Empirical Findings and
Implications for the Design of History Systems", International. Journal of Human Computer Studies,
Special Issue on World Wide Web Usability, 47, 1997.29

[13] C. Wills, and M. Mikhailov, "Towards a Better Understanding of Web Resources and Server
Responses for Improved Caching," The Eighth International World Wide Web Conference, Toronto,
Canada, May 1999.31

Data Reduction via Conflicting Data Analysis

M. Boussouf and M. Quafafou

IRIN, Universit6 de Nantes, 2 rue de la Houssini~re,
BP 92208 - 44322, Nantes Cedex 03, France.
{boussouf,quafafou}Cirin. univ-nantes. fr

Abstract. This paper introduces a new method for instances selection.
The conceptual framework and the basic notions used by this method are
those of an extended rough set theory, called a-rough set theory. In this
context we formalize a notion of conflicting data, which is at the basis of
a conflict normalization method used for instances selection. Extensive
experiments are performed to show the efficiency and the accuracy of
models built from the reduced datasets. The selection methodology and
its results are discussed.

1 Introduction

One way to achieve an efficient processing of very large data is to reduce the
number of input data without losing the main information and without decrea-
sing the quality of the extracted knowledge. To deal with the problem of data
reduction, many methods have been proposed. Generally, two main approaches
are distinguished: statistical sampling techniques and clustering or prototyping
approaches. For instance, Quinlan [10] used windowing approach in ID3 to learn
on subsets of tuples, Catlett [3] considered windowing in C4.5, who uses strati-
fication according to the decision attribute, John and Langley [7] discuss static
versus dynamic sampling, Toivenen [12] and Zaki et al. [14] examine applications
of random sampling for finding association rules, Reinartz [11] reuses a variant
of leader clustering algorithm of Hatingan[6]. He proposed a similarity-driven
sampling approach, which is based on two steps: sorting and stratification. Du-
bes et al. [4] discuss clustering methodologies. Whereas, Zhang[15] proposes a
data summarization algorithm using a single scan incremental process to create
a hierarchical tree of sub-clusters summarizing the original dataset.

2 Data Analysis and Rough Sets

2.1 Rough Sets Overview

Rough Sets Theory (RST) is an extension of set theory. It was introduced by
Z. Pawlak [9] in 1982 to offer a framework for handling imperfect data. It is
a mathematical tool, which deals with vagueness and uncertainty. There has

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 139-147, 2000.
© Springer-Verlag Berlin Heidelberg 2000

140 M. Boussouf and M. Quafafou

been a fast-growing interest in the rough set theory, which has proved to be
very useful in practice. Successful applications have been developed in medicine,
decision analysis, banking, market research, knowledge discovery, and so on.
Before presenting our investigations, we will first review the main concepts of
rough set theory.
Information system: In rough sets theory, an information system has a data
table form. Formally, an information system S is a 4-tuple S = (U, Q, V, g),
where: U is a finite set of objects; Q is a finite set of attributes; V = UV, where
V. is a domain of attribute q; g is an information function assigning a value of
attribute for every object and every attribute, i.e., g : U x Q -+ V, such that for
every x G U and for every q E Q, g(x, q) E Vq.
Indiscernibility relation: Let K be a subset of attributes, the indiscernibility
relation, denoted 'K (C U x U), is assumed to be an equivalence relation, which
is defined as follows:

xlKy VpEKxp---yp

Consequently, x is related to y if, and only if, they have the same value for all
attributes in K. The pair (U, 1K) is called a Pawlak approximation space. The
relation IK is an equivalence relation, which partitions the space U into disjoint
subsets. The quotient set U/IK consists of equivalence classes of 'K, also called
elementary sets.
Approximations of sets: A key idea in rough set theory is the approximation
of concepts using two operators, which assign to any subset of the universe,
X C U, two approximations called lower and upper approximations denoted
respectively 'lower and Ipper-.

Iiowe (X) = {X E U I IK(X) 9 X} , Iuppr (X) = E U I IK(x) n X ¢

The 11,w, approximation of X is the set of elements, which certainly belong to
X, whereas the 'uppr approximation of X is the set of elements, which possibly
belong to X. Elements which are probably in X but do not certainly belong
to X define a doubtful region called the boundary region, i.e., Bound(X) =
I~pp,,(X)- llowe(X). We say that a set X is rough (inexact) when its boundary
is a non empty set. In this paper, we introduce a new method for data reduction
based on conflicting data analysis. The notion of conflicting data is based on the
relationship between boundaries of concepts.

2.2 Conflicting Data Analysis

The notion of conflict plays an important role in different domains like business
and military operations. Different formal models of conflict have been proposed
[5][8]. We use the notion of boundary to express conflictual relations between
concepts. The normalization of this conflict leads to the selection of a subset
of instances. Let us first introduce a binary relation between two instances.
According to a subset of attributes K, two instances x and y are said to be
allied, denoted Xp (x, y), if they have the same value of all attributes: Xp (x, y) -
1 if xp=ypVp/EP and 0 otherwise.

Data Reduction via Conflicting Data Analysis 141

Definition 1 (Conflicting instances) Let D be the set of condition attribu-
tes, C the decision attribute, Q = D U C. We say that x, y G U are conflicting
if, and only if, they are redundant or inconsistent:

- Redundant instances have the same value for both condition and decision
attributes, i.e. XQ(x,y) = 1.

- Inconsistent instances have the same value for condition attributes, but
different values for decision attribute, i.e., XD(X, y) = 1 A Xc(x, y) = 0.

2.3 Extending Rough Set Theory

Rough set theory is formulated using a basic notion of indiscernibility between
objects of the universe, which is based on binary relations. Many different stu-
dies have been developed to extend rough set theory by replacing the classical
equivalence relation by different kind of binary relations. The choice of a given
indiscernibility relation directly alters the interpretation of rough sets.

Definition 2 (a-Indiscernibility) Let K be subset of attributes, a G [0, 1],
and IK the Pawlak indiscernibility relation. Two instances x, y of the universe
U are said to be a -indiscernible, denoted x I a y, if, and only if:

I K' C K I XIK, y and f(K,K') > a

Consequently, the semantic of the indiscernibility relation is rich as the fun-
ction f can be defined according to the prior domain knowledge. In what fol-

lows we consider the following domain-independent function f: f(K, K') = IKIL'1K1'
where IKI denotes the cardinality of K.

The extension of the well known definition of indiscernibility IK is impor-
tant, especially for high dimensional spaces. In fact, the relation IK tends to
break down in high dimensional spaces. The main reason is that the resulted
partitioning of the universe is probably very fine when the cardinality of the set
of attributes K is very high: for any pair of objects of the universe, it likely exists
few dimensions for which this objects are indiscernible. Different algorithms have
proposed to deal with this problem especially in the context of clustering of high
dimensional spaces. Our formalization is a new way to consider this problem
in the context of rough set theory and met the approach developed for fast
algorithms for projected clustering developed by Aggarwal et al. [1].

The use of this parameterized indiscernibility relation leads to a weak defini-
tion of conflict. In fact, we can easily express the two main notions of conflicting
data, introduced before, i.e., redundancy and inconsistency, using Ik. Two in-
stances x, y are said to be:

- Redundant iffx 1Q y, (i.e., XQ(x,y)= 1).
- Inconsistent iffx ID' y A - (x I• y) (i.e., XD(x,y) = 1 and Xc(x,y) =0

Consequently, the binary relation Ik allows us to express a weak notion of
conflict.

142 M. Boussouf and M. Quafafou

Definition 3 (a-conflicting instances) Two instances x, y of the universe U
are said to be conflicting at the level a if, and only if:

3 K C D such that XK(x,y) = 1 and f(D,K) > a.

Thus, two instances x, y weakly conflicting are said to be weak redundant,
respectively weak inconsistent, if they are weakly conflict and Xc(x, y) = 1,
respectively XC(x, y) = 0. Data reduction can be viewed as normalizing con-
flicts. We resolve the conflict between instances by selecting only one instance of
dominant concept in each conflicting group. The strongly conflicting instances
(corresponding to classical framework of rough sets) are obtained when a=l.
The parameter a influences and controls the number of conflicting instances,
i.e., when a decreases, the size of (weakly) conflicting group increases. Conse-
quently, the number of selected instances decreases. The process of selection will
be detailed in the next section.

3 Conflicting Data Normalization

3.1 Foundations

The goal of this section is the introduction of the concept of conflicting data
normalization and the description of a method supporting the normalization
process. We have underlined two types of conflict, i.e., redundancy, inconsistency
and weak conflict. For this reason the normalization process is divided into two
steps: (1) redundancy reduction and (2) inconsistency normalization. All incon-
sistent instances belong to a set, which is equal to the union of boundaries of all
concepts Ci defined by the following constraint "C = Cj' where C is the decision
attribute. The set of all inconsistent instances is called Global Boundary and
denoted GB = U Bound(Ci). Whereas, the redundant instances belong to the
complement of the set GB, i.e., U - GB, which is equal to the union of the
lower approximations of all concepts Ci. The normalization process reduces the
redundancy and normalizes the inconsistency as follows:

- Redundancy: let's consider that a set of instances T = {X1, X2, ... , xn} are
redundant, which means that XDD(xi, xj) = 1 and Xc,(xi, xj) = 1 for all i, j
in {1, 2, ..., n}. These instances are identical, we keep only one among them
all the other instances are deleted.

- Inconsistency: as we have seen before the GB contains all inconsistent
instances. Let T 7 GB/ID and 0 be an operator such that:

O(T) = {Ci e GB/ID I T enC e40}

The result of the operator 0 is the set of conflicting concepts given the set
T of conflicting instances. Only dominant concepts are kept. We define the
operator 0 as follows:

O(T)={Ck : jCknTj=Max{jCjnTj : CGEO(T)}}

Data Reduction via Conflicting Data Analysis 143

The cardinality of a set X is denoted JXI. The result of the operator 0 is
the set of dominant concepts given a set of concepts O(T). The operator

0 carries out a voting operation between conflicting concepts. The inconsi-
stency normalization means the replacement of each set T of GB/ID by only
one instance representing the dominant concepts. If there are m dominant
concepts, m instances from T are randomly selected, each one represents a
dominant concept. Thus, instances of T that belong to non dominant con-
cepts are deleted and a pruning operation is realized on dominant concepts.

The previous normalization depends on the parameter a. Considering only strict
conflicting data, i.e., a = 1, which means that all attributes are used to distin-
guish instances. However, taking into account all attributes in the situation where
we consider high dimensional spaces is a real obstacle for conflict analysis. In
fact, the more the cardinality of GB is low the more the conflict is reduced. For
this reason, we can vary the value of a from 1 to 0 to evaluate the weakness of
conflict between concepts.

In order to evaluate the cost of this approach, let us assume that there are
N instances. In the worst case, the number of comparisons to compute the

approximations, i.e., to find all conflicts, is equal to N(N-1) and the conflict2
normalization needs N comparisons. Consequently, the total comparisons needed

to select instances is (N-i) + N. So, the complexity is O(N 2).

3.2 Conflict Normalization by Hand

This simple example considered Table 1.Example
here shows how the normalization me- # q q -q # q q q

thod works step by step. Let us con- 1 x y z q4 9 y x y3q
sider the information system drawn in 1x y z ci 9 y x y c3
Table 1. The universe U contains 16 in- 2 x y z c3 10 x x y c2

stances and equals to {1, 2,...,16}. The 3 x y z cl 11 x y x cl

set of attributes Q = {ql,q2,q3, q4 } 4 x y z c2 12 z y y c3

is divided into condition attributes 5 x x x c3 13 z y y c3

D = {ql,q2, q3} and decision attribute 6 y y y c2 14 z z x c3

C {q4}. The partitioning produced 7 z z z cl 15 y x y c2

when we consider condition attributes 8 y x y c2 16 y x y c3

and decision attribute are respectively U/ID = {{1, 2, 3, 4},{5},{6}, {7}, {8, 9,
15, 161, {10}, {11}, {12, 13}, {14}} and U/Ic {{1, 3,7,111, {2, 5,9,12, 13,14,
16}, {4, 6, 8, 10, 15}}. According to the latter partitioning, we obtain three con-
cepts C, = {1, 3,7, 111, C 2 = {4, 6,8,10, 15} and C 3 = {2, 5,9,12 ,13, 14, 161.

The approximations and boundaries of the three concepts are: Iio,,w(CG) =
{7, 111, Iupper(C1) = {1, 2,3,4,7,11}, Bound(C1) = {1, 2,3, 4}, Ilow6 r(C2) =

{6, 101, Iipper(C2) = {1, 2,3,4,6,8,9,10,15, 16}, Bound(C2) = {1, 2,3,4,8, 9,
15, 161, I1ow6r(C 3) = {5, 12,13,14}, Iuppeý,(C 3) = {1,2,3,4,5,8,9,12,13,14,15,
161, Bound(C3) = {1, 2,3,4,8,9,15, 161.

144 M. Boussouf and M. Quafafou

Only one indiscernible subset of instances, i.e., {12, 13}, which belongs to the
lower approximation of the concept C3 is considered during the redundancy re-
duction phase. It is replaced by a randomly selected instance from {12, 13}. The
global boundary set, i.e., GB, is equal to the set {1, 2, 3, 4, 8, 9, 15, 16}. Conse-
quently, the set of indiscernible instances subset in terms of condition attributes
is GB/ID = {{1, 2, 3, 4}, {8, 9, 15, 16}}. Let's consider a subset T1 of indiscer-
nible instances belonging to GB such that T1 = {1, 2, 3, 4}. According to the
definition of the operator 9 we obtain 9(T1) = {GC, C2, C3}. The voting proce-
dure produces the dominant conflicting concept O(T 1) = {C1}. Consequently,
we replace the subset T1 by a randomly selected instance from C1 = {1, 3}. Si-
milarly, we apply the same procedure to the subset T2 = {8, 9,15, 16}, which will
be replaced by two instances randomly selected to represent respectively {9, 16}
and {8,15}.

4 Optimization for Large Datasets

We cannot directly apply the conflict normalization method described before
to large datasets because its time complexity is quadratic. To deal with this
problem we have reduced the number of comparisons necessary to compute ap-
proximations and to determine conflicting data. To achieve this goal we propose
an incremental clustering algorithm. Given a indiscernibility threshold a and a
maximal number of clusters, this algorithm is described in two steps: (1) Buil-
ding clusters: the content of each cluster is summarized by a vector of values,
noted D*. Each entry D* of this vector represents the most frequented value
of the attribute q (q c 1...IDJ) in the current cluster. This step is achieved by
comparing incrementally all objects with the representative vector of each built
cluster. If they are a-indiscernible then the current object is inserted in the clu-
ster and the vector D is updated, otherwise, a new cluster is created; (2) after
building the clusters, we apply the normalization process on each clusters, which
is achieved by choosing the nearest object of D* of dominant concepts, i.e., by
applying the 0 operator on each cluster.

CCDN-Algorithm: Our algorithm, called CCDN-Algorithm (Clustering based
Conflicting Data Normalization Algorithm) can be summarized as follows:

Input N Training set size; M : Maximal number of clusters;

D Predictive attributes; C : Class; ae : indiscernibility threshold;

Output ReducedInstancesSet;

for i:=l to N Insert(i,Cluster,0);

/* Insert the ith object in a cluster among already created clusters.*/

/* Let ClusterNumber be the number of created clusters (ClusterNumber < M)*/

for j:=1 to ClusterNumber Add(ReducedInstancesSet,BestObjects(Cluster[i]));

/* Select the best object(s) from each cluster */

Return (ReducedInstancesSet);

Data Reduction via Conflicting Data Analysis 145

In order to evaluate the cost of this algorithm let us assume that there are N
objects and the number of allowable clusters is M (M << N). For the insert
function, in the worst case, the number of comparisons to insert an object in
a cluster among M ones is equal to M. So, to process all objects, the maxi-
mal number of comparisons is NM. For the second function, in order to select
the best objects of each clusters, we need N comparisons. Consequently, the
complexity of CCDN algorithm is O(NM).

5 Experimental Results

In order to evaluate the proposed instance selection method we run experiments
on 12 real-world datasets taken from the UCI Irvine repository [2], their charac-
teristics are summarized in Table 2.

Table 2. Datasets considered: the size of training set and test set, the number attri-
butes, class cardinality and the percentage of numeric attributes.

Base Train Test #Att #class %N. Base Train Test #Att #class %N.
Australian 552 138 14 2 43 Mushroom 6499 1625 22 2 0
Pima 615 153 8 2 100 Pendegit 7494 3498 16 10 100
Vehicle 677 169 18 4 100 Letter 16000 4000 16 26 100
Segment 1848 462 20 7 95 Adult 32561 16281 14 2 43
Abalone 3133 1044 8 3 88 Shuttle 43500 14500 8 7 100
Annthyroid 3772 3428 21 3 29 Covertype 387342 193670 54 7 18

Original data are transformed using discretization method proposed by Van
de Merckt in [13]. We have used C4.5 system [10] to construct a decision tree
from both the original data and the selected instances. We separate randomly
the original dataset, which do not contains specific test set into training set
(80%) and test set (20%); for Covertype dataset, we use 66% for training and
33% for testing. Firstly, our method is used to select a subset of instances. Its
results are compared with random and stratified sampling methods. For these
latter methods, we repeat sampling and data mining 10 times and we present
average results. The size of considered samples is determined by our method.

In order to evaluate the cost of our proposed algorithm, we draw the time
evolution of conflicting data identification for the largest dataset, i.e., Covertype
dataset. We have shown that the complexity of the algorithm CCDN is linear
(Section 4). Fig. 1 underlines this linearity feature with the Covertype dataset
considering 48 attributes, i.e., a = 48/54 = 0.89.

The results drawn in Table 3 show that the size of returned sample is lower
than 25% for original datasets for 11 datasets among 12, it is lower than 10%
for 7 datasets.

The instances selected using the conflicting data normalization based method
lead to a model, which is more accurate than the ones extracted from a sample
using random or stratified sampling technique, the differences equal 5.36% and
4.28% respectively. However, this is not the only contribution of our work. In
fact, the size of the sample is generally given by the user before the selection

146 M. Boussouf and M. Quafafou

o z

Fig. 1. Time evolution for Covertype dataset

of instances. The problem is, which size to choose? Our method does not need
this information, it is part of its result. Besides, we have introduced a formal
notion based on conflicting data, which can play an important role for data
understanding.

Table 3. The accuracy of C4.5, the percentage of selected instances, the accuracy
of C4.5 using selected instances and C4.5 accuracy (with the same percentage) using
random and stratified sampling.

Dataset All-C4.5 Select.% CCDN-C4.5 Rand-C4.5 Strat-C4.5
Australian 85.5 7.25 85.5 80.53±3.0 82.19±1.5
Pima 76.5 10.57 77.1 71.62±2.1 72.35±1.6
Vehicle 71.0 12.85 72.2 64.15±2.8 63.53±2.3
Segment 92.4 16.72 92.4 83.31±10.7 87.37±1.1
Abalone 63.6 5.20 63.4 58.21±2.0 58.51±1.4
Annthyroid 94.0 2.82 93.2 93.57±0.4 92.94±0.2
Mushroom 100 0.46 99.0 91.78±4.20 89.85±5.0
Pendegit 91.7 23.87 89.9 84.77±7.3 87.44±0.5
Letter 79.4 46.60 76.7 67.91±8.0 74.25±0.3
Adult 85.4 2.50 84.1 83.76±1.2 83.37±0.7
Shuttle 99.8 0.16 99.7 96.65±2.1 95.33±2.3
Covertype 62.2 1.66 62.5 54.94±1.21 57.03±0.9
MEAN 83.46 82.98 77.60 78.70

The size of the sample produced by CCDN-Algorithm can be very low with-
out decreasing the quality of the knowledge induced from the selected instances.
For instance, only 68 instances (0.16%) are selected from Shuttle dataset, which
contains 43500 instances. The quality of classification is the same for both the
selected instances and all data. Also, only 0.46% are selected from mushroom
original data and the accuracy is decreased with only 1%. The most important
result is obtained with the largest dataset, i.e., Covertype dataset. Among 387342
instances, our algorithm chooses only 1.66% (6445 instances) and the accuracy
of the reduced model is slightly improved comparing with original model.

Data Reduction via Conflicting Data Analysis 147

6 Conclusion

This paper tackles the problem of mining efficiently a very large data and pro-
poses two solutions based on instances selection via conflict normalization. The
proposed method is developed in a conceptual framework, which is an exten-
sion of Rough Set Theory called a-Rough Sets. The contribution of this paper is
threefold (1) formalization of a notion of conflicting concept, (2) proposition of a
method for conflict normalization to select a subset of instances, (3) proposition
of a heuristic algorithm to avoid the quadratic complexity, (4) presentation of
results of extensive experiments on different datasets.

References

1. Aggarwal, C.C., Procopiuc, C., Wolf, J.L., Yu, P.S., Park, J.S.: Fast Algorithms for
Projected Clustering. SIGMod'99, 28(2) (1999) 61-72

2. Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases.
"http://www.ics.uci.edu/-mlearn/MLRepository.html" (1998)

3. Catlett, J.: MegaInduction : Machine Learning on Very Large Data-bases. Sydney,
Australia, ICML (1988) 87-99

4. Dubes, R., Jain, A.K.: Clustering methodologies in Exploratory Data Analysis. Ad-
vances in Computers"New York, Academic Press , 19 (1980)

5. Hart, H.: Structures of Influences and Cooperation-Conflict. International Interac-
tion 1 (1974) 141-162

6. Hartingan, J. A.: Clustring Algorithms. John Willy & Sons Inc.; New York (1975)
7. John, G.H., Langley, P.: Static versus Dynamic Sampling for Data Mining. KDD'96,

(1996) 367-370
8. Pawlak, Z.: On Conflicts. Int. J. of Man-Machine Studies, 21(2) (1984) 127-134
9. Pawlak, Z.: Rough sets: theoretical aspects of reasoning about data. Theory and

decision library. Series D: System theory, knowledge engineering, and problem solving.
London, Kluwer Academic, 9, (1991)

10. Quinlan, J.R.: C4.5: Programs for Machine Learning. Kaufmann M., California,
(1993)

11. Reinartz, T.: Similarity-Driven Sampling for Data Mining. PKDD (1998) 423-431
12. Toivonen, H.: Sampling Large Databases for Finding Association Rules. VLDB

(1996) 134-145
13. Van de Merckt, T.: Decision Trees in Numerical Attributes Spaces, IJCAI (1993)
14. Zaki, M.J., Parthasarathy, S., Li, W., Ogihara, M.: Evaluation of Samling for Data

Mining of Association Rules, in Proceedings of the 7th Workshop on Research Issues
in Data Engineering, Scheuermann, P. (eds.), Birmingham, England, (1997)

15. Zhang, T.: Data Clustering for Very Large Datasets Plus Applications. Technical
Report, University of Wisconsin, Computer Sciences Department (1997) TR1355

A Comparison of Rule Matching Methods
Used in AQ15 and LERS

Jerzy W. Grzymala-Busse t and Pankaj Shah2

I Department of Electrical Engineering and Computer Science
University of Kansas, Lawrence, KS 66045, USA

2 Systems Material Handling Co., Olathe, KS 66062, USA

Abstract. This paper focuses on a performance comparison of two rule matching
(classification) methods, used in data mining systems AQ15 and LERS. All rule
sets used in our experiments were induced by the LERS (Learning from Examples
using Rough Sets) system from ten typical input data sets. Then these rule sets
were truncated using three different criteria: t-weight, u-weight and the strongest
rule. The truncation process was performed using six different cut-off values for t-
weight, six different cut-off values for u-weight and using the strongest rule option.
Hence for each of the input rule files thirteen truncated rule sets were created.
Performance was measured by a classification error rate. The objective of this
study was to determine the best overall method of classification and the best
truncation option.

Keywords. Knowledge discovery and data mining, rule induction, classification
systems, rule truncation, AQ15, LERS, ten-fold cross validation, Wilcoxon
matched-pairs signed rank test.

1 Introduction

In this paper input data were presented in the form of a table, called a decision table.
The columns are labeled by variables. One of the variables is called a decision and
the remaining variables are called attributes. The rows represent examples. A
concept is defined as a set of all examples having the same decision value. All
examples belonging to the concept C are called positive examples for C and all
remaining examples are called negative examples for C. The concepts are described
in the form of rule sets [3, 9].

Like many other data mining systems, AQ15 and LERS were primarily designed to
induce rules from training examples. Both systems are equipped with modules for
rule matching used for classification of new, unseen examples.

In our research all rule sets used for experiments were induced by the LEM2
algorithm [4] of LERS, since the rule matching module of LERS would not recognize
rules in the format of AQ15 and its successors, AQ17 and AQ18. Thus we compare
only rule matching (classification) performance of AQ15 and LERS, restricted to the
rule sets induced by LERS.

The rule set, induced by the inductive learning process, may be used for
interpreting regularities hidden in the input data, for visualization of these regularities,

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 148-156, 2000.
© Springer-Verlag Berlin Heidelberg 2000

A Comparison of Rule Matching Methods 149

or for classification of unseen examples [5, 10, 14]. During the classification process
of unseen data, an attempt is made by all rules to match each example. For each
example, the following are different possible outcomes of the classification process:

"* The example is exclusively and correctly classified as a member of the correct
concept,

"* The example is exclusively and incorrectly classified as a member of a wrong
concept,

"* The example is correctly classified and incorrectly classified at the same time,
i.e., some rules classify it as a member of the correct concept, while other rules
classify it as a member of a wrong concept,

"* The example is not classified by any rule.

An example is completely classified by a rule if all the attribute-value pairs of the
rule match the attribute values of the example. The example is partially classified if
only some of the attribute-value pairs of the rule match the attribute values of the
example. The example is not classified at all if none of the attribute values of the
example match any of the attribute-value pairs for all rules.

Truncation [10] is a method of reducing the rule set by deleting weak rules,
describing a few training examples. Concepts can match different examples with
varying degrees of precision and have context-dependent meaning. Instead of seeking
a strict match, the system determines the degree of similarity between the concept
description and the given example, and compares it with the results from matching the
example with other concept descriptions. The concept that gives the best match is
assigned to the example. Michalski's truncation algorithm was originally designed for
AQ 15, but the algorithm works for rule sets generated by LERS as well.

This paper presents a performance comparison of AQ15 and LERS classification
systems with rule set truncation. In our experiments we used the following
assumptions:

"* All rule sets were induced by the LERS system,

"* 10-fold cross validation process [15] was used to validate results,

"* AQ15 and LERS were used to classify the unseen data with the truncated rule
sets,

"* Wilcoxon matched-pairs signed rank test [7] was used to compare the AQ15 and
LERS classification systems.

2 Michalski's Rule Truncation Algorithm

In AQ15 [10], each rule is associated with a pair of weights: t and u, representing the
total number of training examples correctly classified by the rule, and the number of
training examples uniquely and correctly classified by the rule, respectively. The t-
weight may be interpreted as a strength of a rule, an idea used also in the LERS
classification method, while u-weight is a measure how much the rules differ from
each other. The rule with the highest t-weight may be interpreted as describing the
most typical examples of the concept, while rules with the lowest u-weights can be
viewed as describing exceptional examples [10].

150 JW. Grzymala-Busse and P. Shah

In AQ15 there are two methods of recognizing the concept membership of an
example: the strict match and the flexible match. In the strict match, an example must
satisfy all conditions of the rule. In the flexible match, a degree of similarity between
the example and the rule is determined.

During the truncation process [10], we remove weak rules, with the value of t-
weight or u-weight not exceeding some cut-off and applying flexible matching to
classify an example. By removing the weak rules the total number of rules describing
the concept is reduced. This may result in rules that may not match the examples
completely as they would have before the truncation process. Thus, a truncated rule
set is simpler but it requires a more sophisticated classification method: flexible
matching is used to classify the example. By applying a flexible match the example
may still be very closely related to the correct concept and thus may be correctly
recognized. An interesting problem is to test how the rule set truncation method
affects the accuracy of classification. Results of similar research were reported in [1].

3 AQ15 Classification System

The original classification module of AQ15 was called ATEST [13]. AQ15 provided
three methods of rule testing. In our paper we re-implemented and tested one of them,
the method described in [10]. In this method, during the process of recognizing the
example against a set of rules, there are three possible outcomes [10]:

"• Only one rule may classify the example (SINGLEMATCH case),
"* More rules than one rule classify the example (MULTIPLEMATCH case),

"* No rule recognizes the example (NOMATCH case).

When recognizing the examples, each of the above categories requires a different
evaluation procedure.

In the SINGLEMATCH case the classification is straightforward. If the rule
decision is equal to the known decision for the example, the example is counted as
correctly classified. If not it is considered as wrongly classified. In the case of
MULTIPLEMATCH and NOMATCH cases, the classification procedures are more
complicated.

MULTIPLEMATCH case: In this case there are more rules than one that classify
the example. The system selects the most probable decision. Let us consider n
concepts, C1, C2 ... , C,, that classify the example e. Each concept Ci is described
by a rule set. In AQ15, a rule is called a complex, and it is said that the rule set is a
disjunction of complexes (Cpx), each complex (rule) in turn is a conjunction of
selectors (Sel). The estimate of probability, EP of a concept Ci is defined as the
probabilistic sum of EPs of its complexes. If the rule set for Ci consists of a
disjunction of two complexes Cpx1 and Cpx2, then the corresponding estimate of
probability is computed in the following way:

EP(Ci, e) = EP(Cpx1 , e) + EP(Cpx2 , e) - EP(Cpx1 , e) * EP(Cpx2 , e),

where EP of a complex Cpxj in the context of the example e is the ratio of the total
number of positive examples classified by the complex Cpxj (i.e., the weight of Cpxj)

A Comparison of Rule Matching Methods 151

to the total number of training examples, if the complex recognizes the example e, and
it is equal to 0 otherwise:

[Weight (Cpxi) if complex Cpx) recognizes example e,
EP(Cpxj, e) = ý0# examples otherwise.

The most probable concept is the one with the largest EP.
NOMATCH case: In this case there are no complexes that classify the example e.

The system uses flexible matching to determine the best complex that suggests the
most probable decision. One way to perform such flexible matching is to measure the
fit between attribute values of the example and the concepts. A measure of fit (MF) is
defined as follows: MF of a concept Ci to an example e is computed as a probabilistic
sum for a disjunction of all complexes. Let us say that the concept Ci consists of a
disjunction of two complexes Cpxl and Cpx2 , the measure of fit for Ci is defined as
[10]:

MF(Ci, e) = MF(Cpx1 , e) + MF(Cpx2 , e) - MF(Cpxl, e) * MF(Cpx2 , e),

where MF of a complex Cpxj to an example e is defined as the product of MFs for a
all selectors of Cpxj, weighted by the proportion of training examples covered by Cpx1

MF(Cpxj) = -I MF(Selk, e) * Weight (Cpxi)

k # examples

where Weight (Cpxj) is the number of training examples covered by Cpxj. MF of a

selector Selk and an example e is 1 if the selector is satisfied by the example, i.e., if
one of the example's attribute values is equal to the selector values. If no selector
value is equal to the attribute value of the example, its MF is proportional to the
amount of the decision space covered by the selector, i.e., it is the ratio of the number
of attribute values in the selector to the total number of all possible values of the
attribute:

1 if selector Selk is satisfied by e,
MF(Selk, e) = # values otherwise.

ýDomain size

Note that the measure of fit, MF, is a generalization of the estimate of probability
EP. When all selectors in a complex are satisfied, the measure of fit is equal to the
estimate of probability [10]. There exists another possibility of defining MF(Cpxj). In
AQ18 this feature is extended to selectors [8].

152 J.W. Grzymala-Busse and P. Shah

4 LERS Classification System

Rule sets were induced using the LEM2 algorithm of the LERS system [4]. In LERS,
inconsistencies in training data are handled using rough set theory [11, 12]. Data are
consistent if for any two different examples with all attribute values the same, the
decision values are also the same.

When the data are completely classified, LERS uses the following factors: strength,
specificity and support to classify an example [5]. The original approach was
introduced in [2, 6]. When data are partially classified, LERS uses an additional
factor called a matching factor to determine the best concept to classify the example.
Strength is a measure of how well the rule has performed during classification of
training data. It is computed as the number of examples correctly classified by the
rule. Obviously, rules that correctly classified more examples are stronger.
Specificity is a measure of complexity of the rule. Rules with larger numbers of
attribute-value pairs are more specific. Matching factor is a measure of how well the
rule matched the attribute values of an example. It is computed as the ratio of the
number of matched attribute-value pairs of a rule to an example to the total number of
attribute-value pairs of the rule.

Support is computed as the sum of scores for all matching rules from one concept.
It is defined as follows:

SpStrength(R) * Specificity(R) * Matching factor(R)
partially matching rules R describing c

The concept C for which support is the largest is a winner and the example is
classified as being a member of C.

5 Experiments

There were ten typical, well-known data files used to compare the performance of the
two classification methods. The basic facts of the data files are described in Table 1.

Table 1

Data file Number of Number of Number of Missing
examples attributes concepts attribute values

lymphography 148 18 4 no
breast-cancer 286 9 2 yes
iris 150 4 3 no
hepatitis 155 19 2 yes
soybean 307 35 19 yes
primary-tumor 339 17 21 yes
house 435 16 2 yes
wisconsin 625 9 9 no
mammography 1284 12 2 no
bupa 345 6 2 no

A Comparison of Rule Matching Methods 153

Table 2

Method lymphography breast-cancer iris

LERS AQ15 LERS AQ15 LERS AQ15

t = 1 20.53 16.89 32.87 32.87 4.67 4.67
t = 2 18.24 17.57 30.42 30.42 4.67 5.33
t = 3 19.59 18.92 28.67 29.02 4.67 6.00
t = 4 17.57 16,89 28.32 28.67 3.33 5.33
t = 5 17.57 16.22 27.97 28.32 4.00 4.67
t= 10 21.62 18.92 27.97 27.62 4.00 5.33
u = 1 18.24 16.89 32.87 32.87 4.67 4.67
u = 2 18.92 15.54 30.77 31.12 4.00 8.67
u = 3 24.32 22.30 28.67 28.32 11.33 23.33
u = 4 27.03 23.65 28.67 27.62 26.67 29.33
u=5 26.35 26.35 29.37 27.27 28.67 31.33
u = 10 52.70 47.30 - - 30.00 32.67
Strongest 25.00 25.00 35.92 27.88 6.00 10.00

This research is focused on the classification performance of two methods AQ15
and LERS. For each of the ten data files, the following options were used to compare
the performance of AQ 15 and LERS:
"* Truncate option = t-weight with cut-off weight = 1, 2, 3, 4, 5, and 10,
"* Truncate option = u-weight with cut-off weight = 1, 2, 3, 4, 5, and 10,
"* Truncate option = strongest rule (each concept is described by the rule with

largest t-weight).

Table 3

Method hepatitis soybean primary-tumor

LERS AQ15 LERS AQ15 LERS AQ15

t = 1 19.35 18.71 18.57 18.89 64.60 64.60
t = 2 19.35 18.71 18.24 18.89 64.01 64.31
t = 3 19.35 18.71 18.57 19.22 65.19 65.19
t = 4 20.65 19.35 19.54 20.52 65.78 65.72
t = 5 18.71 19.35 22.15 21.50 68.14 68.44
t= 10 20.00 20.65 49.19 50.49 70.50 71.09
u = 1 20.65 18.71 18.57 18.89 64.60 64.60
u = 2 22.58 20.00 19.87 18.89 64.01 64.90
u = 3 23.87 19.35 23.13 21.82 68.73 68.14
u = 4 23.87 20.65 25.08 24.76 69.03 69.32
u = 5 31.61 20.65 24.76 25.08 69.91 70.21
u= 10 - - 53.09 58.31 82.89 85.25
Strongest 44.92 20.86 24.10 29.97 66.96 73.4

154 J.W. Grzymala-Busse and P. Shah

For each of the data files and the thirteen truncation options, the average error rates
for AQ15 and LERS classification systems were computed using the Wilcoxon
matched-pairs signed rank test. Results of our experiments are presented in Tables 2-
4.

In Tables 2-4, "-" indicates that truncation resulted in elimination of all rules (rules
were too short, i.e., not specific enough).

6 Conclusions

The following conclusions can be derived from our experiments, using the Wilcoxon
matched-pairs signed rank two-tailed test with a 5% significance level. Overall, for
every individual input data file and for all thirteen results of different truncation
options, no method performed significantly better than any other.

Using the same Wilcoxon matched-pairs signed rank two-tailed test with a 5%
significance level; for five input data files, one of the classification methods
performed better than the other; for the remaining five input data files a significant
difference in performance did not occur. In the five cases where one of the
classification methods performed better than the other, for two input data files AQ15
performed better with the files lymphography and iris, for the remaining three input
data files (iris, primary-tumor and mammography) LERS performed better. Thus
these two classification systems do not differ significantly.

Similarly, we tested if any of the classification methods were better in conjunction
with any of the thirteen specific truncation methods used in our experiments. None of
these thirteen truncation methods resulted in any significant difference in performance
of the two classification systems.

However, for a specific data set we may observe a difference in performance
between the two classification methods. Also, for a specific rule set some truncation
may result in better performance. Therefore, we may conclude that for any specific

Table 4

Method house wisconsin mammography bupa

LERS AQI5 LERS AQ15 LERS AQ15 LERS AQ15

t = 1 6.44 6.44 22.24 22.56 31.54 32.71 36.81 37.68
t = 2 6.44 6.44 19.84 20.00 31.78 32.40 37.39 38.26
t= 3 6.44 6.44 18.88 18.88 31.78 32.17 39.13 37.68
t = 4 6.44 6.44 17.92 17.92 32.63 32.71 40.58 39.71
t= 5 6.21 6.44 17.92 17.92 33.96 33.80 42.61 40.58
t= 10 6.67 6.44 22.24 17.92 38.47 38.63 42.03 42.03
u= 1 6.44 6.44 22.24 22.56 31.54 32.71 36.81 37.68
u=2 5.75 5.75 19.84 20.00 31.85 33.02 37.1 36.81
u=3 5.29 7.13 18.56 18.40 29.91 31.85 38.55 37.39
u=4 5.75 8.97 19.20 17.92 31.00 32.87 40.58 42.32
u=5 7.36 6.90 21.92 17.92 30.67 33.96 44.35 42.32
u = 1012.87 18.62 27.20 17.92 34.35 39.80 - -
Strongest7.36 14.94 31.36 19.84 34.81 34.03 41.16 39.71

A Comparison of Rule Matching Methods 155

data set a classification system and a truncation method should be selected
individually. Hence, there is no best universal approach to classification of unseen
cases and truncation of rule sets.

Acknowledgment

The authors would like to thank reviewers for their invaluable suggestions.

References

1. Bergadano, F., Matwin, S., Michalski, R. S., and Zhang, J.: Learning Two-Tiered
Descriptions of Flexible Concepts: The POSEIDON System, Machine Learning 8 (1992),
5-43.

2. Booker, L. B., Goldberg, D. E., and Holland, J. F.: Classifier Systems and Genetic
Algorithms. In Carbonell, J. G. (ed.): Machine Learning. Paradigms and Methods. The
MIT Press (1990) 235-282.

3. Grzymala-Busse, J. W.: Managing Uncertainty in Expert Systems. Kluwer Academic
Publishers, Boston, MA (1991).

4. Grzymala-Busse, J. W.: LERS-A System for Learning from Examples Based on Rough
Sets. In: Slowinski, R. (ed.): Intelligent Decision Support. Handbook of Applications and
Advances of the Rough Sets Theory. Kluwer Academic Publishers, Boston, MA (1992) 3-
18.

5. Grzymala-Busse, J. W.: Managing Uncertainty in Machine Learning from Examples.
Proc. of the Third Intelligent Information Systems Workshop, Wigry, Poland, June 6-11,
1994, 70-84.

6. Holland, J. H., Holyoak K. J., and Nisbett, R. E.: Induction. Processes of Inference,
Learning, and Discovery. The MIT Press (1986).

7. Hamburg, M.: Statistical Analysis for Decision Making. Harcourt Brace Jovanovich Inc.
(1983) Third Edition.

8. Kaufman, K. A. and Michalski, R. S.: The AQ18 System for Machine Learning: User's
Guide, Reports of Machine Learning and Inference Laboratory, MLI 00-3, George Mason
University, Fairfax, VA, 2000.

9. Michalski, R. S.: A Theory and Methodology of Inductive Learning. In: Michalski, R. S.,
Carbonell, J. G., Mitchell T. M. (eds.): Machine Learning. An Artificial Intelligence
Approach, Morgan Kauffman (1983) 83-134.

10. Michalski, R. S., Mozetic, I., Hong, J. and Lavrac, N.: The AQ15 Inductive Learning
system: An Overview and Experiments. Department of Computer Science, University of
Illinois, Rep. UIUCDCD-R-86-1260 (1986).

11. Pawlak, Z.: Rough sets. International Journal Computer and Information Sciences 11
(1982) 341-356.

12. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic
Publishers, Boston, MA (1991).

13. Reinke, R. E.: Knowledge Acquisition and Refinement Tools for the ADVISE
METAEXPERT System, M. S. Thesis, Reports of the Intelligent Systems Group, ISG 84-
4, UIUCDCS-F-84-921, Department of Computer Science, University of Illinois, Urbana,
July 1984.

156 J.W. Grzymala-Busse and P. Shah

14. Slowinski, R. and Stefanowski, J.: RoughDAS' and RoughClass' Software
Implementations of the Rough Set Approach. In: Slowinski, R. (ed.): Intelligent Decision
Support. Handbook of Applications and Advances of the Rough Sets Theory. Kluwer
Academic Publishers, Boston, MA (1992) 445-456.

15. Weiss, S. M. & Kulikowski, C. A.: Computer Systems That Learn: Classification and
Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems.
Morgan Kaufmann Publishers (1991).

Evolving Behaviors for Cooperating Agents

Jeffrey K. Bassett and Kenneth A. De Jong

George Mason University
Computer Science Department

Fairfax, VA 22030
jbassett~cs .gmu.edu, kdejong~gmu. edu

Abstract. A good deal of progress has been made in the past few years
in the design and implementation of control programs for autonomous
agents. A natural extension of this work is to consider solving difficult
tasks with teams of cooperating agents. Our interest in this area is moti-
vated in part by our involvement in a Navy-sponsored micro air vehicle
(MAV) project in which the goal is to solve difficult surveillance tasks
using a large team of small inexpensive autonomous air vehicles rather
than a few expensive piloted vehicles. Our approach to developing control
programs for these MAVs is to use evolutionary computation techniques
to evolve behavioral rule sets. In this paper we describe our architecture
for achieving this, and we present some of our initial results.

1 Introduction

One of the most challenging aspects of building intelligent systems is the design
and implementation of control programs for intelligent autonomous agents. Ma-
nually designing and implementing control programs that are sufficiently robust
to handle dynamically changing environments and uncertainty has proved to be
extremely difficult. As a consequence, there has been considerable interest in the
use of machine learning techniques to help automate this process.

A good deal of progress has been made in this area in the past few years
using a variety of representations (rules, neural nets, fuzzy logic, etc.) and a
variety of learning techniques (symbolic, reinforcement, evolutionary, etc.). A
natural extension of this work is to consider solving difficult tasks with teams of
cooperating agents.

Our interest in this area is motivated in part by our involvement in a Navy-
sponsored micro air vehicle (MAV) project in which the goal is to solve difficult
surveillance tasks using a large team of small inexpensive autonomous air vehicles
rather than a few expensive piloted vehicles. Our approach to developing control
programs for these MAVs is to leverage off the successes in using evolutionary
computation techniques to evolve behavioral rule sets for single-agent systems.
In this paper we summarize related work, we describe our architecture, and we
present some of our initial results. We conclude with a discussion of future work.

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 157-165, 2000.
@ Springer-Verlag Berlin Heidelberg 2000

158 J.K. Bassett and K.A. De Jong

2 Background

Our approach to developing teams of cooperating agents is to represent agent
behaviors as sets of rules and evolve these rule sets using evolutionary comnputa-
tion techniques. There has been a good deal of work done in this area for single
agents, but not cooperating teams of agents. At the same time, there has been
work done on "collective robotics" using other techniques. In this section we
summarize relevant work in these two areas.

2.1 Rule Learning Using Evolutionary Algorithms

One of the earliest rule evolving approaches is Holland's classifier system [4]. In
this system a population of rules is maintained. These rules both compete for
space and priority, while also cooperating to produce an appropriate classification
for the given input.

An alternative approach is to maintain a population of rule-sets which can
vary in length. Examples of these are Smith's LS-1 system [9], and the GABIL
system which uses a GA for concept learning [5]. Typically these types of systems
build rules which have more of a stimulus-response quality.

The SAMUEL system [3] [8], arguably one of the more successful rule evolving
systems, uses an interesting hybrid of these two approaches. Individuals are
implemented as rule-sets, but SAMUEL also uses a rule bidding system and
credit assignment mechanism similar to those found in a classifier system.

Wu, Schultz and Agab implemented a rule learning system for MAVs using
a GA [11]. Their GA implementation was very much a canonical GA, with a
binary representation, and proportional selection. Fitness was measured using a
simulated environment, and each individual defined a variable length rule-set.

2.2 Collective Robotics

Collective robotics involves the use of robot teams which cooperate to perform
a task or set of tasks [1]. Teams have several inherent advantages including the
ability to distribute themselves, do problem decomposition, and perform parallel
processing.

Robot soccer is one of the most popular domains for studying collective robo-
tics. Tucker Balch implemented a soccer simulation to study task differentiation
and specialization [2]. The robots were trained using Q-learning, and they would
often specialize to playing either a defensive or offensive position.

Other problem domains include multi-robot box pushing [6], and foraging
[7] tasks. These problems are often solved by implementing low level swarming
behaviors such as avoid or follow. A learning algorithm is then used to teach the
robots to select behaviors and coordinate with other robots.

A common problem in all these experiments was getting the robots to coo-
perate, particularly when learning algorithms were used. In each case the resear-
chers found that evaluating individuals solely on their own performance wasn't
enough. Only when the team was evaluated as a whole did cooperation occur.

Evolving Behaviors for Cooperating Agents 159

3 Our EA Architecture

Our ultimate goal is to evolve heterogeneous team of specialized agents that
collectively perform specific tasks. Our strategy for accomplishing this is to start
simple and incrementally add complexity. Our first simplification is to assume
that the teams consist of homogeneous agents, i.e., they are all executing the
same task program. This allows us to focus on evolving a single program which,
when simultaneously executed by a team of agents, produces collective coope-
rative behavior, and it allows us to take advantage of existing work on evolving
single agent behaviors.

However, there are still a number of important design decisions that need
to be made, such as how rule sets are represented internally in our EA, how
rule sets are modified over time, etc. We discuss these design decisions in the
following subsections.

3.1 Representation

In our architecture an individual in the population represents a complete set of
rules, and its representation is a string in which all the rules are concatenated.
The ordering of the rules is not important. From generation to generation, the
length of individuals in the population will tend to vary in size. The system has
parameters which define a minimum and maximum size for an individual, as well
as an initial size.

Each rule is a fixed length binary string. Rules are composed of a condi-
tion clause and an action clause. The bits in the condition clause are mapped
to the agent's sensors, while the bits in the action clause are mapped to the
agent's actuators. This allows each agent to perceive its environment and take
a corresponding action.

The rule interpretor used by each agent operates as follows. In any given
situation, all the rules are compared to the current input from the sensors, and
the rule that has the highest match score is executed. There are several possible
ways of doing rule matching. For simplicity we have avoided using rule weights
and bidding techniques such as in SAMUEL or classifier systems. Rule matching
is described in more detail in the description of the agent environment.

3.2 Selection

Our population management scheme is different from a typical GA. We have im-
plemented an ES-like model involving pz parents and \ offspring. Parent selection
is deterministic: all individuals produce the same fixed number of offspring.

The selection bias in our architecture is implemented using survival selection.
In an ES survivors are chosen in one of two ways: using a "+" strategy involving
both the parent and child populations, or using a "," strategy involving only
the child population. The former converges more rapidly but is more likely to
find a local optimum, while the latter provides a broader but slower search. We

160 J.K. Bassett and K.A. De Jong

have both options implemented, and experimentally choose the one best suited
for the particular fitness landscape.

The ES community typically uses truncation selection for determining survi-
vors. We have chosen to use a binary tournament instead because the selection
pressure is weaker, allowing for more exploration early in the search.

3.3 Operators

Since the internal representation is binary, we use a standard bit-flip mutation
operator. We also implemented both a 1-point and a 2-point crossover operator.

The 1-point crossover is the same operator as the one used by Wu et. al.
[11]. Crossover can only occur on rule boundaries. Because individuals can vary
in size, this crossover differs from the standard crossover operator used in most
GAs. Instead of selecting crossover points at the same location on both parents,
different crossover points are selected for each. This means that each child may
contain either more or fewer rules than the parents which spawned them. In fact,
this is the only mechanism by which rule sets can change in size.

The 1-point crossover operator does relatively little mixing of parental rules
and does not produce any new rules. Based on earlier experience, we felt it
would be useful to have a more disruptive crossover operator available as well.
We chose to implement a 2-point crossover operator that was not restricted to
crossing on rule boundaries. Crossover points are chosen by first picking random
rule boundaries in both parents, just as with the 1-point crossover. Then a
randomly chosen offset is applied to both crossover points to obtain the inter-
rule cut point. This is essentially the same crossover used in the GABIL system
[5].

3.4 Fitness

The fitness of a particular rule set is obtained via simulation. Agents within the
simulation use the rule set to control their behaviors. The agents have a task to
perform, and at the end of the simulation they are given a score which indicates
how well the task was performed. Since our intention is to have these agents
cooperate, they are all evaluated as a team, and all receive the same score. In
the current implementation, all agents use the same rule set, and the resulting
score from the simulator is used as the fitness of that rule set.

Without any sort of counteracting force, evolving rule sets tend to grow
uncontrollably, very much the way Genetic Programs (GPs) do [10]. Parsimony
pressure is used to discourage this growth by penalizing the fitness of larger
individuals. We have implemented parsimony pressure with the same approach
used by Wu, et. al. [11] as described by the formula f'(i) = f (i) - cdif (i). The
interesting thing to note about this equation is that the penalty gets stronger
as the raw fitness increases. This approach allows individuals to grow larger
early in the process, perhaps improving the exploration phase of the search. The
particular value used for ai is experimentally determined.

Evolving Behaviors for Cooperating Agents 161

4 Experimental Methods

4.1 Simulation

Currently all of our experiments involve the use of a simple micro air vehicle MAV
simulator. The simulation environment is a 2-D arena surrounded by walls. Nine
identical MAVs are placed into the simulator, and are allowed to move and turn
on each timestep. The MAVs are like helicopters in that they can hover or move
at a slow constant speed. As the MAVs move, they can potentially collide with
each other or with the walls surrounding the arena. Any MAV that is involved
in a collision is immediately destroyed and removed from the simulation.

Each MAV has 8 sonar sensors placed radially around the vehicle. These
sensors have no range information. They return either a 0 or a 1, indicating
whether or not there is an object in range in the direction the sensor is pointing.
The sensor range can be adjusted as a parameter of the simulation.

The robots also have a surveillance range. They can "look" down and observe
objects on the ground. Currently the MAVs pay no attention to what they are
observing. Their only goal is to observe as much of the ground as possible at any
given time.

The behavior of the MAVs is defined by a set of stimulus-response rules.
Each rule is made up of 12 bits, and contains a condition and an action section.
The first 8 bits are the condition section, with one bit for each sensor. At each
timestep the current sensor readings are compared with all the conditions in the
rule set. The rule with the closest match is the winner. If there is a tie, a winner
is chosen randomly from among the best matches. There is also a minimum
threshold for matches. At least half of the condition bits must match the current
sensor configuration. If the winning rule exceeds this threshold, its action is
executed.

The action section of the rule consists of two parts, a speed and a turn angle.
The speed can have a value of either 0 or 1, where 0 indicates that the plane will
not move in the current timestep, and 1 indicates that it will. The second part
of the action is the turn angle. This indicates the number of degrees the plane
will turn relative to its current heading.

Figure 1 provides a more concrete picture of an MAV simulation via a series
of three snapshots from an example run involving a reasonably good set of evol-
ved rules. The goal in this case is for a team of nine MAVS, starting from an
initial configuration on the left edge of a surveillance area, to dynamically confi-
gure itself (without collisions!) in such a way as to obtain maximal surveillance
coverage.

The simulator is stochastic in that the results of a simulation using the same
rule set can change from run to run, resulting in a "noisy" fitness evaluation.
Consequently, we typically run an individual through several trials. We then
assign the average of all the trials as the fitness for the individual.

162 J.K. Bassett and K.A. De Jong

Apples~~ I ppeApples

0
0 aD 0o 0
0 0

G0

0

Resunse :'::: ':Crt:: ., [) LiLt: ,; < :seste 7- fi Resumeii

~~~17 StpReset CueA ý: : " .- IR ren It S t' P q
Applet Stntfd. Appe A. strtd. Ape tre

Fig. 1. MAV Simulator

5 Initial Experimental Results

The goal of our initial experiments was to test our design decisions, tune our
system, and evaluate its ability to evolve effective rule sets for teams of homo-
geneous agents. We describe these experiments in the following subsections.

The following parameters were used for our experiments unless stated other-
wise. We set both y and A to 100. The number of trials was 5, while the crossover
and mutation rates were 1.0 and 0.001 respectively. Individuals were limited to
between 1 and 200 rules, with an initial starting size of 5 rules.

5.1 Population Management

Recall that we have both "+" and "," population management strategies avai-
lable for use. The goal of our first set of experiments was to determine how
sensitive the results are to this design choice. In general (y + A) slightly outper-
formed (p, A), although not by much. As a consequence we adopted the (P + A)
strategy for the remaining experiments.

5.2 Parsimony Pressure

Another important design choice is the amount of parsimony pressure used. In
general, too little parsimony pressure allows the length of individuals to grow
indefinitely, and too much parsimony pressure produces compact individuals
with suboptimal fitness. What is needed is a pressure point in between these
two extremes. The goal of our second set of experiments was to get a rough
sense of how parsimony pressure affected our system. We used three different
values for parsimony pressure initially: 0, 1/2400 and 1/300. Figures 2 and 3
show that the parsimony pressure does work as expected. Higher parsimony
pressures tend to produce smaller individuals, but at the expense of fitness.



Evolving Behaviors for Cooperating Agents 163

PSppI 1P;W

45 pp. 11.

Fig. 2. Length of the best individual aver- Fig. 3. Best-so-far curves of raw fitness
aged over 5 runs for three parsimony pres- averaged over 5 runs for three parsimony
sures. pressures.

5.3 Crossover

Recall that we have both a one and two point crossover operator implemented.
The experiments so far have used the default 1-point crossover operator. Our
third set of experiments involved testing the sensitivity of the results to these
operators. Since we felt there could be some interaction with parsimony pressure,
we tested sensitivity at a variety of pressure points: 0, 1/24000, 1/2400, 1/1200,
1/600 and 1/300. Five runs are performed for 200 generations at each parsimony
pressure value.

In figure 4 we plot the raw fitness after 200 generations versus the parsimony
pressure used. Again we see that higher parsimony pressures yield individuals
with lower raw fitness values. However, we also see that 2-point crossover out-
performs the 1-point crossover consistently at all levels of parsimony pressure.
Consequently, we made 2-point crossover the default.

5.4 Generalization

Although our system is at this point evolving interesting and effective rule sets,
figure 4 is somewhat disconcerting in that fitness declines steadily with increasing
parsimony pressure. Ideally, one would hope to see shorter rule sets emerging
with more general rules that achieve comparable performance. One possible ex-
planation for why we don't see this is that the rule language itself is not well
suited for generalization.

To test this we added classifier-like wildcards to our system by allowing the
genes in the condition section of the rules to take on three values: 0, 1 and '*'.

We also modified the random initialization and mutation operators so that we
could adjust the number of wildcards in our individuals. We added a parameter
called "wildcard ratio" which allows us to adjust the bias for the number of
wildcards which end up in our rules. It can take a value between 0 and 1. A
value of 0.4, for example, would mean that on average 40% of the genes in the
condition sections of the rules will be a



164 J.K. Bassett and K.A. De Jong

0est030wF0,•,0F44 P 30,oyprs Length olb3t ind~duI,.sWl303r,0Raio

2-P4'
4
l130ri4r ---- 

PP -12430 ---.
40 771'03

41 -

-------- ----- --- -----------TI--------------- - -----

"0 0 03 0 3 2 i..............I................. . ..
o o 0o W1~ -15 000 -025 0o 7-5s 02 0A 0.

p-mor Pr.- Wildc~ ei

Fig. 4. Raw fitness vs. parsimony pressure Fig. 5. Length vs. wildcard ratio bias is
is plotted for both the 1-point and 2-point plotted using 3 different parsimony pres-
crossover operators. sures: 1/24000, 1/2400, 1/600.

We ran experiments using several values for the wildcard ratio and parsimony
pressure. In figure 5 we plot length vs. wildcard ratio for the three different
parsimony pressures. Each point on the graph represents the best individual at
the end of 200 generations, and is an average of five runs.

As one can see, adding wildcards to the system had little effect on our ability
to evolving smaller rule sets. A wild card ratio of zero is equivalent to having
no wild cards. As we increase the wild card ratio the evolved rule lengths are
basically unchanged regardless of the parsimony pressure. We see two possible
explanations for this. First, our rule matching approach differs from the one used
in classifier systems. We allow partial matches, and that acts as an alternative,
and perhaps competing method of rule generalization. Another more likely ex-
planation is that the problem domain we've chosen is just too simple. We believe
that wildcards would be more useful if given a more difficult problem.

6 Conclusions and Future Work

We have completed our initial design and evaluation of an EA designed to evolve
behavioral rules for teams of cooperating agents. Building on the work done for
single agent systems, we were able to relatively quickly make and test design
choices that resulted in the ability to evolve effective rule sets for teams of homo-
geneous agents. We are now continuing to develop the system further in several
ways. First, we believe that the ability to evolve shorter and more general rule
sets is important. Our initial experiments with wild cards were not successful.
We are working on understanding this better.

Our ultimate goal is to work toward evolving heterogeneous cooperating
agents. This initial work involving homogeneous provides a foundation for doing
so, but needs further development. Extending our system to include notions of
cooperative co-evolution seem quite appropriate here. We will be reporting on
this in the near future.



Evolving Behaviors for Cooperating Agents 165

Acknowledgments. This research was funded by a grant from the Naval Re-
search Laboratory.

References

1. R.C. Arkin and T. Balch. Cooperative multiagent robotic systems. In David
Kortenkamp, R.P. Bonasso, and R. Murphy, editors, Artificial Intelligence and
Mobil Robots, Cambridge, MA, 1998. MIT/AAAI Press.

2. T. Balch. Learning roles: Behavioral diversity in robot teams. In Collected Papers
from the 1997 AAAI Workshop on Multiagent Learning, pages 7-12, Cambridge,
MA, July 1997. AAAI Press.

3. J. Crefenstette. Learning rules from simulation models. In Proceedings of the
1989 International Association of Knowledge Engineers Conference, pages 117-
122, Washington, DC, 1989. IAKE.

4. J. Holland. Escaping brittleness: The possibilities of general-purpose learning al-
gorithms applied to parallel rule-based systems. In J. Carbonell R. Michalski and
T. Mitchell, editors, Machine Learning: An Artificial Intelligence Approach, Los
Altos, 1996. Morgan Kaufman.

5. K. A. De Jong and W. M. Spears. Learning concept classification rules using genetic
algorithms. In IJCAI 91, Proceedings of the 12th International Conference on
Artificial Intelligence, pages 651-656, Sydney, Australia, 1991. Morgan Kaufmann
Publishers, Inc.

6. C. Kube and H. Zhang. Collective robotics: From social insects to robots. Adaptive
Behavior, 2(2):189-219, 1993.

7. M. Mataric. Learning to behave socially. In D. Cliff, P. Husbands, J.A. Meyers, and
S. Wilson, editors, From Animals to Animats 3:(Third International Conference
on Simulation of Adaptive Behavior), pages 453-462. MIT Press, 1994.

8. A. Schultz and J. Grefenstette. Using a genetic algorithm to learn behaviors for
autonomous vehicles. In Proceedings of the American Institute of Aeronautics and
Astronautics Guidance, Navigation and Control Conference, pages 739-749, Hilton
Head, SC, 1992. AIAA.

9. S. Smith. Flexible learning of problem solving heuristics through adaptive search.
In William Kaufman, editor, Proceeding of the Eighth International Joint Confe-
rence on Artificial Intelligence, pages 422-425, Karlsruche, Germany, 1983.

10. T. Soule and J.A. Foster. Effects of code growth and parsimony pressure on popu-
lations in genetic programming. Evolutionary Computation, 6(4):293-309, 1999.

11. A. Wu, A.C. Schultz, and A. Agah. Evolving control for distributed micro air ve-
hicles. In IEEE Computational Intelligence in Robotics and Automation Engineers
Conference, 1999.



Evolving Finite-State Machine Strategies for
Protecting Resources

William M. Spears and Diana F. Gordon

Al Center, Naval Research Laboratory, Washington DC 20375, USA,
spears~aic .nrl.navy.mil,

WWW home page: http://www.aic.nrl.navy.mil/~spears

Abstract. We are becoming increasingly dependent on large intercon-
nected networks for the control of our resources. One important issue is
resource protection strategies in the event of failures and/or attacks. To
address this issue we investigated the effectiveness of evolving finite-state
machine (FSM) strategies for winning against an adversary in a challen-
ging Competition for Resources simulation. Although preliminary results
were promising, unproductive cyclic behavior lowered performance. We
then augmented evolution with an algorithm that rapidly detects and re-
moves this cyclic behavior, thereby improving performance dramatically.

1 Introduction

We are becoming increasingly dependent on large interconnected networks for
the control of our resources, such as the Internet, communications networks, and
power grids. The advantage of these networks is the ability to route resources
in a reasonably optimal fashion. However, their interconnectivity, coupled with
the lack of global view of what is happening in these networks, can lead to
tremendous problems in network reliability. For example, small local failures
can easily propagate to entire networks, causing loss of service and corruption of
data. Also, deliberate attacks (such as "denial of service" [3] attacks) can easily
cause widespread havoc, as poignantly demonstrated recently [11].

Thus one important issue is the development of effective network traversal
strategies to protect as many resources as possible from failure and/or attacks,
i.e., to maximally restrict the number of resources damaged. To address this
issue we have decided to create a "resource protection" simulation that captures
the essential aspects of this problem. A "defender" attempts to protect resources
before they are damaged by an intentional (or unintentional) "adversary".

Our primary goal then is to create sophisticated reactive strategies for the
defender. We use finite-state machines (FSMs) for our strategies, since there
are a number of precedents for FSMs being effective strategies for adversarial
situations. We use evolutionary algorithms (EAs) to create the FSMs, since there
is ample evidence for the effectiveness of this approach [4,5].' This paper serves
to summarize and highlight the results we have obtained thus far.

1 The evolution of FSMs is often referred to as "evolutionary programming" or "EP".

Z.W. Ra.4 and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 166-175, 2000.
@ Springer-Verlag Berlin Heidelberg 2000



Evolving Finite-State Machine Strategies for Protecting Resources 167

2 The Competition for Resources Problem

Our current Competition for Resources simulation is a novel two-player game
on a toroidal board of squares. Each square corresponds to a resource, and
the twr: p~layers (the "defender" and "adversary") compete for squares on the
board. If the board is of size N x N, then the defender will start at square
(1,1) and the adversary will start at square (N,N). The remaining squares are
initially unoccupied. Since the board grid represents real networks, such as power
grids or communication networks, and in the real world networks may be highly
interconnected and will have few geophysical boundaries, our board is toroidal
(has no edges). In this paper we assume N = 10, which is quite challenging.

Each player can only perceive limited information, namely, the status of the
north, south, east, and west squares neighboring the current position of the
player. The diagonal squares can not be seen. The status of each neighboring
square will be one of the following: unoccupied, occupied by that player, or
occupied by the opponent. Due to the toroidal nature of the board, the defender
and the adversary are close to one another at the beginning of the game. However,
because they can not see along diagonals, they can't see one another initially.

Each time step the players alternate taking an action, which consists of mo-
ving to a neighboring resource to control/protect that resource. A player can
move to an unoccupied square or back to a square that it has previously occu-
pied, but not to a square occupied by the opponent. The player isn't allowed
to "stand still" and make no move. However, because each player must follow a
path of "owned" resources to its current position, it will always be able to make a
move at every time step (it can always back up along the path it has taken). Thus
a player can not be "trapped" at a square, i.e., it can not be completely surro-
unded by the opponent. Once an agent occupies a resource, it controls/protects
that resource forever. A game ends when all squares are occupied or time runs
out. The agent with the most resources at the end of the game wins.

Throughout this paper the adversary will have a fixed stochastic strategy
that the defender must "learn" to defeat. The strategy we have chosen for the
adversary is simple, but is surprisingly hard to beat. If the adversary detects
any unoccupied neighboring squares, it uniformly randomly moves to one of
them. Otherwise it uniformly randomly backtracks to a neighboring square it has
previously occupied. Given the game and our adversary, we focus on developing
effective strategies for the defender.

3 Overview of Finite State Machines

FSMs can be effective representations of agent plans/strategies, e.g., see [1] or
[10]. The type of machine used here allows for indeterminate-length action se-
quences. Recall from Hopcroft and Ullman [9] that the usual acceptance criterion
for finite-length strings is termination in a "final" state. Here we assume that
there are no final states, i.e., action sequences of any length are allowed. This
provides a good model of embedded agents that are continually responsive to
their environment.



168 W.M. Spears and D.F. Gordon

Formally, we define the machine M to be a six-tuple (Q, Z, A , A, ql). Q is
the set of vertices (states) of M, Z is the alphabet of input symbols (which are
agent sensory inputs), and A is the alphabet of output symbols (which are agent
actions). J is the transition function from a state and an input to a next state,
i.e., 3(qj, xi) = qi+i where qi, qi+i G Q and xi G Z is a sensory input. A is the
transition function from a state and an input to an output, i.e., A(qi, xi) = ai
where qj E Q, xi e Z, and ai E A is an action. The initial state is ql.

We assume that the FSMs are deterministic and complete. The FSMs are
deterministic because J and A are functions, i.e., for every state and input there
is a unique next state and action. The FSMs are complete because there exists
a next state and action for every state and input, i.e., 3 and A are fully defined.
Deterministic and complete FSMs are strategies that tell the agent precisely
what to do in every situation it perceives.

For an FSM strategy for the Competition for Resources simulation, the sen-
sory input xi shows the status of the neighboring resources immediately to the
north, east, south, and west of the agent. The status of each resource can be 0
(unoccupied), 1 (occupied by the defensive agent), or 2 (occupied by the advers-
ary). Thus an input of "2100" specifies that the north resource is owned by the
adversary, the east resource is owned by the defensive agent, and that the south
and west resources are unoccupied.

4 Evolution of Finite State Machines

In an EA a population of P individual structures is initialized and then evolved
from generation t to generation t + 1 by repeated applications of fitness evalua-
tion, selection, recombination, and mutation. In the context of the Competition
for Resources simulation, each individual in the population is an FSM. Each
FSM is evaluated by playing the:game numerous times, to obtain an estimate
of how well that FSM is defending the resources against the adversary. Those
FSMs that perform the task better are allowed to have more children, which
are created through the processes of mutation and recombination. This process
continues generation by generation, until termination.

Representation. For efficiency we chose a simple tabular representation for the
FSMs. Rows in a table correspond to states, and columns correspond to inputs.
For each state qj and input xj, table entry (ij) has two elements. The first
element is the next state, i.e., it is J(qi, xj). The second element is the action to
take given the agent is in this state qj and sees input xj, i.e., it is A(qi, xj).

The number of states S is user defined. The maximum number of inputs
is 34 - 81, since the status of each of the four neighboring squares may have
three values (0, 1, and 2). However, the input "2222" will never occur, since that
implies that the defender is surrounded by the adversary. This is impossible, since
the defender must have been able to get to the square it currently occupies. Thus
there are 80 possible inputs and we require a table of size S x 80. Each entry in
the table is an "allele" that represents a next-state/action pair. Since each allele



Evolving Finite-State Machine Strategies for Protecting Resources 169

is defined uniquely, the FSM is guaranteed to be deterministic and complete.
The initial state is always state 1.
Initialization. Throughout this paper a population size of P =100 is assu-
med, since it produced good results. Each of the P FSMs at generation zero is
initialized by using domain-specific knowledge. For any given state (row) and
input (column) the next state is chosen uniformly randomly from the set of all
S states. However, the choice of action is somewhat more complex. The number
of possible actions is maximally four, since the defender may potentially move
north, east, south, or west. However, in practice, some of these moves might be
impossible, if the adversary owns the neighboring squares.

For example, suppose again that the input is "2100". In this case the north
resource is owned by the adversary, and there are only three legal moves: east,
south, and west. Moving north is illegal, since the adversary owns that square.
Actions are restricted to those that are legal, and every input has a set of legal
moves that are possible. However, since the goal of the game is to capture re-
sources, we also found it useful to define preferred moves - those that capture
previously unoccupied squares. When the input is "2100", moves to the south or
west capture new territory and are thus preferable. During initialization actions
are always chosen uniformly randomly from the set of preferred actions, if there
are any. If there are no preferred actions, then a legal action is randomly chosen. 2

Adapting the Number of States. Standard methods for evolving FSMs adapt
the number of states [4]. State adaptation raises a number of issues. When a state
is deleted, should one really erase the state from the table, or should it simply
be made inaccessible? Our prior experience in similar areas has shown that it
is often best to make the information inaccessible [2]. Since information has
been learned, keeping the information stored serves as a useful memory, which
can be re-activated at a later time (if the state is added back to the FSM).
Thus we added a "tag bit" to each row of the FSM table. If the tag is 1 the
state is accessible. If the tag is 0 the state is inaccessible, but is not destroyed.
When a state is added, it is accomplished simply by turning on the tag. Tag
bits are subject to an independent mutation operation, that flips the tags with
probability 0.001. Since state 1 is always the initial state, it can not be made
inaccessible.

Once a state qj has been made inaccessible, how should the remainder of the
FSM (that points to that state) be "repaired"? We investigated two solutions:
(1) if state qj points to qj, change the pointer so that it points back to qi and
(2) change the pointer to point to any state that is accessible, chosen uniformly
randomly. The latter solution performed better.
Adapting FSM Table Entries. Adaptation of the FSM table entries is ac-
complished with mutation and recombination. Mutation is reasonably straight-
forward. Each allele (next-state/ action pair) in the FSM is chosen with proba-
bility pm,, Once an allele is chosen a coin is flipped to see whether the action
or the next state is mutated. With probability p the next state is mutated by
uniformly randomly choosing a state from the set of all accessible states. With

2 The emphasis on preferred actions enormously helps the initial search of the EA.



170 W.M. Spears and D.F. Gordon

probability 1 - p the action is mutated. If there are any preferred actions the
algorithm uniformly randomly chooses one of those. If there are no preferred
actions the algorithm uniformly chooses any legal action. Note that this could
result in no change (e.g., if there is only one legal action). Experiments indicated
that performance was remarkably insensitive to pm, and we use pm = 0.0011S
throughout this paper. Setting p to 0.5 worked well.

We also use PO uniform recombination [12]. A proportion p, of pairs of parents
in the population are chosen for recombination. For each pair of parents, a coin
is flipped for each of the S x 80 alleles. The allele at the table location (ij)
in the first FSM is swapped with the corresponding allele in the second FSM,
with probability PO. If alleles are swapped, both the next state and the action
are swapped. Since only corresponding alleles are swapped, there is no need to
worry about possible illegal actions. If an action is legal for one FSM at location
(i~j) it must be legal for any other FSM at location (i~j), since the input j is the
same. Since parents may have different sets of accessible states, recombination
may swap alleles in such a fashion that a next state that was accessible in one
child FSM is now inaccessible in the other FSM. In this situation a new next
state is chosen uniformly randomly from the set of accessible states (in that
FSM). Experiments indicated that performance was very sensitive to p, and Po.
Using recombination to its fullest extent (pr = 1.0 and P0  0.5) worked best.

Fitness Evaluation. Since the adversary in the Competition for Resources
game is stochastic, each defender FSM will have to play the game multiple times
in order to obtain an estimate of how well it defends the resources. Recall that
the player with the most resources at the end of the game wins. In case of a tie,
the adversary wins. Given G games, the fitness of a defender FSM is the fraction
of games that it wins. This fitness function returns values from 0.0 to 1.0, with
1.0 representing an FSM that won all the games it played. Setting G properly
proved to be difficult. Prior work [7] concluded that the overall efficiency of the
EA may often be improved by reducing G and by running for more generations.
This did not work for us. A low value of 0 resulted in unacceptable sampling
error and a high value was too CPU intensive. We were unable to balance these
constraints with an intermediate value.

To solve this difficulty we took a two-phase approach. Initially, we use a low
value of 0, so that each individual can get a quick evaluation. If that individual is
promising (it did better than the best individual seen thus far), it is re-evaluated
using a high value of 0. If it still beats the best individual thus far, it becomes the
new best individual. The idea was to carefully evaluate only those individuals
that appeared promising. This approach worked quite well. We used a value
of G =500 for the initial evaluation and G = 10, 000 for the subsequent re-
evaluation (if it was performed). Since most individuals were unable to beat the
best individual seen thus far, they were not re-evaluated.

Selection and Termination. We use standard fitness-proportional selection
[8] with elitism (i.e., the population contains a copy of the best individual that
has ever been seen). For a termination criterion we ran the EA for a user-defined
number of generations (2500).



Evolving Finite-State Machine Strategies for Protecting Resources 171

5 Experimental Evaluation

We performed two experiments to judge the efficacy of our method. We were
interested in answering two questions. First, how many states should be acces-
sible initially? Second, does the adaptive-state EA find the optimal range of
accessible states? To address the first question we ran an experiment where each
FSM individual is initialized with S = 10 states. The experiment consisted of
a comparison between the adaptive-state EA in three configurations: one, five,
and ten initially accessible states. The only mechanism for adapting the number
of accessible states is via the independent mutation operation mentioned above,
which flips the accessibility tags. Although we have no "penalty" function per se
(that would penalize the FSMs for having more accessible states), the mutation
operator provides a slight bias towards having S/2 accessible states.

Adaptive Number of States

1 initially accesssible state -----
0.95 5 initially accesssible states ......

10 initially accesssible states.
0.9

0.85 5
--0.8 ...-- . . 1

ýa 0 .

S0.75
m 0.7

0.65 -

0.6
100.55 ::.:-. '::;• ' 1

0 .55 . . . .. .. .. .. . . . . ... . . . ...

0.5
100 1000 10000 100000

Evaluations

Fig. 1. "Best-so-far" curves for the adaptive-state EA with one, five and ten initially
accessible states.

Figure 1 shows the best-so-far curves (the fitness of the best individual seen
thus far) for the adaptive-state EA initialized with one, five and ten accessible
states. The log plot emphasizes early behavior. Results are averaged over ten
independent runs per configuration. On average the adaptive-state EA changed
the number of accessible states in the FSMs, from one to five, five to seven, and
ten to nine, respectively. One can see that having fewer initially accessible states
helps early performance. 3 This is intuitively reasonable, since the adaptive-state
EA is initially searching a smaller space in this situation. However, having too few

3 The difference between one and five initially accessible states is statistically sig-
nificant (p < 0.04) everywhere except between 7,000 and 18,000 evaluations. The
difference between five and ten initially accessible states is significant (p < 0.04)
between 2,000 and 19,000 evaluations. The data may not be normally distributed -
hence we used an exact Wilcoxon rank-sum test with paired data in this paper.



172 W.M. Spears and D.F. Gordon

initially accessible states (e.g., one) hurts later performance. With five and ten
initially accessible states performance was quite reasonable, with a final fitness
of 0.898 and 0.899 respectively. These results indicate that if the best number of
states for solving a problem is not known a priori it may be best to err on the
side of having too many, rather than too few.

The second question (whether the adaptive-state EA finds the optimal range
of accessible states) is also important, although we have not seen it addressed in
the literature. To address it we ran a control (ablation) experiment, where we
turned off the adaptation of the number of states. Instead, the EA was run with
a fixed number of states S. There were ten configurations (S ranged from one
to ten) and ten independent runs per configuration. The results are shown in
Table 1. Two points are clear. The first is that for best performance this problem
requires FSMs with at least three states (i.e., state information is useful). The
second is that performance is fairly comparable in the range of three to ten
states. 4 This agrees with the previous experiment (with the adaptive number of
states), which always ended in the range of five to nine accessible states.

Table 1. The final fitness of the best individuals for each configuration, averaged over
ten runs per configuration. The optimum number of states is between three and ten.

Fixed Number of States
1 2 3 4 5 6 7 8 9 10

Fitness 0.806 0.867 0.893 0.888 0.901 0.903 0.899 0.905 0.896 0.883

In summary, the adaptive-state EA effectively converges to the optimal range
of states. Furthermore, its performance is competitive with the best fixed-state
results (when started with five or ten initially accessible states). The only cause
for concern is that although the adaptive-state EA that started with one initially
accessible state ended with roughly five accessible states, the end performance
was much poorer (0.841) than the fixed-state results (0.901). This suggests that
although states are being made accessible the FSM is not taking full advantage
of them. We investigate this possibility further in Section 7.

6 External Behavior of the Evolved FSMs

In order to understand and improve our results, we watched the agents play
the simulation. The most noticeable feature was unproductive cycling behavior
by the defender. In other words, the defender repeatedly visits a small set of
squares on the board, while the adversary continues capturing new squares.
Unfortunately, evolution alone can not solve this problem because cycles are
inherent to ESMs. Therefore we augmented the FSMs with an auxiliary memory

4 The increase in performance from one to two states and two to three states is signifi-
cant (p < 0.003 and p < 0.04, resp.) whereas the other differences are not significant.



Evolving Finite-State Machine Strategies for Protecting Resources 173

and an algorithm to use this memory to detect and eliminate cycles (up to
a user-defined maximum length). To detect cycles, we use behavior checking

(earlier results with model checking are described in [13]). Behavior checking
examines the dynamic run-time behavior of the agent. Run-time checking of
system behavior is a very new topic in the verification community, but some
of the results already appear promising (e.g., [6]). Here, we present the first
algorithm of which we are aware that does a run-time check for an FSM agent's
cyclic behavior.

Adaptive Number of States with Repair

0. 51 initial states wv/ repair

0.9 10 initial states

0.85

'9 0.755

0.6
T 0.65

0.7 10

0.55

0.5
100 1000 10000 100000

Evaluations

Fig. 2. A comparison of performance with and without cycle checking and repair.

Our behavior checking algorithm is executed while the agents play a game.
For a sliding window of t time steps, the defender saves its current state and loca-
tion on the board (the defender now consists of an FSM and auxiliary memory).
The defender uses this auxiliary memory to make a cycle check before every
move. If all four immediate neighbors are occupied, then the defender checks
whether its current state and location are equal to any other in its window. If
yes, a cycle has been identified and a random alternative action is taken to the
one recommended by the FSM. We have found that a window size of 2 x N = 20
time steps, which identifies cycles up to length 20, works well.

To test the hypothesis that behavior checking and cycle repair will improve
performance, we reran the adaptive-state EA experiment with five and ten initi-
ally accessible states, but added in cycle detection and repair. This hypothesis
is confirmed, as shown in Figure 2.6 Our best performing defender ESM with
repair wins 96% of the games!

5 Of course, this alternative action could also create a cycle, but the behavior checking
algorithm will immediately detect that cycle, after that move.

6 The improvement using detection and repair is statistically significant, p < 0.01.



174 W.M. Spears and D.P. Gordon

7 Internal Behavior of the Evolved FSMs

Although we achieved excellent performance with the addition of cycle detec-
tion and repair, we were still concerned that the adaptive-state EA might not be
making good use of newly accessible states. To investigate this further we per-
formed a dynamic internal analysis of the FSMs as they were executed by the
defender. While the FSM was executing we counted the number of times that
each of the n < 10 accessible states was actually the next state of a transition.
The results for the fixed-state experiment were reassuring - the FSM tended to
make reasonably uniform use of all ni states. However, this was not true for the
adaptive-state experiment. As stated earlier, on average the adaptive-state EA
changed the number of accessible states in the FSMs from one to five, five to
seven, and ten to nine, respectively. However, the internal analysis shows that
only two, four, and six states (respectively) are actually being used to any ap-
preciable degree. This explains the poor performance of the configuration where
only one state is initially accessible. Although five states became accessible, only
two were actually being used. Clearly the adaptive-state EA is having difficulty
making full use of newly accessible states that have never been seen before.

This raises the serious concern that the addition and deletion of states are
such disruptive operations that they cause noticeable problems for the evolution
of FSMs. Currently we are investigating the application of "gentler" operators
that could perform the same role. Simply deleting states (or turning them off) is
too disruptive, due to the repair that must be performed afterwards. However,
merging two similar states could remove a state in a fashion less deleterious
to evolution. This process would be analogous to generalization. Similarly, as
opposed to adding states (or turning them on), an alternative operator would
clone an existing row of the tabular representation. Accessing this new state
would not be deleterious and evolution could proceed to modify it slowly. This
provides a process of specialization. We are currently exploring these options.

8 Summary and Future Work

To summarize, this paper has empirically explored issues related to evolving
FSMs in the context of the Competition for Resources problem. Our experiments
yielded some interesting and useful results. For example, given enough initially
accessible states, it was encouraging to find that the adaptive-state EA was able
to successfully converge to the optimal range of number of states and was able to
provide good performance. However, problems arise when starting with too few
initially accessible states, and an analysis indicates that (for the Competition
for Resources problem at least) the adaptive-state EA is having some difficulty
making good use of newly accessible states. We also found that the ubiquitous
presence of cycles hampered the defender's performance significantly. This latter
difficulty was greatly diminished by augmenting the ESMs with memory and an
algorithm for cycle detection and repair.

Our main focus for the future is to improve the evolution of the FSMs,
to make the Competition for Resources game more realistic, and to continue



Evolving Finite-State Machine Strategies for Protecting Resources 175

our empirical investigations in the context of newer versions of the game. For
example, in the current game resources are all treated equally. In the spirit
of game theory, we would like to consider resources having different numeric
values, and perhaps have the value of a resource differ for each of the agents.
Another possibility is to allow one agent to (with some small probability) "steal"
a resource owned by the other agent. Another possibility is to include multiple
agents and co-evolution. What is most interesting about this game is how easily
it can be changed to represent a wide variety of problems. For example, with
minor modifications we have extended the game to represent the epidemiology
of virus versus anti-virus spread. In the virus version of the game, each square
represents an agent with the virus, anti-virus, or neither. At each time step,
an agent having the virus or anti-virus can spread it to one of its neighbors.
What one sees on the board when watching this version of the game looks like a
"spreading activation". Further pursuit of the virus version both in simulation
and in a corresponding mathematical model are currently in progress.

References

1. Carmel, D. and Markovitch, S. (1996) Learning models of intelligent agents.
Proceedings of the Thirteenth National Conference on Artificial Intelligence.

2. De Jong, K., Spears, W. and Cordon, D. (1993) Using genetic algorithms for
concept learning. Machine Learning Journal, 13 2/3.

3. Denning, D. (1999) Information Warfare and Security. Addison-Wesley, NY.
4. Fogel, L. (1999) Intelligence Through Simulated Evolution: Forty Years of Evo-

lutionary Programming. Wiley Series on Intelligent Systems.
5. Fogel, L., Owens, A., and Walsh, M. (1966) Artificial Intelligence Through Simu-

lated Evolution. John Wiley and Sons, Inc., New York.
6. Gordon, D., Spears, W., Sokolsky, 0., and Lee, 1. (1999) Distributed spatial

control, global monitoring and steering of mobile physical agents. Proceedings of
the IEEE International Conference on Information, Intelligence, and Systems.

7. Grefenstette, J. and Fitzpatrick, J. (1985) Genetic search with approximate fun-
ction evalua~tions. Proceedings of the Int'l Conference on Genetic Algorithms.

8. Holland, J. (1975) Adaptation in Natural and Artificial Systems. University of
Michigan Press.

9. Hopcroft, J. and Ullman, J. (1979) Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, Menlo Park.

10. Jefferson, D., Collins, R., Cooper, C., Dyer, M., Flowers, M., Korf, R., Tay-
lor, C. and Wang, A. (1991) Evolution as a theme in artificial life: the Gene-
Sys/Tracker system. Proceedings of Artificial Life II.

11. Levy, S. and Stone, B. (2000) Hunting the hackers. Newsweek, February 21.
12. Spears, W. and De Jong, K. (1991) On the virtues of parameterized uniform

crossover. Proceedings of the International Conference on Genetic Algorithms.
13. Spears. W. and Gordon, D. (2000) Evolution of strategies for resource protection

problems. Submitted to A. Ghosh and S. Tsutsui, editors, Theory and Application
of Evolutionary Computation: Recent Trends. Springer Verlag.



A Method of Generating Program Specification
from Description of Human Activities

Shuhei Kawasaki and Setsuo Olisuga

Waseda University, Department of Inf. and Comp. Science
3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, JAPAN

Abstract. This paper discusses a method of translating human activi-
ties into a program. The final goal of this research is to develop an
automatic programming system which can be used easily. A new mo-
deling scheme is introduced to allow human-like representation and to
replace the subject of programming from person to computer. A me-
thod of translating rules described based on this modeling scheme into
program specification is proposed. By using domain which is defined to
variables of rules, the optimum program specification can be generated.

1 Introduction

The goal of this paper is to discuss a part of research conducted by the author's
group. The final goal of this research is to develop a way of automatic program-
mmng. Programming is a special activity by human being. Therefore a concept of
activity used in this paper is discussed first. Every activity has its outcome and
is executed by some subject. The subject can be a person or the other creatures
or a machine. Each subject has its own language and tool for representing and
promoting an activity. Accordingly every subject has its own way of promoting
activity. Subject's activity is also affected by environment in which the subject
is put. Therefore there can be different activities with the same outcome by the
different subject and environment. In order for someone to watch and describe
the activity by some others correctly, it is necessary to include the subject of the
activity and its environment in its representation.

When the subject is a computer, a formal description of its activity is a com-
puter program. Programming is an activity to represent formally an activity of
a computer at the higher level. Subject of this activity (programming) has been
mostly human being. To automate programming is to replace the subject of the
activity from person to computer. In order to achieve this goal, it is necessary to
represent formally the activity of programming of which the subject is a compu-
ter. Thus the objective of this paper is to describe a way of representing a goal
directed activity by human being and translating it into an activity by computer,
i.e. program. This goal is divided into two sub-goals; creating a representation
of human activity and translating it into computer's activity. The range of re-
presentation of human activity is very wide. Among all, such a representation
that is very near to computer program so that almost formal transformation into

Z.W. Rag and S. Ohauga (Eds.): ISMIS 2000, LNAI 1932, pp. 176-185, 2000.
©) Springer-Verlag Berlin Heidelberg 2000



A Method of Generating Program Specification 177

computer program is possible is the ordinary program specification. This form is
far from natural representation of human activity and the one is required to take
programming technique into account in the representation. The objective of this
research therefore is to allow ones human-like representation on human activity
and also to discuss a computer technology that can translate it into computer's
activity. This paper discusses a method of translating human activity to pro-
gram code in this vast area. It is assumed that description of human activity has
already been given. To make it is another problem.

2 New Modeling Scheme-Model Representation
Including Subjects and Objects

Every significant computer activity has some object to which the activity ap-
plies. Therefore the scope of consideration is limited to this class. That is, activity
without any object is out of consideration. A new modeling scheme is developed.
It is to represent every activity with their related objects that concern achieving
the goal. It includes two kinds of structures; object model structure and subject
model structure. The former is a structure of objects that are included in some
activity to be executed by some subject. Objects are organized in a model struc-
ture by means of finite structural relations. Typical examples are is-a relation
and part-of relation. In order to represent human activity in its natural form for
human being, these are not enough but the others are necessary. For example,
it is difficult to represent a power set with these structural relations. The power
set concept is sometimes important to represent human idea and, accordingly,
human activity. Cartesian products, list and graph are also necessary. Thus a
least set of structural relations must be defined to represent these structures.
Using these basic structural relations an object structure is formed. Usually it
is a hierarchy either or both of is-a and pat-of relation and graph in the same
level of the hierarchy,

Subjects are also organized in a model structure by means of a structural
relation. In reality there is no substantial structural relation as is the case of
object structure. Rather subjects exist independently to each other. Every sub-
ject has it's own activity. It is represented by a predicate. It includes a subject
as a term. There is some relation between activities. An activity A may depend
on another activity B in the sense A uses the outcome of B. In this case these
activities, and therefore their subjects, are arranged in a hierarchy such that the
activity B is put under the activity A. When activities A and B have mutual
dependency they form a recursive relation. In this case the activities and their
subjects are put on the same level. Thus subjects are organized in a structure
via the relation of their activities.

There are two types of activities. The first class activities are those arranged
at the top or middle of the subject model hierarchy. Every activity in this class
has some dependency relation to the other activity. The second class activities
are those arranged at the leaves of the subject model hierarchy and have no
dependency relation to the other activity. Every activity can be executed inde-



178 S. Kawasaki and S. Ohsuga

pendently to the other activity referring only to the object structure. Thus the
global goal of this system can be achieved by executing these activities from the
bottom. This is a case of human execution of the activities. Automatic program-
ming is to translate this structure of activities into a program. In this case the
order of activity execution in computer must be decided. The first class activi-
ties concern the control structure of the produced program. In order to decide
this control structure, top-down interpretation of the activity structure is ne-
cessary. Each activity at the leaf represents a program unit that is fabricated
in the control structure. This unit program is not always very small. In order
to make up whole program the automatic programming of the unit program
must be assured. Thus automatic programming consists of two stages; automa-
tic programming of unit program and development of control structure. In the
following the automatic programming of unit program is discussed.

3 KAUS as Representation Language

A language suited for representing this system is necessary. In order to cope
with problem model of the form as discussed in section 2, it must be suited for
representing predicate including data-structure as argument and also for descri-
bing meta-level operation such as knowledge for describing on other knowledge.
KAUS (Knowledge Acquisition and Utilization Language) has been developed
for the purpose. In the following, some logical expressions appear as knowledge.
In order to keep consistency and integrity of expressions throughout the whole
system these must be written in KAUS language. But these are not necessarily
written in correct KAUS expressions but locally simplified. It is because KAUS
syntax is not included in this volume and also these locally simplified expressions
are more comprehensive than correct expressions.

4 Automatic Programming for Unit Program

Problem formulation of automatic programming of unit program is as follow. A
unit activity at the lowest level (leaf) of activity hierarchy is presented. It beco-
mes a query to a programming system to be solved and the obtained procedure
for solving this problem is translated into a program. The system contains a kno-
wledge base and inference engine to solve problem automatically. The activity as
query includes variables with domains to represent input and output variables
of program to be generated. The programming system is required to solve the
query as problem for all possible cases in the variables of designated domains.
This programming process is composed of two stages; generating a specification-
tree to represent the program specification and converting this specification-tree
to object code. The specification-tree is represented as shown in Fig. 1.

Every activity is represented in the form of logical predicate in this tree. The
tree has predicate nodes and rule nodes, and these two kinds of nodes appear
alternately. Variable type, either input type or output type, is recorded in every
predicate-node. Domain of variables is recorded in rule-node. This domain can



A Method of Generating Program Specification 179

required domnain---* xlERO2.

X---R0- :traced domain

(cD :rule node
i px() :predicate node

pl(+xl,+x2,-yl) rx :rule ID

FiERi Rxx :domain

ri ER
12  condx:branch condition

p2(+xl,4+x2) p3(+xl,-yl)

r2 ----Ex2ER2 3...yE3r4....llR

p6(+xl) p7(+x2) p8 condl(+xl) p4(+xl,-yl) condn2(+xl)(call p8(+xl,-yl]

I• -- \-I I -

Fig. 1. specification-tree

be narrowed while problem solving as will be shown later on. More than one
specification-tree is generated depending on the situation to represent different
function and each specification-tree is transformed into program source code as
a function call. In each tree, the function name and its process are declared in
the top node at beginning, and the top node representing a function is expanded
into child nodes to represent its detailed. Nodes inside the tree show a logical
structures and input-output relation of processes. Every leaf nodes represents
a primitive process, to which a program is prepared. With KAUS, leaf node
is either fact predicate or PTA predicate., which process is defined in proce-
dural language. When a specification-tree is generated and is transformed into
program, the nodes inside tree are ignored but only leaf nodes are encoded on
the basis of depth-first-search because these inner nodes are generated as inter-
mediate products to get the correct set of leaf nodes. A node of which lower
nodes are connected by "or" connective is transformed into a branch. Once a
specification-trees is generated, it can be transformed into the program of any
target language according to the transformation rule. Thus for automatic gene-
ration of program, the method of generating specification-tree is important. It
is discussed in detail first.

4.1 Specification-Tree Generation

The basic idea of automatic programming in this paper is based on automatic
problem solving. Backward reasoning is achieved by the inference mechanism
of KAUS. A succeeded path of problem solving in the trace of the process is
remained by deleting backtracked paths and is represented as a tree of rules



180 S. Kawasaki and S. Ohsuga

used there. In general it is difficult to solve problems including variables and
generate the trees directly because depending on the domains of mutually related
variables the different trees can be generated.

Therefore the tree is generated in two steps. First the system chooses a
specific value for every variable from its domain, solves this instance problem
and generates an instance tree. The tree can be different by the selection of
instances for the variables. It shows a possible pattern of the tree.

Then, as the second step, generalize this tree by recovering a variable to
each instance. There are two approaches for generalization. One is to apply the

instance problem solving repeatedly by selecting a different set of instances each
time until no more new pattern of the tree is generated. Then by merging every
different pattern into a tree, a general structure of the tree for the query including
variables is generated.

With this method selecting sufficient queries is necessary to get the whole
patterns of trees to satisfy all values in input domain. The authors adopted first
this method. But here is a difficulty in case input domain is continuous or such
as the whole integers. Even in this case the number of possible patterns can be
finite. But there is no guideline for an efficient section of the instance sets.

The second approach is to use the domain information of variables after an
instance problem, or a few instance problems if necessary, was solved and an
instance tree was generated. In KAUS expression, domain can be included in
every predicate like '(Ax/domainl)(Ay/domain2) predicatel(x, y):- predicate2
(x), predicate3'. By using this domain information, it becomes possible to make
the optimized program specification.

The forrowing rule shows how to generate specification-tree.

makeSpecificationTree(+Subject, +Query, -SpecificationTree) -

makeNewInstanceQuery(+Query, -InitialQuery),
getInstanceTree(+Subject, +InitialQuery, -InstanceTree),
analyzeInstanceTree(+Query, +InstanceTree, -AnalyzedTree),
modifyTree(+InitialTree, -ModifiedTree),
generalizeTree(+Subject, +ModifiedTree, -GeneralTree),

OptimizeTree(+GeneralTree, -0ptimizedTree),
identifyConditionNodes(+OptimizedTree, -SpecificationTree).

generalizeTree(+Subject, +CurrentTree, -GeneralTree) -

makeNewQuery(+CurrentTree, -Query),
makeNewInstanceQuery(+Query, -InstanceQuery),
getInstanceTree(+Subject, +InstanceQuery, -InstanceTree),
analyzeInstanceTree(+Query, +InstanceTree, -AnalyzedTree),
mergeTree(+CurrentTree, +AnalyzedTree, -MergedTree),
modifyTree(+MergedTree, -ModifiedTree),
generalizeTree(+Subject, +ModifiedTree, -GeneralTree).

generalizeTree(+_, +GeneralTree, -GeneralTree).



A Method of Generating Program Specification 181

For readability, the form of this rule is modified from KAUS form. In this
expression, "+" mark given ahead to value means that the value is an argument,
and "-" means return value.

4.2 An Example of Specification-Tree Generation

The specification-tree generation process is explained here with an example.
Whole processes are shown in Fig.2. An operation to generate a specification-tree
is started by the predicate makeSpecificationTree. makeNewlnstanceQuery
select a specific value from the domain RO in the query qO. And, new query
NewInstanceQuery is made with the specific value selected. getlnstanceTree is
called by value NewInstanceQuery, and, system actually solve problem. Tracing
the problem solving process, getInstanceTree make an InstanceTree. Then
analyzeInstanceTree analyzes the input-output type based on InstanceTree
and traced domain of each variable of all nodes in the InstanceTree. modify
Tree modifies the structure of AnalyzedTree. The tree ModifiedTree is the
initial state of specification-tree.

By generalizing this tree GeneralTree to represent a general processing struc-
ture is obtained. In generalizeTree, makeNewQuery and makeNewInstance
Query search such nodes that are possible to select not-yet used rule in the tree
being generalized, and generate a query to select not-yet used rules. For example,
the node of pl(x) has possibility of being expanded by the rule r2 other than
rl. Since x C RO in pl(x) and RO n R3 # 0, it is possible to generate a query
'pl(3)?' that expands r2. Using this query, it is possible to obtain an analyzed
tree in the same way as that used for obtaining an initial tree. Then mergeTree
and modifyTree merge the tree being generalized and this new analyzed tree.
This generalization procedure is repeated until new query is not generated any
more by makeNewQuery. In this example, generalization by a query 'p2(5)? '
is achieved again and the generalization terminates. By identifying the conditi-
ons of optimization and branching in the tree thus obtained, a specification-tree
(SpecificationTree) is obtained.

Note that the rules that are not used like r3 do not appear in the specification-
tree. As is shown, selection of necessary and sufficient rules becomes possible by
tracing domain of variables. Accordingly, general rules can be written without
taking notice on each case of using to specific problem.

4.3 Domain Tracing

Domain tracing is a most important process in specification-tree generation.
To put necessary and sufficient rules into specification-tree becomes possible by
tracing and narrowing domain of input-output values. The domain of arguments
is traced from top of the tree, and the domain of return value is traced from
the bottom of the tree. Fig. 3 shows the example when query 'pl(x, y)?' is given
with x as argument and y as return value. The domain of x is traced from the
top and the domain of y is traced from the bottom. In r3, y is function of x,
therefore the domain of y (R7') have to be calculated according to the domain



182 S. Kawasaki and S. Ohsuga

qo:(VxERO={2,3,4,5}) pl(x)?
rl:(VxERI={0,1,2}) pl(x):-fl,f2.
r2:(VjHR2={3,4,5,6}) pl(x):-f3,p3(x)
r3:(VXER3=[{,2}) p2(x):-f4.
r4:(VXER4={3,46) p2(x):-f5. xeRO xER2'
r5 :(VXER5={5,64) p2(x) :-f6.

ql:pl(3)? pl(+x) xERO nR2 q3:p2(5)? pl(+x)
(a) q:p )? C) ={3,4,5)=R2' R51

pl(+x) r2

L.f3 p2+x) xER2fR4 fi f
Qri) ={3,4}

fi f2
f5

XERO C xERO xERO

(b) (d) .. M "
pl(+X) pJ.(+x) pl(+X)

xERO r)RI ([ -2- xG{2) xF(2}
=-2- " .. ,, ... "-..

fi f2 fi f2 f3 p2 +x) fl f2 f3 p2 (+x) xG{5}

XE{3,4}--4--5
XE(3,4}. r4

f5 f6
f5

Fig. 2. specification-tree generation

of x. If calculation of all of the primitive predicates is possible, the domain is
traced precisely. In many cases, however, this calculation is not possible. In this
case, the domain to which calculation is not possible is set to Univ to mean a
universe. A larger domain causes selecting unnecessary rules. However in many
cases it does not matter even if the domain is set to Univ. In case of narrow
domain is necessary in the following process in order to select rules exhaustively,
however, larger domain causes a problem of rule selection.

There are some cases in which possibility of programming can be revealed
during domain tracing. For example, let a predicate pl of which the domain of an
attribute x is RI be expanded and it is revealed that pl is to be processed either
by p2 or p 3 of which the domain of the argument x is R2 or R3 respectively.
If R1DR2UR3, some inputs for pl in R1 cannot be processed only by R2 and
R3. Then programming becomes impossible with existing rules. If there are such
nodes other than those nodes that are to be used for judging the conditions as
will be discussed below, the system has to tell user that the necessary rule for
programming is not enough and suuply the lacked knowledge.

When specification-tree has a recursive structure including loop, the domain
of the variable that is transmitted inside loop change in every loop operation.
Since it is difficult to trace the domain that changes in every cycle, the domain is
made Univ. Those variables that are not changed in the loop operation are given



A Method of Generating Program Specification 183

rl: VxERl, VyeR2) pil(+ix, -y) xERl yER6 n)R4fnlR2fnR71

I t
r2: (VxER3, V yeR4) p2 (+x, -y) xERlfnlR3 yER6 nlR4frlR7'

I t
r3: (VxER5, V yER6) y=f(X xERlfClR3fr)R5 = R7 yeR6frlR71

Fig. 3. domain tracing

the domains that are the domains at just before entering the loop. It is necessary
here to investigate the method of tracing the domain that is transmitted inside
loop as far as possible, but in many case this is not urgent because putting it as
Univ does no bring large defect.

4.4 Structure Extraction

Different from procedural program, an activity defined in the form of predicate
does not have information on process sequences. In order to get a process sequen-
ces, let system solve a problem, and get the specification-tree which is equivalent
to the process system performed. Before structure extraction, a specification-tree
generated in this way may have many duplicate or overlapping sub-trees. These
sub-trees are extracted from the main tree as an independent function. Recursive
process and loop process has a sub-tree of the same form, which appears repea-
tedly increasing the depth in the tree with the number of repetition. A special
treaty is necessary in order to prevent the tree becoming of infinite depth.

This sub-tree is extracted and processed separately. This is achieved by cut-
ting this sub-tree as a separate specification-tree. Only a calling method to this
extracted part is left to the original tree. After then every specification-tree that
has the same top node is merged into a single tree. After then there is no such
sub-trees that have the same predicate node in the same tree and let the number
of specification-trees becomes at most equal to the number of rules.

As an example of sub-structure extraction, a case including a loop is shown
in Fig. 4. This example shows that a structure is to be modified by adding an
analyzed instance tree T3 to a tree being composed of Ti and T2 and being
generalized. The node surrounded by a block in this figure shows such a node
that appears plural times by adding T3. By cutting these nodes from the end it
becomes the state of (b). Then the state (c) is the final state that is obtained by
merging the p2 that is selected by the condition of the argument by disjunction.
When two specification-tree that have the predicate p2 as a top node is merged,
every domain for the variables in merged specification-tree is calculated again
and modified.

Here is a problem of defining specification-tree having the same node as a
top. The condition that it has the same predicate with the same number of
arguments and the same input-output relation is mandatory. As well depen-
ding on whether the equality of the domains of the input-output variables that
were obtained by tracing is added to the condition or not, the generated speci-
fication can be different. When two specification-trees with the different input



184 S. Kawasaki and S. Ohsuga

(a) T3: p12
Ti: p1 T2 : p7

p2 p3 p8 p9p2 p8

p4 pl0 1  pllp 2 pO 1 1

plO p2

p10 p2

(b)

Ti': p1 T2": p7 T3": p12 T4: p2 T5: p2 T6: p8

TI': pl T21: p7 T31: p12 T41: p2 T6: p8

p2 Ip3 p8 p9 p p8 plO p11

p4 p7p 1 3  p

Fig. 4. program structure extraction

domains are merged, the generated program code can be shorter but its pro-
cessing time can be longer because the number of determining the conditions
increases. This becomes a problem for the program unit that is used frequently.
This problem is resolved by handling the specification-trees including the dif-
ferent input domains as different until generalizeTree could be finished. That
is, until GeneralizedTree could have been obtained, the structure is converted
giving the processing speed the higher priority and, at the optimization stage,
it is decided whether two specification-tree with the different input domains are
to be merged or not. Since every structure has already been obtained at the
optimization stage, there is no problem to merge two trees as long as the tree
structure is the same even if the trees have the different input domains. When
two tree structures are different to each other because of the difference of the
input domains, there is no fixed basis to decide whether to reduce the program
size by merging or to keep processing speed high by leaving the tree without
being merged. The extra condition, for example by human decision, is necessary.

4.5 Branch Conditions

Finally a method to extract branch condition is discussed. Extracting branch
condition is achieved after GeneralizedTree could have been generated and



A Method of Generating Program Specification 185

optimization would have been finished. Specification-tree at this stage includes
information on an execution order of program components and function call
conditions, branch condition at the disjunctive node is not described explicitly.
It is necessary for identifying the branch condition. There are two cases in the
inference operation to select rules that induce branch operation. One is the
case in which different rules are selected by backtracking. The other is the case
rule is selected by matching of variables. In case of using KAUS, rule selection
by matching the domains can occur because it includes domain information
explicitly.

Operation performed at extracting branch condition is identification of predi-
cate that is defined to represent conditional operation and generating a decision
tree for rule selection by matching between identified branch condition and varia-
ble. These methods are now being investigated. At the moment, such a decision
tree is not made but the condition is given to every variable. Also the predicate
that has been defined as representing conditional operation it is shown explicitly
that it forms a branch condition. Since it is anticipated that the conditional ope-
ration is made intentionally when it is described as a procedural specification, it
is possible to ask persons to describe it explicitly. But it is necessary in future
to study on a method to detect conditional operation automatically.

5 Summary

A method of translating human activities into a program is discussed. To allow
human-like representation and to replace the subject of programming from per-
son to computer, a new modeling scheme is introduced. By using domain which is
defined to variables of rules, the optimum program specification as specification-
tree can be generated from rules. The system based on this method discussed
here is now being developed. We already developed the basic part of this system
and now implementing the method of domain tracing.

References

[0HS96] S. Ohsuga; Multi-Strata Modeling to Automate Problem Solving Including
Human Activity, Proc.Sixth European-Japanese Seminar on Information Modelling
and Knowledge Bases, 1996

[0H598] S. Ohsuga; Toward truly intelligent information systems - from expert systems
to automatic programming, Knowledge Based Systems, Vol.10, No.3 1998

[0H599] S. Ohsuga, T. Aida; Externalization of Human Ldae and Problem Description
for Automatic Programming, Proceedings of ISMIS, ppl63-17 1, 1999

[R0597] F. H. Ross; Artificial Intelligence, What Works and What Doesn't? Al Ma-
gazine, Volume 18, No.2, 1997



PLAtestGA: A CNF-Satisfiability Problem for
the Generation of Test Vector for Missing

Faults
in VLSI Circuits

Alfredo Cruz, PhD

Department of Electrical Engineering, Polytechnic University of
Puerto Rico, 377 Ponce de Le6n Ave., San Juan, Puerto Rico, 00918

across @coqui.net

Abstract. An evolutionary algorithm (EA) approach is used in the
development of a test vector generation application for single and multiple
fault detection of growth faults in Programmable Logic Arrays (PLA).
Evolutionary algorithms are search and optimization procedures that find their
origin and inspiration in the biological world. In this paper, we apply the
genetic operators to the CNF-satisfiability problem for the generation of test
vectors for growth faults. CNF has several advantages, there are not
dependencies between bits: any change would result in a legal (meaning)
vector (either a minterm or a maxterm). Thus we can apply mutations and
crossover without any need for decoders or repair algorithms. The crossover
operation unlike previous operators used in PLA test generation, does not use
lookups or backtracking.

1 Introduction

Recent Literature has addressed the problem of PLA test generation [1], [2], and [4].
Several algorithms have been also proposed for PLA testing using the sharp (T)
operation or a modified version of this operation, but they tend to be computationally
expensive [4], [5], and [6]. Smith [7] suggests simplifying the algorithm by
generating a test for every fault. This results in considerably larger test vectors.
Hence, a minimal test set is not guaranteed. Other approaches employ additional
hardware, which means greater costs, and potential degradation of PLA performance.
In [8] an overhead ranging from 20% to 50% has been reported for large PLAs using
various such methods.

However, PLA testing based on genetic and evolutionary algorithms is in its
earliest development. An algorithm for shrinkage faults using genetic algorithms is
proposed recently in [3].

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 186-195, 2000.
© Springer-Verlag Berlin Heidelberg 2000



PLAtestGA: A CNF-Satisfiability Problem 187

In this paper we present an algorithm for PLA test generation and its
implementation using genetic operators to the CNF-satisfiability problem which
shows that test pattern generation can be very efficient. This technique eliminates
operations (such as backtracking and T operation) that can become computationally
intractable with increasing PLA size.x. X x• x.

destne • ••.input lines

device "p

tested\

M5 M4 M3 M2 foutput

function

Fig. 1. Product Term Under Test

2 Fault Modeling

In testing digital circuits, the most commonly considered fault model is the stuck-at
fault (i.e., s-a-0 or s-a-i). However, because of the PLA's array structure the stuck-at
fault alone cannot adequately model all physical defects in a PLA [9]. The
intersections between product lines and input bit lines or between output function
lines and product term lines are called crosspoints. Each product line is used to
realize an implicant (product term) of the given function by placing appropriate
crosspoint devices into what is known as the AND plane. Therefore, a new fault
class model, known as the crosspoint model is used. The unintentional presence or
absence of a device in the PLA causes a crosspoint fault.

The focus of this paper is on the use of genetic algorithms for the generation of
test vectors for growth faults.

3 The Growth Fault

Growth faults correspond to the removal of a literal, in the AND plane, from an
implicant (product term) of the function which causes the growth of the implicant. A
growth fault causes the ON-set (i.e., minterms) of a fault-free PLA to grow into the
OFF-set (i.e., maxterms). To detect a fault in a PLA, it is important that the PLA
output in the presence of the fault differs from the PLA output in the absence of the



188 A. Cruz

fault. The two requirements for fault detection are: Fault Sensitization and Fault
Propagation.

m, 1 X 0 1

m2 0 X 1 0

m3 0 1 0 X

m4 0 0 0 X

m5 0 X 0 1

Fig. 2. Example PLA for Growth Faults

A missing device fault in the AND plane will be sensitized if and only if the
implicant under testing carries a 0 when fault-free and if the implicant carries a 1 in
the presence of the fault. Once a fault has been sensitized then a propagation path
must be established, otherwise the fault is maskedl. The propagation is done by
deselecting all other product lines connected to the output except the product term
under testing.

The procedure for deriving the growth test vectors is explained with aid of Fig. 1.
The product term is represented by an AND gate of 4 inputs. A dash '-' in the

input lines indicates the absence of a device, whereas a circle 'o' on the input lines
indicates the presence of a device.

For example, to detect a missing device at x1 of the implicant under consideration
[iX01], a logic 0 must be applied to the input xl, while the care values (at input x3
x4) remain unchanged. Since the value of the literal was changed from 1 to 0, then a
term from this set could detect a fault in the uncomplemented bit-line. To detect a
fault in the complemented bit-line the literal must be changed from 0 to 1.

Now we should be able to sensitize this fault (if one exists) at the output of the
AND gate under consideration. A value 1 at the output of the AND gate denotes a
fault while the implicant under test carries a 0 in the absence of a fault. To generate a
0 on the product line (required for sensitization of growth faults) the input value
connected to the target growth fault bit-line is toggled to the value opposite the value
representing the used bit-line.

The small PLA of Fig. 2 is used as a running example for illustrating the test
pattern generation for growth faults using genetic algorithms (GA). The function of
Fig. 2 can be expressed both as a truth table or as sum-of-products as shown below:

exn c u x2, X3,wx4) m o (0,L,2,4,5,6,9,13)

SThe necessary condition under which masking occurs in PLA is given by [10].



PLAtestGA: A CNF-Satisfiability Problem 189

Xl x 2  x3  x4  f

mI (IL' Y lXll lX0

, . - IX1 a £LX..l oXI

mI , 10X 0afX 011
M3 

.100X O(..0_X 001M4
I.• x 1Y 0Xl x ..f)X..

M 5  T T .> - - ~ ci ~~

Fig. 3. The Growth Term of the PLA

3.1 Growth Term

The above discussion leads to the following rules that must be established for the

generation of test vectors, for growth faults. A growth term stands for the set of extra
terms contributed by a growth fault.

The growth term from a given set of product terms is derived as follows:

PROCEDURE 1:

For each product line mj
Do (n - log2L2) times

{
Construct a growth term as follows:

Scan the product term from left to right until an unmarked literal is found;
Mark the literal and toggle its value from 0 to 1, or from 1 to 0;

Leave the other components of the product term intact (both literal and don't
care values). These extra terms correspond to the growth term.

I

(n - log2n) is the number of literals on each product term [3].

The growth term for the sample PLA is derived using Procedure 1 (see Fig. 3).
The fully redundant growth terms are underlined. A growth term is fully redundant
when it is fully covered by one or more input product terms. A growth term may be
partially redundant, i. e., partially covered by one or more input product terms.

A growth term may have terms in the ON-set function (i. e., minterns) and in the
OFF-set function (i. e., maxterms). The terms in the ON-set function fail to select
uniquely the product line on which the target is located, since it will also select the
product terms that cover them. Therefore, the fault can not be propagated.



190 A. Cruz

Furthermore, since a fault can be sensitized by a term from the ON-set function, it is
necessary to delete those terms from the growth term. This procedure can be carried

out by computing the intersection (denoted by (n)) between the growth term
generated for each product with the complement function (OFF-set) [4], [6]. One of
the disadvantages in this approach is the backtracking that could occur when the test
is chosen and fails to propagate.

Another approach is to apply the sharp operation (T) between the growth term
generated for each product term and the ON-set function. Bose in [1] and [5] uses
this operation to find terms that are not covered by the ON-set function. However,
terms partially covered by any input product can not be eliminated from the growth
term without eliminating the growth term. That is, an invalid test vector may be
generated after the Quine-McCluskey method is applied.

3.2 Conjunctive Normal Form

PLAtestGA uses the conjunctive normal form (CNF) logical expression, equivalent
to the complement's function, to derive the test set for growth faults. The use of the
CNF is supported by the De Morgan's theorem [11]. The terms complement and
OFF-set function are equivalent.

The following logical expression of the example PLA of Fig. 2 is in CNF:

f'(XIX 2 ,X3 ,X4 )=(Xi OR x3 OR x')AND

(X1 OR x' OR x4 ) AND

(x1 OR x' OR X3 ) AND

(xI OR x 2 OR x3 ) AND

(x1 OR x3 OR x4)

We apply a genetic algorithm to the CNF-satisfiability problem for the generation
of test vectors for growth faults. The problem is to determine whether there exists a
truth assignment for the variables in the expression, so that the CNF expression
evaluates to TRUE. For example, the above CNF logical expression has several truth
assignment (a valid candidate test vector) for which the whole expression evaluates
to TRUE, e. g., any assignment with x3 = TRUE and x4 = TRUE. The CNF
expression of the example PLA is made up of five clauses. That will allow us to rank
potential bit pattern solutions in the range of 0 to 5, depending on the number of
clauses that pattern satisfies. Table I shows the fitness of each element. When a
pattern has a fitness of 5, a maxterm of the function is evaluated. A growth fault can
be detected by this pattern if the intersection exists with a term(s) from the growth

term set. The growth term set is the union (U) of the growth term generated by each
product term (refer to Procedure 1). It is important to understand that an undetectable
fault can not be detected by any pattern.

It is hard to imagine a problem with better suited representation: a binary vector
of fixed length similar as the PLA physical layout should do the job. There are other



PLAtestGA: A CNF-Satisfiability Problem 191

several advantages, there are not dependencies between bits: any change would result
in a legal (meaning) vector (either a minterm or a maxterm). Thus we can apply
mutations and crossovers without any need for decoders or repair algorithms. Even
other less frequently used genetic operators, such as the inversion (reversing the
order of bits in the pattern) or exchange (interchanging two different bits in the
pattern) leave the resulting bit pattern a legitimate possible solution [12], [13].

4 Test Generation Using Genetic Operators

The basic genetic algorithm, where P(t) is the population of strings at generation t is
given below:

procedure genetic algorithm

set time t := 0
select an initial population P(t)
while the termination condition is not met, do:

evaluate fitness of each member of P(t);
select the fittest members from P(t);
generate offspring of the fittest pairs (using genetic operators);
replace the weakest members of P(t) by these offspring;
set time t := t+1

Selection is done on the basis of relative fitness and it probabilistically eliminates
from the population those candidate test vectors which have relatively low fitness.
Recombination, which consists of mutation and crossover, imitates sexual
reproduction.

Crossover is performed with crossover probability Pcross between two selected
strings, called parents, by exchanging parts of their genomes (i.e., encoding) to form
two new individuals, called offspring. It is implemented by choosing a random point
between 1 and the string length (6) minus one [1, 8 - 1] in the selected pair of
parents and exchanging the substring defined by that point (i.e., swap the tail portion
of the string) to produce new offspring. That is, all the information from one parent is
copied from the start up to the crossover point, and then all the information from the
other parent is copied from the crossover point to the end of the offspring
(chromosome). The new chromosome thus gets the head of one parent's chromosome
combined with the tail of the other. For example, consider strings 1 and 3 of Table I
from our example initial population. See Fig. 4.

In choosing a random number between 1 and 4, we obtain a K = 2 (as indicated
by the separator symbol I). The resulting crossover yields two new strings that are
part of the generation. These offspring are: 0 1 10 and 0 0 0 1.



192 A. Cruz

Crossover is both simple and efficient. This operation enables the evolutionary
process to move towards optimal solutions in the search space. The usefulness of
crossover is due to the combination of better than average substrings coming from
different individuals [14].

Mutation probabilistically chooses a bit and flips it. Mutation is needed because if
selection and crossover together search new solutions, they tend to cause rapid
convergence and there is a danger of losing potentially useful genetic materials, such
as Os and is at particular location of the specified values of the candidate test vector
under evolution. The usual interpretation of bit mutation rate is the following: for
each string in the population and for each bit within the string generate a random
number r between 0 and 1, if r <ýPmut flip the bit. This operator is applied to strings
1, 6, and 8 of Table I. For example, string 1 is changed from 0 1 10 to 0 1 11 after
mutation.

The following definition applies to the discussions that follow.
Definition 1: Hamming distance
The number of bit positions in which two product terms hold non-don't care

values that are different is called the Hamming distance, dH.
For example, in Fig. 2 the hamming distance between m3 and m4 is one, i.e. these

terms differ in bit position x2.
The following GA parameters are used for testing growth faults of the example

PLA of Fig. 2:

*Uniform Crossover Single Cut Point
* Number of generations : Until a minimal test set is found
* Size of Population: 8
*Crossover Probability : 1.0
*Mutation Probability : 0. 1

PLAtestGA begins, at generation 0, with a population of 8 patterns. For each
generation, each individual in the population is calculated as the number of clauses
that pattern satisfies. A maximum value of 5 means that the pattern (candidate test
vector) matches each clause of the CNE expression and consequently it is a valid
candidate. For example, the fitness for the pattern [0001] of Table I is 3, while the
fitness for the pattern [1110] is 5. The string [1110] in particular permits the
detection of missing devices in product terms that are not activated, i. e., product
terms that are not compatible with the pattern under consideration.

The patterns { 1110], [011111 generated on Table I at the end of generation 0 are

Stringi1 01 01 01 10

Fig. 4. The Crossover Operation



PLAtestGA: A CNF-Satisfiability Problem 193

valid tests. Since genetic operators generate the pattern [1110], then it is a valid
candidate test. This is necessary to assure propagation of the fault. The next step is to
determine if there are product terms with a dH equal to 1 from the pattern (candidate
test). The missing fault that can be detected by this pattern is the complement bit-line
of the first input line of the product term m2.

Table 1. Generation 0

String Population Fitness # of copies Mate Mate Crossover Mutation
reproduced Pool

XI X' X, X 4  flxi) (cross # P-r 1.0 Po'= 0.1
point site
shown)

(1) 0 0 0 1 3 0 0 110 13 0 1 I 1 0 1 1
12) 0 I 0 1 4 1 1 I 1 06 1 1 1 0 1 I 1 0
(3) I I 1 0 () 1 0 011 01 0 0 0 1 0 0 0 1

(4) 0 0 1 0 4 1 0 1 1 05 0 1 1 0 0 I 1 0
(5) 0 1 1 0 4 I I I 1 04 I I I 0 1 1 1 0
16) I I 1 0 (5) 2 1 1 1 02 1 (0 1 0 1 0 I 0
(7) 0 1 1 1 (5) 1 0 1 i 18 0 1 1 1 0 1 1 1
(8) 0 1 0 1 4 1 0 1 01 17 0 1 ( 1 0 1 (D 0

ISum 35

i Average 425
Max 5

Min 3

The following Lemma is necessary to the present discussion.
Lemma 1. A maxterm generated with the genetic operators with a dH equal to 1

from any product term is qualified to detect a missing device fault in that product.
The proof of this Lemma is supported by Procedure 1 and the CNF used for the

pattern generation.
The string [0111] uses Lemma 1 to find product terms which are dissidents in one

literal. These product terms are: m2, m3, and m5. Therefore, this pattern detects a
growth fault in the product terms where they have the dissident bits (one Hamming
distance away). The missing faults detected by the pattern [0111] (with fitness 5)

with the aid of Lemma 1 are shown in Fig. 3. The faults detected are circled by a
broken-line in their respective positions in the PLA.

The patterns { [0111], and [ 1110] 1 have a fitness of 5. The fittest members can be
selected more than once. A bias roulette-wheel is used as the reproduction operator
(see Fig. 5). To reproduce, we simply spin the weighted roulette wheel thus defined
eight times, each with a size proportional to the pattern fitness. A probability is
assigned to each pattern as follows:

f(xi)
Sum

A cumulative probability is obtained for each pattern by adding up the fitness of
the preceding population members:

i

ci= Pk, i = 1,2,..., population Size
k



194 A. Cruz

Fig. 5.Bae 1ouet4 he

In~~~~~~~~~1 thswyteslcino1ftetmmeshv4 rpotoaloecacso

beig rprducd nd attrn ca b seectd orethn oce.Tale sowsho
man tme aninivdul i rprdued.One he ewpoultio hs4ee

eacthi geeatio the population aveag fitnestmbes aeponotinetona improe uhntil the
popaion beprdcoes li pttledferenticated andecthed fitnes levonel-f.TalIshwho

maythmes finidvdal growthrtestesetOfor the PAudrcnsier ouation weefudafte thee

secndiiul gptensilener henw ouation. h etvcosae i[n] [0111] [110] [1110] [1111]s.

PmTh=01 tis articletidescribes thet usee ofes genetic operatorst the CN-aifabiiyprolemi
forh testngeratowthe fapulatsion Pas.ag Existingethos cotinend to beprcomputationathy

pplthen dabackofmteslite mifeenthosisathed backrcigtancudocrwe the tests eel-of
isThoen aindalsgot tos proagte four teproposded alonsdrithmn overoes thisd pftrobe toe

seodgeneratgodstions fiinl. The CNFt constrain saisacio prbe has] 011,[10] 10, 11]

Thseverale advantages overotherfapproachesousedtor totestn PLF-s. tielimntes thobem
portssibiit goft intrsetsing aredundantingrowthod term wth a candidteatesivor.ll

Thedrefoebackofthakigese netotsneeded.Alsoracminima testat co iscguarawhnteed.es

References

1. P. Bose, "A Novel Technique for Efficient Implementation of a Classical
Logic/Fault Simulation Problem," IEEE Trans. on Computers, Vol. 37, pp. 1569-
1577, December 1984.



PLAtestGA: A CNF-Satisfiability Problem 195

2. A.Cruz and R. Reilova, "A Hardware Performance Analysis for a CAD Tool for
PLA Testing, "39th Midwest Symposium on Circuits and Systems, 1997.

3. A. Cruz and S. Mukherjee, "PLAGA: A Highly Parallelizable Genetic
Algorithm for Programmable Logic Arrays Test Pattern Generation," Congress
on Evolutionary Computation, Vol. 2, July 6-9, 1999.

4. R. S. Wei and Sangiovanni-Vicentelli, "PLAtypus: A PLA Test Generation
Tool." Trans. on Computer Aided Design, Vol. CAD-5, October 1986.

5. P. Bose, "Generation of Minimal and Near-Minimal Test Set for Programmable
Logic Arrays," International Conference on Computers, December 1984.

6. M. Robinson and Rajski, "An Algorithm Branch and Bound Method For PLA
Test Pattern Generation," International Test Conference, pp. 66-74, 1988.

7. J. E. Smith, "Detection of Faults in Programmable Logic Arrays," IEEE
Transactions on Computers, Vol. C-28, No. 11, November 1979.

8. Hua and et al., "Built-in Tests for VLSI Finite State Machines," Dig. of Papers
14th Int'l Conf. on Fault Tolerant Computing, June 1984.

9. M. Abramoci and et al., "Digital Systems Testing and Testable Design," 41
Madison Avenue, New York, NY 10010: Computer Science Press, 1990.

10. V. K. Agarwal, "Multiple Fault Detection in Programmable Logic Arrays,"
IEEE Trans. on Computers, Vol. C-28, pp. 518-522, June 1980.

11. M. Mano and R. Kime, "Logic and Computer Design," 2nd Ed., Prentice Hall,
2000.

12. Z. Michalewicz, "Genetic Algorithms + Data Structures = Evolution Programs,"
Third, Revised Edition, Springer Verlag, 1996.

13. G. Lugger and W. A. Stubblefield, Artificial Intelligence: Structures and
Strategies for Complex Problem Solving," 3rd Ed., Addison-Wesley, 1998.

14. G. Goldberg, "Genetic Algorithms in Search, Optimization and Machine
Learning," Addison Wesley, Reading, MA, 198



Evaluating Migration Strategies for an
Evolutionary Algorithm Based on the

Constraint-Graph that Solves CSP

Arturo Nafiez* and Maria-Cristina RifW**

Computer Science Department
Universidad T6cnica Federico Santa Maria.

Valparaiso, Chile
{anunez,mcriff}Cinf.utfsm. ci

Abstract. Constraint satisfaction problems (CSPs) occur widely in ar-
tificial intelligence. In the last twenty years, many algorithms and heu-
ristics were developed to solve CSP. Recently, a constraint-graph based
evolutionary algorithm was proposed to solve CSP, [17]. It shown that it
is advantageous to take into account the knowledge of the constraint net-
work to design genetic operators. On the other hand, recent publications
indicate that parallel genetic algorithms (PGA's) with isolated evolving
subpopulations (that exchange individuals from time to time) may of-
fer advantages over sequential approaches, [1]. In this paper we examine
the gain of the performance obtained using multiple populations - that
evolve in parallel - of the constraint-graph based evolutionary algorithm
with a migration policy. We show that a multiple populations approach
outperforms a single population implementation when applying it to the
3-coloring problem.

1 Introduction

Constraint satisfaction problems (CSPs) occur widely in artificial intelligence.
They involve finding values for problem variables subject to constraints on which
combinations are acceptable. For simplicity we restrict our attention here to
binary CSPs, where the constraints involve two variables. Binary constraints

are binary relations. If a variable i has a domain of potential values Di and a
variable j has a domain of potential values Dj, the constraint on i and j, RIj,
is a subset of the Cartesian product of Di and Dj. If the pair of values a for i
and b for j is acceptable to the constraint Rij between i and j, we will call the
values consistent (with respect to Rij). The entity involving the variables, the

domains, and the constraints, is called constraint network. In the last twenty

* Partially supported by the Research Department Grant at University Santa Marfa,

Chile
** Supported by the Computer Science Department LIP6 at the Universit6 Pierre et

Marie Curie, France. e-mail:Maria-Cristina.Riffglip6.fr

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 196-204, 2000.
© Springer-Verlag Berlin Heidelberg 2000



Evaluating Migration Strategies for an Evolutionary Algorithm 197

years, many algorithms and heuristics were developed to find a solution in con-
straint network [6], [10], [9]. Following these trend from the constraint research
community in the evolutionary computation community some approaches was
also proposed to tackle CSP with success [7], [8], [12], [18] in particular [16], [17]
proposed an evolutionary algorithm based on the constraint network to solve
CSP. Our motivations to present a parallel version for CSP are threefold. In our
knowledge, all published evolutionary algorithms that address the constraint sa-
tisfaction problems are sequential approaches, i.e., one (or two in the case of
co-evolution [14]) population evolves by means of genetic operators. However,
recent publications indicate that parallel genetic algorithms (PGA's) with isola-
ted evolving subpopulations (that exchange individuals from time to time) may
offer advantages over sequential approaches, [1]. The contributions of this paper
are:

- comparisons of the performance of the multiple populations evolving in par-
allel with previous sequential strategies.

- for this specific algorithm, an investigation on the influence of various par-
allelization parameters on its performance.

Throughout this work, we will use the term MpGA to describe a genetic al-
gorithm with multiple populations (population structures) evolving in parallel.
Accordingly, "sequential genetic algorithm" indicates a genetic algorithm with a
single population. This usage is consistent with many previous papers. However,
it is important to note that "parallel" and "sequential" refer to population struc-
tures, not the hardware on which the algorithms are implemented. In particular,
the MpGA could be simulated on a single processor platform (as any discrete
parallel process can) and the sequential genetic algorithm could be executed on
a multiprocessor platform.

2 Problem Formulation

The problem at hand is that of constraint satisfaction problem (CSP) defined
in the sense of Mackworth [11], which can be stated briefly as follows: We are
given a set of variables, a domain of possible values for each variable, and a
conjunction of constraints. Each constraint is a relation defined over a subset of
the variables, limiting the combination of values that the variables in this subset
can take. The goal is to find a consistent assignment of values to the variables
so that all the constraints are satisfied simultaneously.

CSP's are, in general, NP-complete and some are NP-hard [4]. Thus, a general
algorithm designed to solve any CSP will necessarily require exponential time
in problem size in the worst case. Resulting from these considerations, three
objectives are used in this work to asses the quality of the solution: A fitness
function that takes into account the connection degree in the constraint network,
a dynamic adaptation of the genetic operators, and a parallel migration between
populations.



198 A. Niifiez and M.-C. Riff

2.1 Notions on CSP

A Constraint Satisfaction Problem (CSP) is composed of a set of variables
V = {X 1 ,..., X}, their related domains D 1 ,..., D, and a set 0 containing
7 constraints on these variables. The domain of a variable is a set of values to
which the variable may be instantiated. The domain sizes are m,.... ,r ,M re-

spectively,and we let m denote the maximum of the mi. Each variable Xj is

relevant (in the next we denote "being relevant for" by >), to a subset of con-
straints ClI,..., Cjk where {Jl,.. ,jk} is some subsequence of {1, 2,..., 77}. A
constraint which has exactly one relevant variable is called a unary constraint.

Similarly, a binary constraint has exactly two relevant variables. A binary CSP is
associated with a constraint graph, where nodes represent variables and arcs re-
present constraints. If two values assigned to variables that share a constraint are
not among the acceptable value-pairs of that constraint, this is an inconsistency

or constraint violation.

Definition 2.1. (Constraint Matrix)
A Constraint Matrix R is a 77 x n rectangular array, such that:

=R(,j] 1 if variable Xj > C,.
0 otherwise

Definition 2.2. (Instantiation)
An Instantiation I is a mapping from a n-tuple of variables (X 1 ,...,Xn) -

D1 x ... x D,, such that it assigns a value from its domain to each variable in
V.

Definition 2.3. (Constraint Arity)
We define the Constraint Arity for a constraint C,, a, as the number of relevant
variables for C,.

Definition 2.4. (Partial Instantiation)
Given ap g V, a Partial Instantiation Ip is a mapping from a j-tuple of variables
(Xp,..., Xp3 ) --+ Dp x ... x Dp,, such that it assigns a value from its domain
to each variable in Vp.
Note: For a given Ip we will talk about satisfaction of Cc, iff all of their relevant
variables are instantiated.

A solution to the CSP consists of an instantiation of all the variables which does
not violate any constraint.

3 Network-Based Evolutionary Algorithm

The algorithm uses a non-binary genetic representation. The initial population is
generated randomly. The variable values are selected from their domains with a
uniform probability distribution. The selection algorithm is biased to the better
evaluated individuals.



Evaluating Migration Strategies for an Evolutionary Algorithm 199

3.1 Fitness Function

In [15] we propose a fitness function specifically defined for CSP, which we de-
scribe briefly in the next two definitions.

Definition 3.1. (Error- evaluation)
For a binary CSP with a constraint matrix R, an instantiation 1, and a binary
non-satisfied constraint C, which has Xk and X, as relevant variables (it has
just two, exactly these two), we define the Error-evaluation e(Ca,, 1) by:

e(Ca, I) =a,, + (Pro pagation Effect Xk and Xi)
where Propagation Effect Xk and X1 in a binary constraint network, is defined
as the number of constraints C0l, /3 = 1, ..... q, a3~c that have either Xk or X
as relevant variables.

Remark 3. 1. If C,, is satisfied then e (C,,, I) is equal to zero

The fitness function is the sum of the Error-evaluations (equation 3.1) of all
constraints in the CSP, that is:

Definition 3.2. (Fitness Function)
For a binary CSP with constraint matrix R and an instantiation I, and Error-
evaluation e(Ca,, I) for each constraint C,, (oz 1, ..... q ), the Fitness Function
Z(J) is:

17

Z (I) 1Ze(Ca, I)(1
a=1

The goal of the search is to minimize Z(I), which equals to zero when all con-
straints are satisfied.

3.2 Operator: Constraint Dynamic Adapting Crossover

Constraint Dynamic Adapting Crossover uses the idea that there are not fixed
points to make crossover. It makes a crossover between two randomly selected
individuals to create a new one. The child inherits its variable values using a
greedy procedure, which analyzes each constraint (arc) according to a dyna-
mic priority. The constraint dynamic priority not only takes into account the
network structure, but also the current values of the parents. The priority is
constructed using the next procedure: First, it identifies the number of violati-
ons, nv, that means, between both parents selected, how many are violating the
current constraint. Second, it classifies the constraints in one of the following
three categories : 0, 1 or 2 number of violations. Finally, within each category
(0,1 or 2 number of violations), the constraints are ordered according to their
contribution to the fitness function. To make crossover the operator uses two
partial fitness functions. The first one is the partial crossover fitness function,
cif, which allows us to guide the selection of a combination of variable values
by constraint. The second one is the partial mutation fitness function mif for
choosing a new variable value. The whole process is introduced, with details, in
[17].*



200 A. Nsifiez and M.-C. Riff

4 Model and Migration Policy

The Migration Model used in this work is shown in figure 1. The model is made
up of a master node and i nodes. Each node has a population that evolves inde-
pendently using the algorithm described in the previous section. The master goal
is to send the initial parameters to each node (population size, seed, mutation
and crossover probabilities). Once the nodes receive the parameters each node
is ready to begin its evolution.

4.1 Migration Policy

We define a parameter called "migration rate", it specifies the number of itera-
tions required before sending the best individuals to the neighboring node. This
model also accepts another interesting parameter, this is the number of indivi-
duals migrating from each node. In the figure 1 dot lines shown the migration
policy, that is:

- each node sends to its neighboring node its better individuals found until
now

- each node receives the best individuals from its neighboring node, incorpo-
rating them to its population

Best Best Best

Best

Fig. 1. Migration Model

Therefore our model needs the following parameters:

- i: number of nodes
- Mr : Migration Rate
- MtE: Members to Exchange
- Popsize: population size of each node



Evaluating Migration Strategies for an Evolutionary Algorithm 201

5 Tests

The aim of the experiments was to investigate the effect to incorporate multiple
populations to the constraint-graph based evolutionary algorithm, and to com-
pare it with the sequential approach. The algorithm has been tested by running
experiments on randomly generated 3-coloring graphs, subject to the constraint
that adjacent nodes must be colored differently. We used the Joe Culberson
library, [5] to generate the random graphs. We have tested the algorithms for 3-
coloring problems with solution, with a connectivity between [4.1..5.9]. For each
connectivity we have generated 10000 random 3-coloring graph problems. In or-
der to discard the "easy problems" we have applied DSATUR [3] to solve them.
Thus, we have selected the problems not solved by DSATUR. DSATUR is one
of the best algorithms to solve this kind of problems. The number of problems
selected was 300 for each connectivity. It is important to remark that it is easy
to find problems not solved by DSATUR in the hard zone [4], is not the case
with others connectivities.

5.1 Hardware

The hardware platform for the experiments was a PC Pentium 111-500 Mhz with
128 MB RAM under LINUX. For parallel support we have used PVM, [2]. PVM
allows to use any computer as a virtual parallel machine with message-passing
model. The algorithm was implemented in C using the PVM libraries.

5.2 Results

The single population algorithm and the multiple populations algorithm use the
same parameters found for the algorithm introduced in [16], that is:

- Mutation probability = 0.2
- Crossover probability = 0.9

The parameters of the migration model are (i:3, Mr:50, MtE:1, Popsize:20)
Figure 2 and 3 shown the results obtained. The multiple populations algo-

rithm was able to solve more than 88 % of the problems selected, even in the
hard zone. Thus it works better than the sequential approach. The number of
generations requiered was also reduced using the parallel approach, that is shown
in the figure 3.

6 Discussion and Further Issues

We have obtained better results applying a model with multiple populations
using the same sequential algorithm. Nevertheless, in order of being exact in the
interpretation of the results we must consider that our new model works with



202 A. Nsifiez and M.-C. Riff

70

980 .................. .... ........ ............. ......................

W 7 5 ..... . ........... i\. ............. ... .. _ .. , ... . , .!......_..., ................... ............. ................ . ..................!. ....

6 5 ...... - ....... ...... .............

'A 
AC

x5 ---
605

4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8

Conectivity

Fig. 2. Solved Problems by Multiple populations and single population

350 ,,
i • , \ iI Paralle Agrithm -- -S/'Seial Algori

50

2 5 0 . . ..... . / .. .. ..... .... .. .... ... .... .. .. .. .. .. . .. .... ...

2 0 0 ..... .... ........... ......... ; , -,............ . . .......... !.. .... .. .

45...... / L___ ,,L.

1 5 0 .. -. - ....... ............... ...

100
4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.6

Conectivity

Fig. 3. Number of Generations by Multiple populatios and single population

three populations instead of one of the sequential model. For that, we define a

measure of efficiency as:

Generations serial model x10(2Generations parallel model x i



Evaluating Migration Strategies for an Evolutionary Algorithm 203

Thus, we can conclude that the efficiency of the parallel model is approximately
60% better than the sequential one. It suggests that could be advisable to explore
the behavior of the algorithm running in a parallel hardware platform.

7 Conclusion

A model based in multiple populations improves the performance of the graph-
based evolutionary algorithm that solves CSP. Our research allows us to conclude
that using an evolutionary algorithm with migration policy we are able to solve
around 85% of the problems that are in the hard zone. The results suggest that
our technique is a good option for solving CSPs.
There is a variety of ways in which the techniques presented here can be ex-
tended. The principal advantage of our method is that it is general, i.e., the
approach is not related to a particular problem. Now our research is directed
towards selecting parameters and testing in other hardware platforms.

Acknowledgments. We wish to gratefully acknowledge the discussions with
Dr. Xavier Bonnaire (LIP6).

References

1. Adamis, Review of parallel genetic algorithms, Dept. Elect. Comp. Eng, Aristitele
Univ. Thessaloniki, Greece, Tech. Rep. 1994.

2. A. Beguelin, J. J. Dongarra, G. A. Geist, R. Manchek, and V. S. Sunderam, A
Users' Guide to PVM Parallel Virtual Machine, Oak Ridge National Laboratory,
ORNL/TM-12187, September, 1994

3. Brelaz, New methods to color vertices of a graph. Communications of the ACM,
22,pp. 251-256, 1979.

4. Cheeseman P.,Kanefsky B., Taylor W., Where the Really Hard Problems Are.
Proceedings of IJCAI-91, pp. 163-169, 1991

5. Culberson, J. http://web.cs.ualberta.ca/ joe/.
6. Dechter R., Enhancement schemes for constraint processing: backjumping, lear-

ning, and cutset decomposition. Artificial Intelligence 41, pp. 273-312, 1990.
7. G. Dozier, J. Bowen, and Homaifar, Solving Constraint Satisfaction Problems

Using Hybrid Evolutionary Search, IEEE Transactions on Evolutionary Compu-
tation, Vol. 2, No. 1, 1998.

8. A.E. Eiben, J.I. van Hemert, E. Marchiori, A.G. Steenbeek. Solving Binary Con-
straint Satisfaction Problems using Evolutionary Algorithms with an Adaptive
Fitness Function. Fifth International Conference on Parallel Problem Solving from
Nature ( PPSN-V), LNCS 1498, pp. 196-205, 1998.

9. [render E., The Many Paths to Satisfaction. Constraint Processing, Ed. Manfred
Meyer, CAPringer-Verlag LNCS 923, pp. 103-119, 1995.

10. Kumar. Algorithms for constraint satisfaction problems:a survey. AI Magazine,
13(1):32-44, 1992.

11. Mackworth A.K., Consistency in network of relations. Artificial Intelligence, 8:99-
118, 1977.



204 A. Nfifiez and M.-C. Riff

12. Marchiori E., Combining Constraint Processing and Genetic Algorithms for Con-
straint Satisfaction Problems. 7th International Conference on Genetic Algorithms
(ICGA97), 1997.

13. Minton S., Integrating heuristics for constraint satisfaction problems: A case study.
Proceedings of the Eleventh National Conference on Artificial Intelligence, 1993.

14. J. Paredis, Coevolutionary Algorithms, The Handbook of Evolutionary Computa-
tion, 1st supplement, BSck, T., Fogel, D., Michalewicz, Z. (eds.), Oxford University
Press.

15. Riff M.-C., From Quasi-solutions to Solution: An Evolutionary Algorithm to Solve
CSP. Constraint Processing (CP96), Ed. Eugene Freuder, pp. 367-381, 1996.

16. Riff M.-C., Evolutionary Search guided by the Constraint Network to solve CSP.
Proc. of the Fourth IEEE Conf on Evolutionary Computation, Indianopolis, pp.
337-342, 1997.

17. Riff M.-C., A network-based adaptive evolutionary algorithm for CSP, In the book
"Metaheuristics: Advances and Trends in Local Search Paradigms for Optimisa-
tion", Kluwer Academic Publisher, Chapter 22, pp. 325-339, 1998.

18. Tsang, E.P.K., Wang, C.J., Davenport, A., Voudouris, C., Lau,T.L., A family of
stochastic methods for constraint satisfaction and optimization, The First Inter-
national Conference on The Practical Application of Constraint Technologies and
Logic Programming (PACLP), London, pp. 359-383, 1999



Relative Robustness: An Empirical Investigation
of Behaviour Based and Plan Based Paradigms as

Environmental Conditions Change

Jennifer Kashmirian and Lin Padgham

Dept. of Computer Science,
RMIT University, Melbourne, Australia.

1inpa(cs, .rait edu. au

Abstract. This paper compares a behaviour based architecture, and a
plan based architecture for agents in multi-agent systems, with respect
to the issue of robustness. The type of robustness investigated is stability
of the systems as two aspects - unpredictability and rate of perception
compared to speed of the environment - are modified. The comparison is
done using a simulation scenario which was designed to be constrained,
but to capture important qualities of the real world. The scenario was also
chosen to have characteristics that could be favourable to both behaviour
based and plan based paradigms. An analysis of the data collected for
the two approaches provides strongly suggestive evidence that the plan-
based system is more robust than the behaviour based one in some ways.
There is no indication of better robustness in the behaviour based system
with respect to the aspects of robustness investigated.

1 Introduction

Two fairly well established architectural paradigms in agent systems are the
behaviour based paradigm and the plan-based paradigm. Both paradigms recog-
nise the need for and incorporate reactivity as a fundamental quality of agent
systems in dynamic environments, although they approach this in different ways.
There are often claims from behaviour based proponents that behaviour based
systems are more robust (e.g. [JF92,Bro86]), while plan-based proponents often
argue that plans are necessary for addressing complex applications.

This work explores specifically a particular aspect of robustness, namely the
stability of the agent or program behaviour as characteristics of the environment
change. The particular environmental characteristics that we have manipulated
are the predictability of the world and the speed of change in the world relative to
the ability of the agent to perceive and act on those changes. Although the results
are not entirely conclusive1 the tendency is that plan-based systems appear to
be more stable under environmental change than behaviour based systems.

1 This was due to lack of sufficient data and hardware problems which made it impos-

sible to collect further data.

Z.W. Rai and S. Ohsuga (Mds.): ISMIS 2000, LNAI 1932, pp. 205-215, 2000.
© Springer-Verlag Berlin Heidelberg 2000



206 J. Kashmirian and L. Padgham

The behaviour-based approach relies on low level parallel behaviours which
react to sensed information about the current world situation without any mod-
elling of or reasoning about either the world or the agent's actions in the world.
Intelligent behaviour is seen to emerge from the combination of simple behaviours
within a complex environment. There are several forms of behaviour based ar-
chitectures of which Brooks' subsumption architecture [Bro86] is the most well
known. Activation nets (e.g. [Mae95]) are another approach based on low level
parallel behaviours.

BDI (belief, desire, intention) architectures are plan based systems which rely
on a library of outline plans which indicate how to achieve particular goals in
various situations. At execution time the details of the plan are filled out by the
agent using sub-plans based on the actual state of the world when it is time to
execute the relevant sub-plan. This approach makes practical reasoning tractable
as the scope of deliberation is limited to choosing between competing matching
plans [BIP88]. It also allows the agent to be reactive to environmental change by
suspending or aborting execution of a plan in favour of a more relevant sub-plan
or a plan reacting to a more important event. These systems are often referred to
as reactive planners [Fir87,AC90]. Reaction is to both external events conveyed
via sensors or to events based on agent modelling of the world and the expected
results of the agent's own actions.

There has been a limited amount of work attempting to scientifically compare
the applicability of these two paradigms to particular problem types. Drogoul
[Dro95] has done some work in this direction, attempting to apply a behaviour
based approach to chess and also looking at certain situations in Pengi2 . In gen-
eral Pengi is a game which is so dynamic and unpredictable that little or no
planning is possible [AC87]. However, Drogoul identified some situations where
it would appear that planning could be advantageous. Drogoul's findings were
that although a modicum of success was achieved in behaviour based chess it was
insufficient to allow successful competition against a deliberative chess program
such as GNU chess. However, in the Pengi situation it was possible to simply
provide agents with more complicated behaviours inorder to address the situ-
ations that it seemed would benefit from planning. From this work it appears
that plan based systems are better for achieving intelligent behaviour in situa-
tions where strategy over time is critical. However, for applications which may
be complex in terms of multiple competing goals and the need for reactivity,
but do not allow for strategy because of the totally unpredictable nature of the
environment, intelligent behaviour can be successfully obtained using a purely
behaviour based approach.

Although robustness is one of the often claimed advantages of behaviour
based systems, to our knowledge there has not been any work that attempts
to define some aspect of robustness and actually test this claim. Robustness is
essentially the ability of the system to continue functioning well over a wide

2 Pengi is based on the arcade game Pengo where penguins must try to collect as

many diamonds as possible while avoiding being being crushed by moving ice blocks
or stung by roving bees.



Relative Robustness 207

range of environmental conditions. In this work we have considered two ways
in which environmental conditions may change. The first is that the speed at
which things happen in the agent's world may change relative to the speed of the
agent itself (or its ability to perceive the change). One example of this is that
a robot in Robocup 3 with a camera that perceives a fixed rate of frames per
second may well perform differently depending on the speed of the other agents
in the environment. If an agent's environment is made up of other systems then
an upgrade of some of those systems may result in an effective speed up of the
environment. Similarly an upgrade in the agent system hardware may result in
the environment being perceived to be slower, relative to the speed of the agent
system.

Another way in which we consider the environment changing is in its level
of predictability. When a system is built it is often tailored in some way to the
patterns of the environment. As times change these environmental patterns may
change, resulting in the environment being less predictable than it was origi-
nally. Ideally one would like the system to learn new patterns, but an ability to
degrade gracefully would also be useful. An argument is often made that because
there is not the same level of explicit tailoring in behaviour based systems as
there is in plan-based systems, they should be able to better handle this kind of
environmental change.

In this paper we describe a simulation scenario where we modify two param-
eters of the scenario representing these aspects and measure the changes in the
performance of the two types of agent systems. Because we are interested in ro-
bustness, i.e. stability under a wide range of conditions, we are not interested so
much in whether one system is better than the other in any particular situation,
but rather whether their rates of change (as the environment changes) differ in
any significant way.

2 Description of project

We wished to establish a scenario that seemed suitable for either approach,
and where parameters could be modified to simulate changing environmental
conditions. We also wanted a scenario which could be viewed graphically to
allow for the possibility of qualitative evaluation as well as quantitative.

The scenario developed was one where two sheep-dog agents needed to herd
a flock of sheep through three different gates. The sheep mostly behaved in a
predictable flocking manner, but would occasionally exhibit random breakaway
behaviour at a frequency that was parameterised. Relative success of the agents
was measured as time taken to achieve the goal of herding the sheep through all
three gates. Time was measured in terms of world cycles.

We modelled levels of unpredictability by modifying how often a sheep would
break away from the flock and move in a random direction, rather than with
the flock. We modelled relative speed of the environment by having the dogs (or

3 Robocup is an international forum where robots compete at playing soccer.



208 J. Kashmirian and L. Padgham

sheep) move less than every world cycle. For example if the sheep moved only
every second world cycle, then the world would be changing less rapidly from
the point of view of the dogs. If the dogs received input and had a move only
every second world-cycle, then the environment would be changing more rapidly
from the dog's point of view.

The base platform used for the simulation was the PAC system [PT97]. PAC
attempts to provide an environment where scenarios can quickly and easily be
built up, varying aspects of agent personality (or emotions) and agent cognition
(plans and beliefs). The purpose of the PAC system is to allow experimentation
with different combinations of agents in different worlds.

PAC consists of four modules - cognitive, emotional, behavioural and system
management. The cognitive module manages plan-based agent behaviour using
dMars, a descendant of PRS [G189] and was used for implementing the plan-
based dog agents. The behavioural module manages the graphical models for
each agent plus their behavioural functions (e.g. walk forward, turn, etc.). The
system management module integrates the other modules, manages scenario
simulation and interfaces to the user interface for the interactive system. The
behaviour based dog agents were implemented in C++ as a separate piece of
code that was integrated with the system management module. The emotion
module was not used in this work.

The sheep in the environment were implemented as simple agents in C++
which used a flocking algorithm [Rey87] to move. While this was visually not
quite realistic for sheep flocking it provided appropriate predictable behaviour.
Under normal circumstances sheep action was determined by a blending of
four basic behaviours: obstacle avoidance, velocity matching, flock centering and
avoidance of the dogs. At each world cycle a movement vector was calculated
and then multiplied by priorities of 16, 4, 9 and 14 respectively. 4 The resulting
vectors were then summed to provide a final movement vector. When breakaways
were operational a sheep would make a totally random move some number of
times every thousand world cycles at randomly determined intervals.

The plan based agents had plans to look for gates and for sheep, to move
towards the flock and to return wayward sheep to the flock. They also had plans
that enabled them to co-ordinate their behaviour to position themselves behind
the sheep and then move towards the gate. The behaviour based agents had
a number of behaviours such as moving towards the target, avoiding obstacles
and moving away from the other dog if too close, which were then combined
using behaviour blending in a similar way to the sheep. Some of the behaviours
were disabled if other behaviours matched strongly. Both agent programs were
developed to a point where they appeared to be herding the sheep successfully.

In the following sections we describe the specific experiments that were run
and the results obtained.

4~ These priorities were determined by trial and error.



Relative Robustness 209

3 Experiments

One set of experiments varied the unpredictability in the environment by running
scenarios with four different rates of breakaway of sheep. The rates used were 0,
4, 20 and 50 breakaways per 1000 world cycles.

The other set of experiments varied the rate at which the dogs could sense
and act compared with the rate at which the sheep were moving. The ratios
of dog action to sheep action used were 1:4; 1:3; 1:2; 1:1; 2:1; 3:1; 4:1. These
experiments were run with a predictable environment (no breakaways) and with
a moderately unpredictable environment (20 breakaways per 1000 cycles). Due
to machine problems we were unable to obtain data for the behaviour based
agents at ratios 1:4, 1:3 and 3:1.

For each set of parameters we ran thirty scenarios. Each scenario started
with a random movement by the first sheep, which ensured that each scenario
was unique. The dogs could herd the sheep through the gates sequentially in
any order. When all sheep had been herded through a particular gate, the gate
would shut and the number of moves required by the dogs to herd the sheep
through that gate was recorded. When all three gates had shut the scenario was
concluded. We recorded three basic pieces of data for each scenario:

- Total World Cycles (TWC): the number of world cycles taken for the
scenario from start to finish.

- Goal World Cycles (GWC): the number of world cycles where the sheep
were actively driving the sheep towards a gate, as opposed to rounding up
breakaway sheep.

- Breakaway World Cycles (BWC): the number of world cycles where one
or more sheep were separated from the flock.

We then used this data to calculate what we refer to as an average performance
measure and an average efficiency measure.

The average performance measure was calculated simply as the number of
total world cycles averaged over the 30 runs. This gave an average "time" taken
by the agent to achieve its task - the less time taken the better the performance.

The average efficiency measure was calculated using the formula
100*GwC

BWC+GWC
to obtain a score for each run. These scores were then averaged over the thirty
runs. This was intended to capture how well the dogs were maintaining control
over the sheep. The higher this number the better the dogs were effectively
maintaining control over their world.

As well as collecting statistics we recorded observations for a number of
randomly selected test runs. When these runs were short they were observed
from start to finish. Longer runs (some over six hours duration) were observed
at random intervals.



210 J. Kashmirian and L. Padgham

4 Results

In observing the test runs the plan-based dogs appeared to have a controlling
behaviour, while the behaviour based dogs appeared opportunistic, reacting to
opportunities that arose, rather than actively using a strategy to direct the
sheep. As the breakaway frequency increased both sets of agents appeared to
lose control of the sheep.

We show our analysis of the statistical data in terms of the two basic ques-
tions we are addressing: How adaptable are the two different agent types to an
increasingly unpredictable world? How adaptable are the agents to changes in
speed of the environment relative to their own speed?

4.1 Adaptability to unpredictability

As the unpredictability of the environment increased the performance of both
plan-based and behaviour based agents decreased exponentially. Figure 1 shows
the increasing number of world cycles taken to complete the task for both types
of agents as numbers of breakaways increases. This figure also shows the per-
formance of the control group of sheep without any dogs herding them. Clearly
both experimental agent types are achieving better results than the sheep in the
control group with no dog agents (p < 0.005). Both agent types appear to have
almost identical deterioration patterns under decreasing predictability.

Average World Cycles Required To Complete Task
(Logarithmic Scale)

1000000

1 10000O • ..... ............. .......

S10013 : "'"11916

S1000

10

0 5 10 15 20 25 30 35 40 45 50

Breakaway Frequency (per 1000 World Cycles)

- Plan Based Dogs -. - Behavior Based Dogs -.... Sheep Only (No Dogs)

Fig. 1. Performance under varying unpredictability.



Relative Robustness 211

Looking at the initial part of the curve (0 - 4 breakaways per 1000 world
cycles) it seems that both the agent types are also deteriorating less quickly
than the control group, as seen in the slope of the line. However, this is less
interesting than the fact that each of the agent types appear to be following a
very similar pattern.

Using the measure of efficiency, rather than performance (i.e. what percentage
of agent time was spent driving the sheep towards the gate, as opposed to doing
the subsidiary task of managing the unpredictable breakaways), we see a linear,
rather than exponential decline as the world becomes more unpredictable. This is
shown in figure 2. In this case at both a breakaway rate of 4:1000 and at 20:1000
the behaviour based dogs are significantly less efficient than the plan-based dogs
(0.05 < p > 0.005 for 4:1000 and p < 0.005 for 20:1000). At a breakaway rate
of 50:1000 there is no longer any significant difference between the dog types,
probably indicating that at this level of unpredictability chance is the overriding
factor.

Average Efficiency
100%.

960%

Boy.

o40%

~20W.

10%_

0 10 20 30 40 50

Brea kaway Frequency (per 1000 World Cycles

I-Plan Based Dogs - -- BehaioBasedDog

Fig. 2. Efficiency under varying unpredictability.

It seems odd that the difference in efficiency is not mirrored by a difference
in performance. During observation we noticed that on a number of occasions
the plan-based dogs would get caught in a circling behaviour as they tried to
drive the sheep towards the gate. This was essentially a bug in the plan set
which was not discovered until part way through the experimentation and we
were unable to rerun the experiments with this bug fixed. This needless circling
drives up the number of total world cycles which would cause the performance
measure to decrease while causing the efficiency measure (which is a ratio of



212 J. Kashmirian and L. Padgham

cycles where the dogs are driving the sheep towards a gate to the total number
of world cycles) to increase.

Consequently we can conclude that in this scenario the behaviour based
agents are not more robust than the plan-based agents under decreasing pre-
dictability of the environment. However, it is not possible to ascertain whether
or not the plan-based agents are more robust.

4.2 Adaptability to relative speed fluctuations

Figure 3 shows the performance results as the speed of the environment changes
with respect to the perception speed of the dogs. The most striking difference
is between the plan-based and behaviour based dogs as the speed of the world
increases with respect to the perception speed of the agents (see LHS of figure
3). The behaviour based agents appear to deteriorate exponentially for both
predictable (0 breakaways) and somewhat unpredictable (20:1000 breakaways).
Interestingly the plan-based agents in the predictable environment actually im-
prove significantly when the environment speeds up by a factor of four (0.05 >
p < 0.005), remaining relatively stable at speed up rates of two and three. With
the somewhat unpredictable environment the plan-based agents maintain their
performance at a doubling of world speed, but deteriorate as the world speeds
up by factors of three and four.

As the world slows down relative to the speed of the dogs (see RHS of figure 3,
we see a much more stable pattern. The plan-based agents at both predictability
levels maintain a relatively constant performance as the world becomes up to four
times slower. There is a significant improvement (p •5 0.005) in the performance
of the behaviour based dogs as the moderately unpredictable world (20:1000
breakaway rate) becomes slower.

Ideally one would like to analyse the data using regression analysis to de-
termine whether the change function for the plan based dogs is significantly
different to that of the behaviour based dogs as the environment speeds up and
slows down at the different predictability levels. However, this would require
a minimum of five measurements on each side of the center line and so is not
possible to do with the current data.

Looking at the efficiency data in figure 4 we see that in the moderately un-
predictable environment (20:1000 breakaways) both types of agents deteriorate
as the world gets both slower and faster. However, it appears that the plan-based
agents deteriorate less rapidly than the behaviour based agents as the world be-
comes faster, while the opposite effect is apparent as the world becomes slower.
Once again the lack of sufficient data points makes it impossible to do regres-
sion analysis which would be the most appropriate form of statistical analysis.
However, by shifting the data by a fixed amount it is possible to obtain a com-
mon start point at normal world speed and then use a paired two sample t-test.
This indicates that the behaviour based dogs are significantly better (p = 0.05)
which would suggest that the deterioration functions of the two dog types are
significantly different. Comparing with the LHS of the graph we see that if the
trend of the behaviour based agents continued with further data points beyond



Relative Robustness 213

Average World Cycles Required To Complete Task
(Logarithmic Scale)

10

1/4x 1/3x 1/12x 1 x 2x 3x 4x
Perception Flats aa a Multiplier

Where the Multiplier indicates how many perception/action cycles
are completed f or each world cycle

Fig. 3. Performance under varying rates of perception.

the two obtained, the difference would be greater than that on the right hand
side as the lines diverge more quickly.

In a predictable world (0 breakaways) the plan-based agents appear to be
stable until the world is speeded up by a factor of four, where they start to
deteriorate. They are also stable as the world slows down. The behaviour based
agents deteriorate as the world slows down by factors of two, three and four. The
behaviour based agents in the speeded up world only have data for the speed up
by two, and at this point they are stable.

In summary, there is a strong suggestion that as the world speeds up plan
based agents are more stable and deteriorate less rapidly than behaviour based
agents. As the world slows down the situation is less clear with respect to differ-
ences between the agent types and there appears to be far less effect than when
the world speeds up. One interesting effect in a slowed down world is that if
it is moderately unpredictable the behaviour based agents improve significantly
when the world slows down by a factor of four.

5 Discussion and Conclusion

The results of this work do not lend support to the idea that behaviour based
agents are more robust than plan-based agents if robust is defined in terms of



214 J. Kashmirian and L. Padgham

Average Efficiency

90% """""-.

80% ",

EO

at%

w

1/4x 1/3x 1/2x 1x 2x 3x 4x
Perception Rate as a Multiplier

Where the Multiplier indicates how many perception/action cycles
are completed for each world cycle

-Plan Based Dogs @ 0 Breakaways
- Plan Based Dogs @ 20 Breakaways/1 000 World Cycles

- c- Behavior Based Dogs @ 0 Breakaways
- - Behavior Based Dogs @ 20 Breakaways/1 000 World Cycles

Fig. 4. Efficiency under varying rates of perception.

changes to the relative speed of the environment and to the unpredictability of
the environment. In fact, the results suggest that plan-based agents may be more
robust in this sense. The most surprising result is that as the world speeds up
the behaviour-based agents appear to deteriorate rapidly while the plan-based
agents remain stable or even improve slightly. Possibly this is related to the
results obtained by Kinny [KG91] which showed that agents which were able
to commit to a plan of action actually did better as the world became more
dynamic, than agents that had no such ability.

It may also be the case that the co-ordination between the two agents that
was required for successful herding of the sheep was more susceptible to environ-
mental perturbations in the behaviour based program where it "emerged" due to
combining of simple behaviours, than when it was more explicitly represented.

Questions about the relative robustness of different software paradigms as
environments change are important to explore given that the digital world is
changing extremely rapidly and that systems are increasingly likely to be inter-
acting with other digital systems in a distributed manner.

Further work is needed to collect a larger number of data points in particu-
lar to allow regression analysis to determine whether the deterioration function
differs significantly with different architectures. Work is also needed to explore



Relative Robustness 215

these questions in an environment that is more closely related to application

environments rather than a visual simulation.
Both systems exhibited similar degradation as unpredictability increased.

However, it would be interesting to further explore this issue, perhaps iden-
tifying different sorts of unpredictability that may arise and whether the two
approaches have different stability patterns with respect to differing types of
unpredictability.

References

[AC87] Philip E. Agre and David Chapman. Pengi: An implementation of a theory of
activity. In Proceedings of AAAI-87, pages 268-272, 1987.

[AC90] Philip E. Agre and David Chapman. What are plans for? Robotics and Au-
tonomous Systems, 6:17-34, 1990.

[BIP88] Michael E. Bratman, David J. Israel, and Martha E. Pollack. Plans and
resource bounded practical reasoning. Computational Intelligence, 4(4):349-
355, 1988.

[Bro86] Rodney Brooks. A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, 2(1):14-25, March 1986.

[Dro95] Alexis Drogoul. When ants play chess. In C. Castelfranchi and J.P. Miiller, ed-
itors, From Reaction to Cognition, volume 957 of LNAI, pages 13-27. Springer-
Verlag, Berlin-Heidelberg, 1995.

[Fir87] R. James Firby. An investigation into reactive planning in complex domains.
In Proceedings of AAAI-87, pages 202-206, July 1987.

[GI89] M. Georgeff and F. Ingrand. Decision-making in an embedded reasoning sys-
tem. In Proceedings of the 10th International Conference on Artificial Intelli-
gence, pages 972-978, 1989.

[JF92] Alexis Drogoul Jaques Ferber. Using reactive multi-agent systems in simula-
tion and problem solving. In Distributed Artificial Intelligence: Theory and
Praxis, pages 53-80. ECSC-EEC-EAEC, Bruxelles et Luxembourg, 1992.

[KG91] David Kinny and Michael Georgeff. Commitment and effectiveness of situ-
ated agents. In Proceedings of the 12th International Conference on Artificial
Intelligence, pages 82-88, Melbourne, Australia, 1991.

[Mae95] Pattie Maes. Modelling adaptive autonomous agents. In Christopher G.
Langton, editor, Artificial Life: An Overview. MIT Press, Cambridge, 1995.

[PT97] Lin Padgham and Guy Taylor. Pac - personality and cognition: an interactive
system for modelling agent scenarios. In Proceedings of the 15th International
Conference on Artificial Intelligence, Tokyo, Japan, 1997.

[Rey87] Craig Reynolds. Flocks, herds and schools: A distributed behavioural model.
In Proceedings of SIGGRAPH, pages 25-34, 1987.



A Heuristic for Domain Independent Planning
and Its Use in an Enforced Hill-Climbing

Algorithm

J6rg Hoffmann

Institute for Computer Science
Albert Ludwigs University

Am Flughafen 17
79110 Freiburg, Germany

hoffmann© informatik. uni-f reiburg. de

Abstract. We present a new heuristic method to evaluate planning sta-
tes, which is based on solving a relaxation of the planning problem. The
solutions to the relaxed problem give a good estimate for the length of
a real solution, and they can also be used to guide action selection du-
ring planning. Using these informations, we employ a search strategy
that combines Hill-climbing with systematic search. The algorithm is
complete on what we call deadlock-free domains. Though it does not gu-
arantee the solution plans to be optimal, it does find close to optimal
plans in most cases. Often, it solves the problems almost without any
search at all. In particular, it outperforms all state-of-the-art planners
on a large range of domains.

1 Introduction

The standard approach to obtain a heuristic is to relax the problem TP at hand
into some easier problem P". The optimal solution length to a situation in 7P
can then be used as an admissible estimate for the optimal solution length of the
same situation in P. An application of this idea to domain independent planning
was first used in the HSP system [3]. The planning problem P is relaxed by simply
ignoring the delete lists of all operators. However, computing the optimal solution
length for a planning problem without delete lists is still N P-hard, as was first
shown by Bylander [4]. Therefore, the HSP heuristic is only a rough estimate of
the optimal relaxed solution length. In short, it is obtained by summing up the
minimal distances of all atomic goals.

In this paper, we go one step further. We introduce a method that computes
some, not necessarily optimal, solution to the relaxed problem. These solutions
are helpful in two ways:

- their length provides an informative estimate for the difficulty of a situation;
- one can use them as a guidance for action selection.

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 216-227, 2000.
(g) Springer-Verlag Berlin Heidelberg 2000



A Heuristic for Domain Independent Planning 217

The solution length estimates are used to control a local search strategy si-
milar to Hill-climbing, which is combined with systematic breadth first search
in order to escape local minima or plateaus. The guidance information is em-
ployed to cut down the branching factor during systematic search. The method
shows good behavior over all domains that are commonly used in the planning
community. In particular, we will see that it is complete on the class of problems
we call deadlock-free. Performing local search, the method can not guarantee its
solution plans to be optimal. In spite of this, it finds close to optimal plans in
most cases. As a benefit from the severe restriction of its search space, it shows
very competitive runtime behavior. For example, logistics problems are solved
faster than by any other domain independent planning system known to the
author at the time of writing.

2 Background

Throughout the paper, we consider simple STRIPS domains. We briefly review

two standard notations. An action o has the form

o = ( pre(o) =,, add(o), del (o))

where pre(o), add(o) and del(o) are sets of ground facts. Plans P are sequences
P =(01, . .. , o,,) of actions, i.e., we consider only linear plans.

3 Heuristic

In this section, we introduce a method for heuristically evaluating planning states
S. Basically, the method consists of two parts.

1 . First, the relaxed fixpoint is built on S. This is a forward chaining process
that determines in how many steps, at best, a fact can be reached from S,
and with which actions.

2. Then, a relaxed solution is extracted from the fixpoint. This is a sequence of
parallel action sets that achieves the goal from S, if their delete effects are
ignored.

The first part corresponds directly to the heuristic method that is used in HSP [3].
The second part goes one step further: while in HSP, the heuristic is extracted
as a side effect of the fixpoint, we invest some extra effort to find a relaxed
plan, and use the plan to determine our heuristic value. The fixpoint process is
depicted in Figure 1.

The algorithm can be seen as building a layered graph structure, where fact
and action layers are interleaved in an alternating fashion. The process starts
with the initial fact layer, which are the facts that are TRUE in S. Then, the first
action layer comprises the actions whose preconditions are contained in S. The
effects of these actions lead us to the second fact layer, which, in turn, determines



218 J. Hoffmann

F0 :=S
k :=0
while g g Fk do

Ok := {o G 0 pre(o) C Fk }
Fk+1 := Fk U Uo C ok add(o)

if Fk+l = Fk then
break

endif
k :=k+

endwhile
max:= k

Fig. 1. Computing the relaxed fixpoint on a planning state S. 0 and g denote the
action set and goal state of the problem at hand, respectively.

the next action layer and so on. The process terminates, and remembers the
number max of the last layer, if all goals are reached or if the new fact layer is
identical to the last one.

The crucial information that the fixpoint process gives us are the levels of
all facts and actions. These are defined as the number of the first fact- or action
layer they are members of.

level(f): { injiI f E F2 } ex. i: fEFio e

level(o)

level(o) f- mini Io E Oil ex. i: o E O
0o otherwise

We now show how to extract a relaxed plan from the fixpoint structure. This
is done in a backward chaining manner, where we simply use any action with
minimal level to make a goal TRUE. The exact algorithm is depicted in Figure 2.
Note that we do not need to search, we can proceed right away to the initial
state and are guaranteed to find a solution.

Before plan extraction starts, an array of goal sets Gi is initialized by inserting

all goals with corresponding level. The mechanism then proceeds down from layer
max to layer 1, and selects an action o for each goal g at the current layer i,
incrementing the plan length counter h. No actions are selected for goals that
are marked TRUE at the time being, as they are already added. The achiever o
is required to have level(o) = i - 1. This is minimal as the goal g has level i,
i.e., the first action that achieved g in the fixpoint came in at level i - 1. The
preconditions of o are inserted as new goals into their corresponding goal sets.
If the current layer is i, then the levels of o's preconditions are at most i - 1, so
these new goals will be made TRUE later during the process.



A Heuristic for Domain Independent Planning 219

for i := 1,...,max do
Gi := {g E Q I level(g) = i}

endfor
h := 0
for i := max,..., 1 do

for all g E Gi, g not TRUE at i do
select o with g e add(o) such that level(o) = i - 1
h:=h+1
for all f e pre(o), f not TRUE at i - 1 do

Glevel(f) := Glevel(f) U {f}
endfor
for all f C add(o) do

mark f as TRUE at i - 1 and i
endfor

endfor
endfor

Fig. 2. The algorithm that extracts a relaxed solution to a state S after the fixpoint
has been built.

3.1 Goal Distance

To obtain the heuristic goal distance value h(S) of a given planning state S,
we now simply chain the two algorithms together. First, we perform the fixpoint

computation from Figure 1. If the process terminates without reaching the goals,
we set h(S) := co. Otherwise, we extract a relaxed plan, Figure 2, and use the
plan length for evaluation, i.e., h(S) := h.

The overall structure of the relaxed planning process is quite similar to plan-
ning with planning graphs [1]. It amounts to a very special case, as no negative
interactions at all occur between facts or actions in the relaxed problem.

3.2 Helpful Actions

We can also use the extracted plan to determine a set of actions that seem to
be helpful in reaching the goal. To do this, we turn our look on the actions
that are contained in the first time step of the relaxed solution, i.e., the actions

that are selected at level 0. These are often the actions that are useful in the
given situation. Let us see a simple example for that, taken from the gripper

domain, as it was used in the 1998 AIPS planning systems competition. We do
not repeat the exact definition of the domain here, as it is easily understood
intuitively. There are two rooms, A and B, and a certain number of balls, which
shall be moved from room A to room B. The planner changes rooms via the
move operator, and controls two grippers which can pick or drop balls. Each
gripper can only hold one ball at a time. We look at a small problem where 2

balls must be moved into room B. A relaxed solution to the initial state that
our heuristic might extract is



220 J. Hoffmann

< {pick haull A left,
pick ball2 A left,
move A B },

{drop haull B left,
drop ball2 B left } >

This is a parallel relaxed plan consisting of two time steps. Note that the
move A B action is selected parallel to the pick actions, as the relaxed planner
does not notice that it can not pick balls in room A anymore once it has moved
into room B. In a similar fashion, both balls are picked with the left gripper.
Nevertheless, two of the three actions in the first step are helpful in the given
situation: both pick actions are starting actions of an optimal sequential solu-
tion. Thus, one might be tempted to define the set H(S) of helpful actions as
only those that are contained in the first time step of the relaxed plan. However,
this is too restrictive in some cases. We therefore define our set H(S) as follows.

H(S) := {o E Oo I add(o) n G, #A 0}

After plan extraction, O0 contains the actions that are applicable in S, and G,
contains the facts that were goals or subgoals at level 1. Thus, we consider as
helpful those actions which add at least one fact that was a (sub)goal at the
lowest time step of our relaxed solution.

4 Search

We now introduce a search algorithm that makes effective use of the heuristics
we defined in the last section. The key observation that leads us to the method
is the following. On some domains, like the gripper problems from the 1998
competition and Russel's tyreworld, it is sufficient to use our heuristic in a naive
Hill-climbing strategy. In these problems, one can simply start in the initial state,
pick, in each state, a best valued successor, and ends up with an optimal solution
plan. This strategy is very efficient on the problems where it finds plans.

However, the naive method does not find plans on most problems. Usually,
it runs into an infinite loop. To overcome this problem, one could employ stan-
dard Hill-climbing variations, like restarts, limited plateau moves, or a memory
for repeated states. We use an enforced Hill-climbing method instead, see the
definition in Figure 3.

The algorithm combines Hill-climbing with systematic breadth first search.
Like standard Hill-climbing, it picks some successor of the current state at each
stage of the search. Unlike in standard Hill-Climbing, this successor does not
need to be a direct one, and, unlike in standard Hill-Climbing, we do not pick
any best valued successor, but enforce the successor to be one that is Strictly
better than our current state.

More precisely, at each stage during search a successor state is found by
performing breadth first search starting out from the current state S. For each
search state S', all successors are generated and evaluated heuristically. Doubly



A Heuristic for Domain Independent Planning 221

initialize the current plan to the empty plan <>
S := I
obtain h(S) by evaluating S
if h(S) = oo then

output "No Solution", stop
endif
while h(S) # 0 do

breadth first search for a state S' with h(S') < h(S)
if no such state can be found then

output "No Solution", stop
endif
add the actions on the path to S' at the end of the current plan
S 5' S

endwhile

Fig. 3. The Enforced Hill-climbing algorithm. I denotes the initial state of the problem
to be solved.

occuring states are pruned from the search by keeping a hashtable of past states
in memory, and the search stops as soon as it has found a state 5' that has a
lower heuristic value than S. This way, the Hill-climbing search escapes plateaus
and local minima by simply performing exhaustive search for an exit, i.e., a state
with strictly better heuristic evaluation.

4.1 Helpful Actions

So far, we have only used the goal distance heuristic. We integrate the helpful
actions heuristic into our search algorithm as follows. During breadth first search,
we do not generate all successors of any search state 5' anymore, but consider
only those that are obtained by applying actions from H(S'). This way, the
branching factor for the search is cut down. However, considering only the actions
in H(S') might make the search miss a goal state. If this happens, i.e., if the
search can not reach any new states anymore when restricting the successors to
H(S'), we simply switch back to complete breadth first search starting out from
the current state S and generating all successors of search nodes.

5 Completeness

The Enforced Hill-climbing algorithm is complete on deadlock-free planning pro-
blems. We define a deadlock to be a state S that is reachable from the initial state
1, and from which the goal can not be reached anymore. A planning problem is
called deadlock-free, if it does not contain any deadlock state. We remark that
a deadlock-free problem is also solvable, cause otherwise the initial state itself
would already be a deadlock.



222 J. Hoffmann

Theorem 1. Let P be a planning problem. If P is deadlock-free, then the En-
forced Hill-climbing algorithm, as defined in Figure 3, will find a solution.

Due to space restrictions, we do not show the (easy) proof of Theorem 1 here
and refer the reader to [5]. In short, if the complete breadth first search starting
from a state S can not reach a better evaluated state, then, in particular, it
can not reach a goal state, which implies that the state S is a deadlock in
contradiction to the assumption.

In [5], it is also shown that most of the currently used benchmark domains are
in fact deadlock-free. Any solvable planning problem that is invertible in the sense
that one can find, for each action sequence P, an action sequence P that undoes
P's effects, does not contain deadlocks. One can always go hack to the initial state
first and execute an arbitrary solution thereafter. Moreover, planning problems
that contain an inverse action 5 to each action o are invertible: simply undo
all actions in the sequence P by executing the corresponding inverse actions.
Finally, most of the current benchmark domains do contain inverse actions. For
example in the blocksworld, we have stack and unstack. Similarly in domains
that deal with logistics problems, for example logistics, ferry, gripper etc., one
can often find inverse pairs of actions. If an action is not invertible, its role in
the domain is often quite limited. A nice example is the inflate operator in
the tyreworid, which can be used to inflate a spare wheel. Obviously, there is
not much point in defining something like a deflate operator. More formally
speaking, the operator does not destroy a goal or a precondition of any other
operator in the domain. In particular, it does not lead into deadlocks.

6 Empirical Results

For empirical evaluation, we implemented the Enforced Hill-climbing algorithm,
using relaxed plans to evaluate states and to determine helpful actions, in C. We
call the resulting planning system FP, which is short for PAST-FORWARD plan-
ning system. All running times for PP are measured on a Sparc Ultra 10 running
at 350 MHz, with a main memory of 256 M Bytes. Where possible, i.e., for those
planners that are publicly available, the running times of other planners were
measured on the same machine. We indicate run times taken from the Literature
in the text. All planners were run with the default parameters, unless otherwise
stated in the text, and all benchmark problems are the standard examples taken
from the Literature. Some benchmark problems have been modified in order to
show how planners scale to bigger instances. We explain the modifications made,
if any, in the text. Dashes indicate that the corresponding planner failed to solve
that problem within half an hour.

6.1 The Logistics Domain

This is a classical domain, involving the transportation of packets via trucks
and airplanes. There are two well known test suites. One has been used in the



A Heuristic for Domain Independent Planning 223

1998 AIPS planning systems competition, the other one is part of the BLACKBOX

distribution. The problems in the competition suite are very hard. In fact, they
are so hard that, up to date, no planner has been reported to solve them all.
FAST-FORWARD is the first one that does. See Figure 4, showing also the results
for GRT [12] and HSP-r [2], which are-as far as the author knows-the two best
other domain independent logistics planners at the time being. 1

HSP-r 087RI FF
1problem1 timelstepsi timelstepsli time steps

prob-01 0.36 35 0.28 30 0.06 27
prob-02 3.13 36 1.32 34 0.19 32
prob-03 25.45 64 5.55 60 0.71 54
preb-04 50.53 63 9.8 69 0.98 -58

prob-05 0.62 27 0.39 26 0.08 22
prob-06 293.60 83 14.39 80 1.95 73
prob-07 6.20 37 1.76 37 0.38 36
prob-08 - - 16.37 48 2.04 41
prob-09 371.03 97 50.48 99 2.08 91
prob-lO 287.64 121 23.13 117 3.20 103
prob-ll 4.58 34 1.54 36 0.21 30
prob-12 - 43.06 48 2.01 41
prob-13 85.58 79 7.73 67
prob-14 - 60m20 104 6.97 98
prob-15 19.52 120 67.50 106 1.27 93
prob-16 92.75 69 31.58 62 1.23 55
preb-17 29.35 61 12.19 53 0.63 44

prob-18 - 335.05 193 50.76 167
prob-19 - 238.98 174 16.26 151
prob-20 - 324.12 169 24.40 139
prob-21 - 294.23 120 8.93 102
prob-22 246.05 282
prob-23 100.67 145 16.86 118 3.84 126
prob-24 - 98.54 49 4.17 40
prob-25 106.23 181
prob-26 71.15 183
prob-27 73.26 141
prob-28 679.43 265
prob-29 589.75 323
prob-30 62.4 131

Fig. 4. Results of the three domain independent planners best suited for logistics pro-
blems on the 1998 competition suite. Times are in seconds, steps counts the number
of actions in a sequential plan. For HSP-r, the weighting factor W is set to 5, as was
done in the experiments described by Bonet and Geffner in [2].

The times for GRT in Figure 4 are from the paper by Refanidis and Vlahavas
[12], where they are measured on a Pentium 300 with 64 M Byte main memory.
FF outperforms both HSP-r and GRT by an order of magnitude. Also, it finds
shorter plans than the other planners.

We also ran FF on the benchmark problems from the BLACKBOX distribution
suite, and it solved all of them in less than half a second. Compared to the results
shown by Bonet and Geffner [2] for these problems, FF was between 2 and 10
times faster than HSP-r, finding shorter plans in all cases.

1 It is important to distinct the results shown in Figure 4 from those reported earlier for
HSP-r [2]. Those results were taken on the problems from the BLACKBOX distribution,
while our results are taken on the 1998 competition test suite.



224 J. Hoffmann

6.2 Mixed Classical Problems

FAST-FORWARD shows competitive behavior on all commonly used benchmark
domains. To exemplify this, we show a table of running times on a variety of
different domains in Figure 5, comparing FF against a collection of state-of-the-
art planning systems: IPP [8], STAN [9], BLACKBOX [7], and HSP [3].

IPP STAN BbACKB~OX HSP F
Idornain 1problemn 1 time stepsl time ses time stepsi t me stepsitm tp
tyreworld fixit- 1 0.04 19 0.101 1911 00 1 04 19

tyrewrld ixit- . . .. 8630.2522

tyreworl fixAt-2 11.291 30U 1.25 30 14.321 301 - I - 0.09 30

Ityreworld Ifixit-3 . .. 931 4 .0 41

hanoi towr-3 0.0 11 0.031 71 0.23 . -71 0.311 -7110.01 7

ha i tower-9 139.31 511 230.205 6.45 51_

Isokoban Is°koban-1 1 1.115 2511 1.511 25111283.291 251113.871 29110.221 251
1 ah 2h7 14.1 3~55f 1120.41 3511 7 _-1 3f255f10.0F538

a-11 .5.12 40 13.96 40 4 - - 13.31 1 40# 026 43
jmanhattan lmh-15 . . . . . . . . 0.64 593

manhattan mrh-19 . .. .. 115 87-1 i i

b;2kwol b -ag a 0._411 1.0 0.571 101 10.30 101 0.78 1 0,04

1 1c dbw-larged 362.19 33 .. 1 1 1.361 27 1.42

Fig. 5. Running times and quality (in terms of number of actions) of plans for FF and
state-of-the-art planners on various classical domains. All planners are run with the
default parameters, except HSP, where loop checking needs to be turned on.

In Figure 5, the planning problems shown are the following. The tyreworld
problem was originally formulated by Russell, and asks the planner to replace
a flat tire. The problem is modified in a natural way so as to make the planner
replace n fiat tires. FF is the only planner that is capable of replacing more than
three tires, scaling up to much bigger problems.

The hanoi problems make the planner solve the well known Towers of Hanoi
problem, with n discs to be moved. FF also outperforms the other planners on
these problems.

The sokoban problem encodes a small instance of a well known computer
game, where a single stone must be pushed to its goal position. Although the
problem contains deadlocks, FF has no difficulties in solving it.

The manhattan domain was first introduced by McDermott [10]. In these
problems, the planner controls a robot which moves on a n x n grid world, and
has to deal with different kinds of keys and locks. The original problem taken
from [10] corresponds to the mh-11 entry in Tabular 5, where the robot moves
on a 11 x 11 grid. The other entries refer to problems that have been modified
to encode 7 x 7, 15 x 15 and 19 x 19 grid worlds, respectively. FF easily handles
all of them, finding slightly suboptimal plans.

Finally, the blocksworld problems in Figure 5 are benchmark examples taken
from [6]. FF outperforms the other planners in terms of running time as well as
in terms of solution length.



A Heuristic for Domain Independent Planning 225

7 Related Work

The closest relative to the work described in this paper is, quite obviously, the
HSP system [3]. In short, HSP does Hill-climbing search, with the heuristic fun-
ction

h(S) ~weights(g)

The weight of a fact with respect to a state S is, roughly speaking, the mini-
mum over the sums of the precondition weights of all actions that achieve it.
The weights are obtained as a side effect of doing exactly the same fixpoint
computation as we do. The main problem in HSP is that the heuristic needs
to be recomputed for each single search state, which is very time consuming.
Inspired by HSP, a few approaches have been developed that try to cope with
this problem, like HSP-r [2] and the GRT-planner [12].

The authors of HSP themselves handle the problem by sticking to their heu-
ristic, but changing the search direction, going backwards from the goal in HSP-r
instead of forward from the initial state in HSP. This way, they need to compute
a weight value for each fact only once, and simply sum the weights up for a state
later during search.

The authors of [12] invert the direction of the HSP heuristic instead. While
HSP computes distances by going towards the goal, GRT goes from the goal to
each fact, and estimates its distance. The function that then extracts, for each
state during forward search, the state's heuristic estimate, uses the pre-computed
distances as well as some information on which facts will probably be achieved
simultaneously.

For the PAST-FORWARD planning system, a somewhat paradoxical extension
of HSP has been made. Instead of avoiding the major drawback of the HSP stra-
tegy, we even worsen it, at first sight: the heuristic keeps being fully recomputed
for each search state, and we even put some extra effort on top of it, by extrac-
ting a relaxed solution. However, the overhead for extracting a relaxed solution
is marginal, and the relaxed plans can be used to prune unpromising branches
from the search tree.

To verify where the enormous run time advantages of FF compared to HSP
come from, we ran HSP using Enforced Hill-climbing search with and without
helpful actions pruning, as well as EF without helpful actions on the problems
from our test suite. Due to space restrictions, we can not show our findings
in detail here. It seems that the major steps forward are our variation of Hill-
climbing search in contrast to the restart techniques employed in HSP, as well
as the helpful actions heuristic, which prunes most of the search space on many
problems. Our different heuristic distance estimates seem to result in shorter
plans and slightly, about a factor two, better running times, when one compares
EF to a version of HSP that uses Enforced Hill-climbing search and helpful actions
pruning. We did not yet find the time to do these experiments the other way
round, i.e., integrate our heuristic into the HSP search algorithm, as this would
involve modifying the original HSP code, which means a lot of implementation
work.



226 J. Hoffmann

There has been at least one more approach in the Literature where goal
distances are estimated by ignoring the delete lists of the operators. In [10],
Greedy Regression-Match Graphs are introduced. In a nutshell, these estimate
the goal distance of a state by backchaining from the goals until facts are reached
that are TRUE in the current state, and then counting the estimated minimal
number of steps that are needed to achieve the goal state.

To the best of our understanding, the action chains that lead to a state's
heuristic estimate in [10] are similar to the relaxed plans that we extract. Ho-
wever, the backchaining process seems to be quite costly. For example, building
the Greedy Regression-Match Graph for the initial state of the manhattan world
11 x 11 grid problem is reported to take 25 seconds on a Sparc 2 station. For
comparison, we ran FF on a Sparc 4 station. Finding a relaxed plan for the
initial state takes less than one hundredth of a second, i.e., the time measured
is 0.00 CPU seconds.

The helpful actions heuristic shares some similarities with what is known as
relevance from the literature [11]. The main difference is that relevance in the
usual sense refers to what is useful for solving the whole problem. Being helpful,
on the other hand, refers to something that is useful in the nexrt step.

8 Conclusion and Outlook

In this paper, we presented two heuristics for domain independent STRIPS plan-
ning, one estimating the distance of a state to the goal, and one collecting a
set of promising actions. Both are based on an extension of the heuristic that is
used in the HSP system. We showed how these heuristics can be used in a va-
riation of Hill-climbing search, and we have seen that the algorithm is complete
on the class of deadlock-free domains. We collected empirical evidence that the
resulting planning system is among the fastest planners in existence nowadays,
outperforming the other state-of-the-art planners on quite a range of domains,
like the logistics, manhattan and tyreworld problems.

To the author, the most exciting question is this: Why is the heuristic in-
formation obtained in this simple manner so good? It is not really difficult to
construct abstract examples where the approach produces arbitrarily bad plans,
or uses arbitrarily much time, so why does it almost never go wrong on the
benchmark problems? Why is the relaxed solution always so close to a real solu-
tion, except for the Tower of Hanoi problems? Is it possible to define a notion of
"Csimple'" planning domains, where relaxed solutions have desirable properties?

First steps into that direction seem to indicate that, in fact, there might be
some underlying theory in that sense. In particular, it can be proven that the
Enforced Hill-climbing algorithm finds optimal solutions when the heuristic used
is goal-directed in the following sense:

Here, mmn(S) denotes the length of the shortest possible path from state S
to a goal state, i.e., Enforced Hill-climbing is optimal when heuristically better
evaluated states are really closer to the goal.



A Heuristic for Domain Independent Planning 227

It can also be proven that the length of an optimal relaxed solution is, in fact,
a goal-directed heuristic in the above sense on the problems from the gripper
domain that was used in the 1998 planning systems competition. We have not
yet, however, been able to identify some general structural property that implies
goal-directedness of optimal relaxed solutions.

Apart from these theoretical investigations, we want to extend the algorithms
to handle richer planning languages than STRIPS, in particular ADL and resource
constrained problems.

Acknowledgments. The author thanks Bernhard Nebel for helpful discussions
and suggestions on designing the paper.

References

1. A. Blum and M. Furst. Fast planning through planning graph analysis. Artificial
Intelligence, 90(1-2):279-298, 1997.

2. B. Bonet and H. Geffner. Planning as heuristic search: New results. In Proceedings
of the 5th European Conference on Planning, pages 359-371, 1999.

3. B. Bonet, G. Loerincs, and H. Geffner. A robust and fast action selection mecha-
nism for planning. In Proceedings of the 14th National Conference of the American
Association for Artificial Intelligence, pages 714-719, 1997.

4. T. Bylander. The computational complexity of propositional STRIPS planning.
Artificial Intelligence, 69(1-2):165-204, 1994.

5. J. Hoffmann. A heuristic for domain independent planning and its use in a fast
greedy planning algorithm. Technical Report 133, Albert-Ludwigs-University Frei-
burg, 2000.

6. H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic, and
stochastic search. In Proceedings of the 14th National Conference of the American
Association for Artificial Intelligence, pages 1194-1201, 1996.

7. H. Kautz and B. Selman. Unifying SAT-based and graph-based planning. In
Proceedings of the 16th International Joint Conference on Artificial Intelligence,
pages 318-325, 1999.

8. J. Koehler, B. Nebel, J. Hoffmann, and Y. Dimopoulos. Extending planning graphs
to an ADL subset. In Proceedings of the 4th European Conference on Planning,
pages 273-285, 1997.

9. D. Long and M. Fox. Efficient implementation of the plan graph in STAN. Journal
of Artificial Intelligence Research, 10:87-115, 1999.

10. D. McDermott. A heuristic estimator for means-ends analysis in planning. In
Proceedings of the 3rd International Conference on Artificial Intelligence Planning
Systems, pages 142-149, 1996.

11. B. Nebel, Y. Dimopoulos, and J. Koehler. Ignoring irrelevant facts and operators
in plan generation. In Proceedings of the 4th European Conference on Planning,
pages 338-350, 1997.

12. I. Refanidis and I. Vlahavas. GRT: A domain independent heuristic for strips
worlds based on greedy regression tables. In Proceedings of the 5th European Con-
ference on Planning, pages 346-358, 1999.



Planning while Executing: A Constraint-Based
Approach

R. Barruffi, M. Milano, and P. Torroni

DEIS, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy,
Tel: 0039 051 2093086 Fax: 0039 051 2093073

{rbarruffi, mmilano, ptorronij•deis.unibo.it

Abstract. We propose a planning architecture where the planner and
the executor interact with each other in order to face dynamic changes
of the application domain. According to the deferred planning strategy
proposed in [14], a plan schema is produced off-line by a generative con-
straint based planner and refined at execution time by retrieving up-to-
date information when that available is no longer valid. In this setting,
both planning and execution can be seen as search processes in the space
of partial plans. We exploit the Interactive Constraint Satisfaction fra-
mework [12] which represents an extension of the Constraint Satisfaction
paradigm for dealing with incomplete knowledge. Given the uncertainty
of the plan execution in dynamic environments, a backup and recovery
mechanism is necessary in order to allow backtracking at execution time.

1 Introduction

In dynamic and changing environments, a plan produced off-line by a traditional
generative planner can fail during execution due to the fact that the environment
can change, often in unpredictable ways. In particular, our planner works in
a networked computer system environment and assembles configuration plans.
The information about system services and resources cannot be complete at
planning time due to its vastity and dynamicity. In these cases it is impossible
to produce a complete successful plan at plan generation time and there is need
to sense correct and up-to-date information at execution time in order to refine
the plan. In [14], the authors propose a classification followed by a deep analysis
of the main planning strategies able to integrate execution time sensory data
into the planning process. The strategy we follow is called deferred planning
consisting in delaying until execution the decisions depending on sensing. As a
consequence, there is need for a sensing mechanism for testing the environment
and a procedure for plan refinement at execution time. We integrate a constraint-
based planner aimed at producing a plan schema with an executor able to refine
the plan before executing it. Both those components are able to sense the real
world by means of a constraint based framework, called Interactive Constraint
Satisfaction Problem (ICSP), proposed in [12]. The main point of this paper is to
describe our architecture and how it implements the deferred planning strategy
by exploiting the ICSP framework.

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 228-236, 2000.
© Springer-Verlag Berlin Heidelberg 2000



Planning while Executing: A Constraint-Based Approach 229

2 Different Strategies to Cope with Dynamicity

The enhanced complexity of traditional planning techniques when applied to
dynamic environments is due to the facts that (i) typically the planner is not
the only agent that causes changes on the system and (ii) often changes are not
deterministic. This can lead to a failure of the plan execution, either because
action preconditions are no longer verified at execution time, or because action
effects are not those expected.

In [14], the authors present three different extensions to conventional plan-
ning techniques whose aim is to cope with uncertainty:

- planning for all contingencies, so that once sensing is performed, only the
plan correspondent to the actual contingency will be executed [15,2];

- making assumptions, so that planning decisions will be based only on the
assumed value of the sensing result [5,9];

- defer-ring planning decisions until information depending on sensors is avai-
lable [14,5,8].

The appropriateness of the strategy depends on the application, and, in particu-
lar, on the criticality of mistakes, on the complexity of the domain, and on the
acceptability of suspending execution to do more planning.

Our architecture follows the deferred planning strategy, as it will be descri-
bed in the next section. The deferred planning approach aims at avoiding doing
useless computation at planning time. Some portions of the plan requiring in-
formation which can be available only at execution time are left incomplete. In
this way the planner could miss some important dependencies between the par-
tial plans it is producing. This is why plan execution can fail and it is strongly
required that the actions contained in partially specified plans are reversible.

3 An ICSP-Based Planning Architecture

Our planning architecture is in charge of computing configuration plans in a net-
worked computer system [4,10]. The domain knowledge is composed by many
different types of objects (e.g., machines, users, printers, services, files, proces-
ses), their attributes (e.g., sizes, availability, location) and relations among them
(e.g., user u is logged on machine in). In this case, there is an enormous amount
of knowledge to consider. In addition, this information can change during the
system's life due to actions performed on the objects (e.g., removing or creating
files, connecting or disconnecting machines, adding or deleting users, starting
or killing processes). Thus, it is not convenient, if possible at all, to store all
this information in advance and keep it up-to-date. We developed a planner able
to deal with dynamic and incomplete knowledge. Our solution follows the de-
ferred planning approach described in [14]. However, while in [14] the deferred
decisions are represented by all the goals involving data that must be obtained
through sensing, our planner does not defer until execution all the goals which
require sensing since it is able to sense at planning time. In our approach deferred
decisions are represented by:



230 R. Barruffi, M. Milano, and P. Torroni

- non deterministic variable bindings: since variable domain values represent
alternative resources whose state can change during or after plan construc-
tion, we want to avoid as much as possible to commit to premature choices;

- acquisition of up-to-date information when that sensed at planning time is
no longer valid.

Both the planner and the executor are able to sense the real system by means
of a constraint based framework representing an extension of the Constraint
Satisfaction paradigm and called Interactive Constraint Satisfaction Problem
framework [12].

3.1 Preliminaries

Interactive Constraints (ICs) are declarative relations among variables whose
domain (i.e., the set of values the variables can assume) is possibly partially or
completely unknown. An interactive domain is defined as D(X) = [List uUndef]
where List represents the set of known values for variable X, and Uridef is a
domain variable itself representing (intensional) information which is not yet
available for variable X. An Interactive Constraint Satisfaction Problem (ICSP)
is defined on a set of variables ranging on interactive domains. Variables are
linked by ICs that define (possibly partially known) combinations of values that
can appear in a consistent solution. As for traditional Constraint Satisfaction
Problems, a solution to an ICSP is found when all the variables are instantiated
consistently with constraints. For a formal definition of the ICSP framework see
[12]. ICs operational behaviour extends standard constraint propagation with a
data acquisition mechanism devoted to retrieving consistent values for variable
domains. In particular given a binary interactive constraint IO(c(X, Y)), its
operational behaviour is the following:

1. If both variables are associated to a partially or completely unknown domain,
the constraint is suspended;

2. else, if both variables range on a completely known domain, the constraint
is propagated as in classical CSPs;

3. else, if one variable (say X) ranges on a fully known domain and the other
(Y) is associated to a fully unknown domain a knowledge acquisition step
is performed; this returns either a finite set of consistent values representing
the domain of Y, or an empty set representing failure.

4. else, if X ranges on a fully known domain and Y is associated to a partially
known one, Y domain is pruned from values non consistent with X. If Y
domain becomes empty a new knowledge acquisition step is performed for
Y driven by X.

This is a general framework which can be used in many applications. It is parti-
cularly suited for all the applications that process a large amount of constrained
data provided by a lower level system, see for instance [11,12].



Planning while Executing: A Constraint-Based Approach 231

3.2 The Algorithm

According to the deferred planning strategy proposed in [14], a plan schema is
produced off-line by a generative planning process and refined at execution time
by retrieving up-to-date information when that available is no longer valid. In
this setting, both planning and execution represent search processes in the space
of partial plans. More precisely the plan execution can be seen as the second
phase of the same search algorithm aimed both at producing and executing a
plan. The generative phase of the algorithm represents a Partial Order Plan-
ner (POP) [16] interleaving open condition1 achievement and conflict resolution
steps. As far as the open condition achievement is concerned, three alternative
cases are possible: (i) the open condition is already satisfied in the initial state,
(ii) it can be satisfied by an action already in the plan, (iii) there is need of a
new action in order to satisfy it.

The planning problem is mapped onto an IGSP so that the planner becomes
able to both exploit constraint satisfaction techniques in order to reduce the se-
arch space and deal with incomplete knowledge. The method we propose embeds
knowledge acquisition activity into the constraint solving mechanism, thus sim-
plifying the planning process in two points. First of all, there is no need to add
declarative sensing actions to the plan [1,6,10], we provide a sensing mechanism
where no further declarative action is needed apart from the causal actions. Se-
cond, only significant information for the planner is retrieved. As a consequence,
variable domains are significantly smaller than in the standard case.

Open conditions are treated as ICs. Variables appearing in ICs represent
system resources, and domain values represent alternative instances. Variable
domains contain all the known alternative resources; they can be either (i) com-
pletely known, containing objects which can be assigned to the corresponding
variable; (ii) partially known, containing some values already at disposal and a
variable representing intensional future acquisitions; (iii) totally unknown, when
no information has already been retrieved for the variable. As soon as an open
condition p(X, Y) is selected, the constraint solver will propagate the correspon-
ding IC(p(X, Y)) to test if there exists at least one value of X and Y that already
satisfies p in the initial state. When variables (X, Y) range on known domains,
traditional constraint propagation is performed in order to prune inconsistent
values from domain, otherwise constraint propagation results in acquisition of
domain values. In order to provide Interactive Constraints with the capability to
sense the system we need to associate them with appropriate information gathe-
ring procedures, working as access modules to the real world. In our environment
such procedures can be represented by simple UNIX sensing commands as well
as by scripts when sensory requests involve setup activities. It is worth noting
that when appropriate sensors are available, Interactive Constraint retrieve only
information consistent with the context so as to simplify the task of pruning
inconsistent alternatives. For instance, suppose that, during the planning pro-
cess, we need to locate a file mnydoc in a UNIX system, i.e., we need to propagate

An open condition is indifferently represented by a precondition or a final goal con-
junct still to be satisfied.



232 R. Barruffi, M. Milano, and P. Torroni

the interactive constraint inDirectory(mydoc, Location). Suppose, also, that the
file mydoc is initially contained in three different directories dirl, dir2 and dir3.
If variable Location has an unknown domain, an acquisition step is performed
and those three values are retrieved (through the find Unix sensing command),
otherwise the domain is pruned from not consistent values (e.g dir4).

If a constraint fails (i.e., a variable domain becomes empty), it means that
the corresponding precondition is not satisfied in the initial state (i.e., there is

need of an action in order to achieve it). On the other hand, when more than
one value are left in a variable domain after all possible propagation, it means
that all those values satisfy that constraint in the initial state. In a traditional
CS-based approach, there is need for a non deterministic labelling step in order
to find a final solution. In our architecture, the labelling step takes place at plan
execution time so that at the end of the generative phase variables might be
associated with a domain containing more than one value.

Given the plan schema produced by the generative phase, the executor selects
the first action to be executed. An interactive constraint propagation activity
checks the satisfability of its preconditions in the real world. If precondition varia-
bles are already instantiated, the interaction with the underlying system results
in a consistency check, while if those variables are associated to a domain, the
domain can be pruned in order to remove values which are no longer consistent
with the current state of the system. Value removal can trigger constraint propa-
gation which, in turn, removes values from other variable domains, thus reducing
the execution search space. If, after propagation, a domain is empty, meaning
that values retrieved at planning time no longer verify the correspondent precon-
dition p, a backtracking step is performed in order to select an alternative action
or partial plan which satisfies p. When all the variables of the action range on
non empty domains, necessary non deterministic labelling steps are performed
and the action is executed. The same reasoning applies until all the actions are
successfully executed.

3.3 An Example

Let us consider a network where a monitoring application ensures that certain
processes are up and running (i.e. that their status is on). Once the status of
the system is recognized as faulty, the planner is activated in order to provide a
recovery plan.

Let us suppose that one of those processes, called Trigger, is off, and that
for activating it the planner generates the plan P1 of actions shown in Figure
1. Note that some domains are partially known, others are still completely un-
known. TriggerStart is the daemon process in charge of activating the Trigger
process, and its code is contained in the executable file TMAboot. When activating
TriggerStart, TMAboot must be located in a directory (X) corresponding to the
so-called runlevel (I) of the process. For instance, if TriggerStart is to be ac-
tivated at runlevel '3,, TMAboot must be in a directory called '/sbin/r13'. The
runlevel is a parameter of the machine which is set at boot-time. In particular, in
order to achieve the goal of having processes TriggerStart and Trigger on, P1



Planning while Executing: A Constraint-Based Approach 233

***** plan to be executed: *****

killProcess(TriggerStart)

copy(TMAboot, Dl, X); X:: [Undef] Dl:: [/sbin/rll, /sbin/rl2, Undef]
onTriggerStart(I, X); X:: [Undef] I:: [3, Undef]

Fig. 1. Plan to be executed.

suggests that process TriggerStart is killed, that file TMAboot is copied from
directory DI to directory X and that process TriggerStart is activated from
the directory X corresponding to the runlevel I. At planning time only relevant

***** executing plan... *****

now checking preconditions...
--- > condition status(TriggerStart, on) succeeded

... preconditions checked.
now doing labelling on preconditions...
labelling killProcess(TriggerStart)
... labelling on preconditions done.

now executing action 1: killProcess(TriggerStart)...
--- > action killProcess(TriggerStart) succeeded

now checking preconditions...
--- > condition inDirectory(TMAboot, Dl) succeeded

... preconditions checked.
now doing labelling on preconditions...
labelling copy(TMAboot, Dl, X)
... labelling on preconditions done.

now executing action 2: copy(TMAboot, /sbin/rll, X)...
--- > action copy(TMAboot, /sbin/rll, /sbin/rl3) succeeded

now checking preconditions...
--- > condition status(TriggerStart, off) succeeded
--- > condition inDirectory(TMAboot, /sbin/rl3) succeeded
-- > condition configDir(/sbin/rl3, I) succeeded

... preconditions checked.
now doing labelling on preconditions...
labelling onTriggerStart(I, /sbin/r13)
... labelling on preconditions done.
now executing action 3: onTriggerStart(3, /sbin/rl3)...

--- > action onTriggerStart(3, /sbin/rl3) succeeded

.plan executed *****

Fig. 2. Output messages generated during the execution of the plan: case 1.

facts are retrieved from the world: in particular, the planner knows that the
machine is on at runlevel 3, that four directories ('/sbin/rl0', '/sbin/rll',
I/sbin/r12', '/sbin/r13') exist and that they correspond to four different
runlevels, that process TriggerStart is on and that process Trigger is off.
Finally it knows that a copy of the file TMAboot is contained in two different di-
rectories ('/sbin/rll', '/sbin/r12 ). If the world does not change the executor
will instantiate variable Dl either to I/sbin/rll' or to '/sbin/r121, variable



234 R. Barruffi, M. Milano, and P. Torroni

now checking preconditions...
--- > condition inDirectory(TMAboot, Dl) succeeded

... preconditions checked.
now doing labelling on preconditions...
labelling copy(TMAboot, Dl, X)

... labelling on preconditions done.
now executing action 2: copy(TMAboot, /sbin/rl2, X)...

--- > action copy(TMAboot, /sbin/rl2, /sbin/rl3) succeeded

Fig. 3. Output messages generated during the execution of action copy: case 2.

X to '/sbin/r13' and I to 3. The output messages generated by the execution
module are those of Figure 2. We can recognize different steps in the execution
of each action: a first phase where the executor checks if the preconditions of the
current action hold, a labelling phase where domains, if any, are labelled and
eventually an execution phase, which modifies the state of the world.
If the actions are successfully performed, the world is led to a final state with
all the relevant processes on. Now, let us suppose that before executing action
copy(TMAboot, D1, X) some external agent in the world deletes file TMAboot
from '/sbin/rll'. The actual world contains only one instance of such file,
in directory '/sbin/rl2'. Therefore the executor cannot label the plan in the
same way as before (i.e., copy(TMAboot, /sbin/rll, /sbin/r13)). What it
does, after checking in the world the domain of DI, is to choose one of the do-
main values which are actually left (i.e., '/sbin/rl2' ). The execution proceeds
as in the first case, with the only difference that the file is copied from a different
source ('/sbin/r12'). See Figure 3.

4 Non-monotonic Changes

Up to now, we have considered that values acquired during plan construction
can be no longer available during plan execution. However, a more complex
situation occurs when some new values are available during plan execution and

have not been retrieved during plan construction. Standard CSPs do not deal
with value insertion in variable domains since it implies reconsidering previously
deleted values which can be supported by the newly inserted value. The ICSP
framework can cope with non monotonic changes of variable domains thanks to
the open domains data structure.

An open domain is represented by a set of known values and a variable repre-
senting the unknown domain parts, i.e., potential future acquisitions. Thus, if,
during plan execution, the entire set of known values (those acquired during plan
construction), is deleted because of precondition verification, a new acquisition
can start aimed at retrieving new consistent values. If no values are available,

backtracking is performed in order to explore the execution of other branches
in the search space of partial plans. If the overall process fails (and only in this
case), a re-planning is performed.



Planning while Executing: A Constraint-Based Approach 235

Dynamic Constraint Satisfaction (DCS) [13] has been proposed in order to
deal with non monotonic changes. DCP solvers maintain proper data structures
so as to tackle modifications of the constraint store. Thanks to the ICSP frame-
work we do not need to store additional information for restoring the constraint
store consistency as done by DCS approaches. On the other hand, our method
makes the propagation we perform less powerful than that performed by dyna-
mic approaches. In fact, if we consider a constraint between variables X and Y,
the variable inserted in the domain of variable X represents a potential support
for values in the domain of variable Y, which cannot be pruned until the domain
of X becomes closed.
Example. Given the example above let us consider a third case. If the domain
initially retrieved for DI is completely wiped and an instance of file TMAboot
is put in another directory, let us say '/sbin/rl0', it is necessary to perform
more acquisition via the undefined part of the DI domain. In particular, the con-
straints active on Dl can shape from the new world setting the correct domain
for it at execution time and let the plan be once more successfully executed.
Figure 4 shows the output generated by the execution of action copy.

now checking preconditions...
--- > condition inDirectory(TMAboot, /sbin/rlO) succeeded

.. preconditions checked.
now doing labelling on preconditions...
labelling 2
labelling copy(TMAboot, /sbin/rlO, X)

.. labelling on preconditions done.
now executing action 2: copy(TMAboot, /sbin/rlO, X)...

--- > action copy(TMAboot, /sbin/rlO, /sbin/rl3) succeeded

Fig. 4. Output messages generated during the execution of action copy: case 3.

5 Conclusion

This paper describes an approach to deferred planning, which represents one
of the main planning strategy to plan in presence of dynamic environments.
The idea is to delay some planning decisions regarding sensory data, as much
as possible, in order to reduce the gap between the world as it is observed at
planning time and the world the executor performs on. We exploit the Interactive
Constraint Satisfaction framework [12], which represents an extension of the CS
framework based on Interactive Constraints, in order to interact with the real
world. Sensing is performed both at planning and at execution time.

The implementation of this architecture has been carried out by using the
finite domain library of ECLiPSe [3] properly extended to cope with the in-
teractive framework. ECL PS' is a Constraint Logic Programming (CLP) [7]



236 R. Barruffi, M. Milano, and P. Torroni

system merging all the features and advantages of Logic Programming and Con-
straint Satisfaction techniques. CLP on Finite Domains, CLP(FD), can be used
to represent planning problems as CSPs.

A repair mechanism is currently under development in order to cope with
failures and backtracking steps over already executed actions. The repair me-
chanism supports all cases in which the executor realises that the effects of the
action are not those expected.

Acknowledgments. Authors' work has been partially supported by Hewlett
Packard Laboratories of Bristol-UK (Internet Business Management Depart-
ment) and CNR (Project 40%).

References

1. N. Ashish, C.A. Knoblock, and A. Levy. Information gathering plans with sensing
actions. In Proceedings of the 4th European Conference on Planning, 1997.

2. D. Draper, S. Hanks, and D. Weld. Probabilistic planning with information gat-
hering and contingent execution. In Proceedings of AIPS-94, 1994.

3. ECRC. ECLPSC User Manual Release 3.3, 1992.
4. 0. Etzioni, H. Levy, R. Segal, and C. Thekkath. Os agents: Using ai techniques in

the operating system environment. Technical report, Univ. of Washington, 1993.
5. K. Golden. Planning and Knowledge Representation for Softbots. PhD thesis,

University of Washington, 1997.
6. K. Golden and D. Weld. Representing sensing actions: The middle ground revisited.

In Proceedings of 5th Int. Conf. on Knowledge Representation and Reasoning, 1996.
7. P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,

1989.
8. C.A. Knoblock. Planning, executiong, sensing, and replanning for information

gathering. In Proc. 14th IJCAI, 1995.
9. N. Kushmerick, S. Hanks, and D. Weld. An algorithm for probabilistic least-

commitment planning. In Proceedings of AAAI-94, 1994.
10. C.T. Kwock and D.S. Weld. Planning to gather information. Technical report,

Department of Computer Science and Engineering University of Washington, 1996.
11. E. Lamma, M. Milano, R. Cucchiara, and P. Mello. An interactive constraint based

system for selective attention in visual search. Proceedings of the ISMIS'97, 1997.
12. E. Lamma, M. Milano, P. Mello, R. Cucchiara, M. Gavanelli, and M. Piccardi.

Constraint propagation and value acquisition: why we should do it interactively.
Proceedings of the IJCAI, 1999.

13. S. Mittal and B. Falkenhainer. Dynamic constraint satisfaction problems. In
Proceedings of AAAI-90, 1990.

14. D. Olawsky and M. Gini. Deferred planning and sensor use. In Proceedings DARPA
Workshop on Innovative Approaches to Planning, Scheduling, and Control, 1990.

15. M. Peot and D. Smith. Conditional nonlinear planning. In J. Hendler, editor,
Proc. 1st AIPS, pages 189-197, San Mateo, CA, 1992. Kaufmann.

16. D.S. Weld. An introduction to least commitment planning. AI Magazine, 15:27-61,
1994.



Problem Decomposition and
Multi-agent System Creation for

Distributed Problem Solving

Katsuaki Tanaka, Michiko Higashiyama, and Setsuo Ohsuga

Waseda University, Department of Information and Computer Science
3-4-1 Ohkubo Shinjuku-ku, Tokyo 169-8555, Japan

Abstract. As human society glows large and complex problems which
human being must solve is also becoming large and complex. In many ca-
ses, a problem must be solved cooperatively by many people. There arise
a problem of decomposing the problem into sub-problems, distributing
these sub-problems to number of persons and organizing these people in
such a way that the problem can be solved most efficiently. This orga-
nization is not universal but is made specific to the given problem. It is
possible to create a multi-agent system to correspond to the cooperative
work by persons. Here is a problem of creating an organization of the
agents dynamically that is suited for coping with the specific problem.
It is the major objective of this paper to discuss a way of generating a
multi-agent system with examples.

1 Introduction

As social systems grow large and complex, problems which human being must
solve are also becoming large and complex. In many cases, a problem must be
solved cooperatively by many people. There arise a problem of decomposing
the problem into sub-problems, distributing these sub-problems to number of
persons and organizing these people in such a way that the problem can be solved
most efficiently. Managing this process has been one of very important tasks by
human being. But the growth of the scale of problems induces the increase of
complexity in their management tasks and it is worrying that the current method
of managing the process is inadequate for following up the growth of the problem
scale. We are required today to develop a new method of management to resolve
this problem.

One of the reasons that makes the current method inadequate is that large
amount of decision were distributed to number of persons who join the process
and made there without being recorded fully. Large part of these decisions re-
mains in worker's brain, and the manager cannot follow the development process
afterward for checking them. This problem remains unresolved as far as the main
body of development is person because it is caused by an intrinsic nature of hu-
man being. An alternate way to improve this situation is to introduce computers
in problem solving much more than ever before and let them record the history

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 237-246, 2000.
@ Springer-Verlag Berlin Heidelberg 2000



238 K. Tanaka, M. Higashiyama, and S. Olisuga

of its process, especially the history of decisions made there by persons in this
process.

We introduce computers as software agents. It follows that agents replace
persons in a organization for problem solving.

Many papers argue about problem solving system by software agents [1] [2] [8].
In this paper, Multi-strata model[5] is used to describe problem solving process,
and multi-agent systems are created based on this model.

There are some problems. How is the multi-agent system organization ge-
nerated and managed? How is the human decision recorded? How is the past
record found and used for new problem solving? And so on.

Some of these issues, especially a way of generating a multi-agent system,
are discussed in this paper. Every agent in this system is intelligent in a sense
that not only it can solve problems autonomously based on a knowledge base
but also it generates the other intelligent agents as needed.

2 Problem Solving

2.1 Problem Solving Scheme

Problems can be divided roughly into two types; design type and analysis type.
Design type problem is define as those to obtain a structure of object with the
required function while analysis type problem is to obtain the functionality of
object based on a given structure. As will be described in the following, design
type problem solving is defined as a repetitive operation including analysis type
problem. In this paper therefore design type problem is mainly discussed.

A basic operation for design type problem solving is represented in this paper
roughly as composed of three stages as follows and is shown in Fig. 1.

ýRqirement

SIcpetModel Model Analysis Model
LGeneration ý and Evalu~ation Modification

Fig. 1. Standard process of design problem solution

1. Make an incipient model as an embodiment of person's idea on problem
solving. It includes this person's requirement to be satisfied.

2. Analyze the model to obtain its functionality and behavior, and evaluate it
whether it satisfies the person's requests.

3. Based on the result of the analysis and evaluation, modify the model.

If the request is satisfied, stop the design process. The model represents a
solution.



Problem Decomposition and Multi-agent System Creation 239

2.2 Solving Large Problem by Persons

When a problem is very large and is solved by person, this basic process cannot
be applied directly but the problem must be decomposed to a set of smaller sub-
problems and these sub-problems are distributed to the different persons. Since
these sub-problems are not specified in advance but generated by decomposition
after given the original problem, these persons cannot be assigned in advance
but must be generated dynamically in parallel with decomposition process. This
method is shown in the case of aircraft design as an example. It is shown in Fig.
2.

M~Md

Desg, tWi flissft - 6g'ý

stttgdestgss ftssslg designe

Fig. 2. Design process of an aircraft

The outline of the process is shown as follows.

1. Model generation
Given requirement from client, a chief designer prepares to generate an inci-
pient generous model of the whole airplane based on his/her experiences and
referring to the case base. First, he/she creates a top node of a hierarchy to
represent the object and gives it the design requirement.

2. Model decomposition
Design starts top-down. In general, a complex object is decomposed to a
number of assemblies and each assembly is further decomposed to a set of
sub-assemblies and so on. In this way a hierarchical object is generated. It is
required that the functionality of designed object meets the given functional
requirement. The functionality of an object is decided by the functionality
of its components and their structure. In this sense a model to represent an
object, called an object model hereafter, is characterized by the bottom-up
dependency. But it is difficult to design a large object bottom-up because
of the combinatorial explosion of computations. Instead, a top-down design
must be performed actually.
The designer responsible to design an object decides tentatively an upper
part structure of this object, i.e. main components and their structure. For
example, an aircraft designer decide tentatively first main components (as-
semblies) such as engine, main wing, fuselage, ladder wing, tail wing, vertical
wing, landing gear, wire-harness, electronic system, etc. Then their structural
relation is defined. By assuming the functionality of these components, the
functionality of the object can be estimated. If this tentative structure does



240 K. Tanaka, M. lligashiyama, and S. Ohsuga

not satisfy the given requirement, the designer has to find another structure
or changes the functionality of the components. The functionality becomes
the requirement to the component design in the following process.

3. Model assignment to component-design
If the designer satisfies the estimate, then he/she fixes tentatively this part
of design and distributes a problem of designing each component to an ex-
pert of component design. For example, the engine design is assigned to an
engine expert. After then, the similar process is performed for designing each
component by the expert assigned in this way. Thus many people commit
the design of the common objects. Since behavior of these components are
related closely to each others, the components design cannot go indepen-
dently from the others but needs very close interactions. Usually therefore
those people are organized to assure easy communication and cooperation.
That many people join the same design means that decisions are distributed
to the different persons and remain there without being recorded. It causes
the difficulty of tracing afterward the design for checking and maintenance.
It will also be very much troubled in the document acquisition in modeling,
if previous record is imperfect.

3 Outline of Autonomous Problem Solving

3.1 Problem Solving System Architecture

This human-centered process is replaced by computer-centered process. The
computer-centered process means that a computer system manages a total pro-
cess and persons join the problem solving in parts. In this computer system an
object problem is represented by a knowledge representation language and a
knowledge processing agents deal with the problem cooperatively. The agents is
organized into a multi-agent system in which distributed agents are related each
other in the best way to solve the given specific problem. The structure of the
agents corresponds to the human organization in the human problem solving
discussed in section 2. The major parts of the system are a global knowledge
base, a distributed problem solving system composed of plural agents and user
interface. The global knowledge base supports knowledge necessary for problem
solving to every agent. The overall structure of agents for problem solving is
shown in Fig. 3.

3.2 KAUS as Knowledge Representation Language

A language suited for representing this system is necessary. In order to cope with
problem model of the form as will be discussed in section 2, it must be suited for
representing predicate including data-structure as argument and also for descri-
bing meta-level operation such as knowledge for describing on other knowledge.
KAUS (Knowledge Acquisition and Utilization Language) has been developed
for the purpose[10]. In the following, some logical expressions appear as know-
ledge. In order to keep consistency and integrity of expressions throughout the



Problem Decomposition anid Multi-agent System Creation 241

Ag~Zent n
Ageentc

Problem Solving System

Fig. 3. Agent architecture of problem solving

whole system these must be written in KAUS language. However, these are not
necessarily written in correct KAUS expressions but locally simplified. It is be-
cause KAUS syntax is not included in this volume and these locally simplified
expressions are more comprehensive than correct expressions.

4 Multi-agent Problem Solving System

4.1 Design Principle of an Agent

Fi.o .Stutueofa Agent

Anagntinths uliAgent yt em isdsindntotlsaspaeproergn

to sartonmu problem solving. Thsemis agentne has the laesmnefrslvi-gng aculysthem

goacivven prblm specia ond for generatingrpthe problem solving system bya rerivng

ncsayknowledge fromth global knowledge base we rbe sasge and third bforegnrtn

the other agent (Fig. 4). Throughout this paper, it is considered that an agent
is a subject of an activity. Therefore, if some activity is defined in a computer
system, there must be some agent to behave as the subject of the activity.



242 K. Tanaka, M. Higashiyama, and S. Ohsuga

4.2 Behavior of Agents

The behavior of agents is similar to persons working together as has been discus-
sed in section 2. Design-type problems are kept in mind. When a problem-solving
task starts, a highest-level -agent is prepared that corresponds to a human chief
designer. Receiving user's requirement, it tries to decompose an object top-down
as a first step to generate an object structure. It analyze and evaluate the struc-
ture and if it is decided that it succeeds in making the object structure at the
highest level, then it generates and assigns an agent to every component of this
structure. In this way the problem solving proceeds top-down. When it reaches
the components at the bottom, that is, the components that are no more neces-
sary to be decomposed, then the process stops in success.

(I(designA A) -(designX X) -(designY Y)
(mergeModei A X Y)).

(designX 10).
(designY 5).
0I (mergeModel A X Y) -($add A X Y)).

Fig. 5. Knowledge of designA

The behavior of an agent in this process is explained first using a simplest
example as shown in Fig. 5. This is a problem of designing an imaginary object
A. It is to merge the results from two designs for X and Y. In reality these
designs are to obtain the entities X and Y of which the results are given as the
number 10 and 5 respectively. The merge operation is to add the numbers. A
design problem starts given the requirement (designA A)? First an agent at the
highest level is created. It is given the requirement. The agent tries to satisfy the
requirement. It refers to knowledge base and finds knowledge which says that
the requirement can be satisfied by achieving two designs X and Y, and merging
them. This means that three new activities are defined and accordingly that
there should be three subjects for the activities. Traditionally these activities
are combined into a program because each new activity is very simple. This is a
case in which the same single computer represents the three subjects. But there
can be different ways when sub-problems are large. For example, every subject
can be different from each other and an agent is created to represent a subject.
For the purpose of explanation, a design process is presented assuming this last
case in the following. In the following explanation, the sentences headed by*
shows the case of applying the general method to this specific example.

1. An agent receives the problem from user interface. The agent becomes the
highest-level agent. The agent analyzes the problem, takes out some relating
knowledge from the knowledge base, and saves it in the local knowledge base
within the agent.
* An agent receives '(designA A)?' Agent Controller in the agent retrieves
related knowledge from Global Knowledge Base, and records it into Local



Problem Decomposition and Multi-agent System Creation 243

Knowledge Base. In this case it is '(I (designA A) -(designX X) -(designY Y)
~(mergeModel A X Y))'

2. The agent selects knowledge to use for problem solving from the local know-
ledge base, and analyzes its structure to decide whether the problem should
be decomposed or not. If the object is to be decomposed, then an agent
is created corresponding to every component. New requirement is given to
every new agent.
If there is no suitable knowledge in local knowledge base, the agent requires
other knowledge via user interface.
* Inference engine selects knowledge '(I (designA A) ~(designX X) -(designY
Y) -(mergeModel A X Y))' in knowledge base. The object model A is decom-
posed to X and Y. Agents X and Y are created corresponding to the objects
X and Y respectively.

3. Assign each problem to the lower agents. After then, the lower agents are
activated.
* The agent assigns the requirements '(designX X)?' and '(designY Y)?' to
the agent X and Y respectively.

4. The higher-level agent receives solution from the lower level agent. Using the
result problem solving continues there. If the solution is not obtained, the
problem solving is carried out again using different knowledge.
* The higher-level agent receives X=10 and Y=5 from the lower level agents.
'(mergeModel A 10 5)?' is solved there to obtain A=15.

5. The solution is returned to the user interface. Inference engine replaces the
variable part of the knowledge with solutions of sub-problems and problem,
and Agent Controller registers it in Case Base.
* 'A=15' is returned to user interface.

Interactions between agents are very important, but it is a very large pro-
blem. Our group still study about agents' interactions[7], this system has not
yet realized interaction between agents that has same higher agent.

5 Knowledge Base

The knowledge base is required to retrieve an appropriate knowledge for the
requests from agents in a short time for assuring the practicality of the system.
Since large amount of knowledge from various types and domains is saved, the
knowledge base must be well managed by a knowledge management system. The
knowledge is divided into chunks by type information, domain information and
the other information for aiding rapid retrieval of knowledge. These chunks are
structured in the large knowledge base. The large knowledge base management
system is itself a special agent. It accepts the request from the other agents,
retrieve the required knowledge and send it back to the requesting agent.



244 K. Tanaka, M. Higashiyama, and S. Ohsuga

6 Overall System Architecture

An overall system architecture is shown in Fig. 6.

..... .... .
[]-I

Network

Fig. 6. System architecture

It consists of many computers on a network. The group of these computer
systems is organized dynamically into a distributed, multi-agent system speci-
fied to a given problem. In principle, every computer is the same and symmetric
to each other except a large knowledge-base management system that is speci-
fically designed to achieve the specific role. In order for agents to cooperate to
each other, CORBA is introduced. Since every agent works on KAUS system, a
CORBA extension named KAUS-CORBA was developed.

7 Experiment

A slightly more complex problem than that used for explanation in section 5 has
been solved as an example. This is to design a private house[3]. In this example,
a house M is composed of such components as movementLine MO, equipment
M1, livingSpace M2, privateRoom M3. A part of knowledge that corresponds to
'(I (designA A) -(designX X) -(designY Y) -(mergeModel A X Y))' used in the
example before is given as follows.

(I (design-house M) -(design-movementLine MO) -(design-equipment M1)
-(design-livingSpace M2) -(design-privateRoom M3)
-(merge M [MO M1 M2 M3])).

(I(design-privateRoom Y) -(wall YO) -(pdoor Y1) -(pwindow Y2) -(pfloor Y3)
-(pceiling Y4) -(merge Y [YO Y1 Y2 Y3 Y41)).

(pfloor wooden). (pfloor plastic). (pfloor tatami). (pfloor carpet). (pfloor stone).

Fig. 7. A part of knowledge to design a house

This system was applied to design of the house. The arrangement of rooms
is passed to top agent as requirement, agents select all parts of house.



Problem Decomposition and Multi-agent System Creation 245

The problem of design the house was divided into the sub-problems of design
the parts; the different agents were assigned to the sub-problems and the desi-
gned the parts were merged to obtain the all of the house. Every sub-problem
was solved by the different agents.

The knowledge base includes various alternative rules and it was confirmed
that depending on the problem the way for decomposing the problem was also
changed, the different organization of the agents is also generated and the results
of the past trials were used effectively.

8 Conclusion

In this paper, it was discussed a way of solving large problems in a distributed
multi-agent system. A problem is decomposed into sub-problems and, depending
on this decomposition of the problem, agents are generated. These agents keep
relation to each other for cooperation depending on the relations of sub-problems
and therefore a multi-agent system is formed tailored to this specific problem.
An agent is intelligent in the sense that it can solve various type of problem
autonomously, and also it can create the other agent as needed. A basic idea,
a way of problem solving, also a way of generating a multi-agent system, two
experiments using very simple examples were included in this paper. This system
is a part of a larger system the author's group is developing now. This is a very
large system and there remain many problems to be solved. The part discussed
in this paper is a central portion of the ideas on this system development.

Acknowledgement. This research was conducted sponsored by The Science
and Technology Agency of Japanese Government. The authors would like to
express sincere thanks to their support.

References

1. Caroline C. Hayes, Agents in a Nutshell - A very Brief Introduction, IEEE Tran-
sactions on Knowledge and Data Engineering, Vol. 11, No. 1, January/February
1999

2. M. Harandi and C. Rendon, "A Support Environment for Building Distributed
Problem Solvers," Proc. IEEE Conf. Systems, Man, and Cybernetics, Oct. 1997.

3. M. Higashiyama, Construction Of Problem Model, Graduation Thesis of Waseda
University, 2000

4. Y. Nishikawa, A Study on Construction of Large Scale Knowledge Base, Master
Thesis of Waseda University, 2000

5. Setsuo Ohsuga, Toward truly intelligent information systems - from export systems
to automatic programming, Knowledge-Based Systems, pp.363-396, Oct. 1998

6. Setsuo Ohsuga, Takumi Aida, Externalization of Human Idea and Problem De-
scription for Automatic Programming, In Proceeding of the Eleventh International
Symposium on Methodologies for Intelligent Systems, pp. 163-171, Jun. 1999

7. N. Shinkai, Negotiation and Strategy among Multi Agents, Graduation Thesis of
Waseda University, 1999



246 K. Tanaka, M. Higashiyama, and S. Ohsuga

8. G.W. Tan, C.C. Hayes, and M. Shaw, An Intelligent-Agent Framework for Con-
current Product Design and Planning, IEEE Trans. Eng. Management, vol.43, no.3,
pp.297-306, Aug. 1996.

9. K. Tanaka, An Distributed Problem Solving System on the Use of Multi-agent,
Master Thesis of Waseda University, 2000

10. Hiroyuki Yamamuchi, KAUS User's Manual Version 6.502, RCAST, University of
Tokyo, 1999



A Comparative Study of Noncontextual and
Contextual Dependencies

S.K.M. Wong 1 and C.J. Butz2

1 Department of Computer Science, University of Regina

Regina, Saskatchewan, Canada S4S 0A2
E-mail: wong(cs .uregina. ca

2 School of Information Technology & Engineering, University of Ottawa

Ottawa, Ontario, Canada K1N 6N5
E-mail: butzlsite.uottawa. ca

Abstract. There is current interest in generalizing Bayesian networks
by using dependencies which are more general than probabilistic conditio-
nal independence (CI). Contextual dependencies, such as context-specific
independence (CSI), are used to decompose a subset of the joint distri-
bution. We have introduced a more general contextual dependency than
CSI, as well as a more general noncontextual dependency than CI. We
developed these probabilistic dependencies based upon a new method
of expressing database dependencies. By defining database dependencies
using equivalence relations, the difference between the various contextual
and noncontextual dependencies can be easily understood. Moreover, this
new representation of dependencies provides a convenient tool to readily
derive other results.

1 Introduction

Bayesian networks [5] have become an established framework for uncertainty
management in artificial intelligence. Bayesian networks only use a single type
of dependency, called probabilistic conditional independence (CI), to losslessly
decompose a joint probability distribution. There is current interest, however,
in generalizing Bayesian networks with more general dependencies. In [1], a con-
textual (horizontal) dependency, called context-specific independence (CSI), was
introduced to capture CIs that only hold in some of the tuples in a joint distri-
bution. In [8], we introduced a more general contextual dependency than CSI, as
well as a more general noncontextual dependency than CI. The important point,
however, is that our probabilistic dependencies were motivated by corresponding
database dependencies.

Weak multivalued dependency (WMVD) [2,3] is a more general database de-
pendency than multivalued dependency (MVD) [4]. Fischer and Van Gucht [2]
gave several characterizations of WMVD. In this paper, we suggest a new cha-
racterization of both MVD and WMVD based on equivalence relations. In this

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 247-255, 2000.
© Springer-Verlag Berlin Heidelberg 2000



248 S.K.M Wong and C.J. Butz

framework, the difference between the various database dependencies can be ea-
sily understood. Moreover, this new representation of dependencies provides a
convenient tool to readily derive other results.

This paper is organized as follows. In Section 2, we review some pertinent
notions in the relational database model, and recall some notions about equiva-
lence relations. We use this framework to express contextual and noncontextual
dependencies in Section 3. In Section 4, we demonstrate the simplicity of our
framework by showing the soundness of some known inference axioms. The con-
clusion is given in Section 5.

2 Basic Notions

2.1 Relational Databases

Here we review some notions used in the elegant relational database model [4].
A relation scheme R = {Af , A2 , ... , Am} is a finite set of attributes. Corre-

sponding to each attribute Ai is a nonempty finite set Di, 1 < i < m, called the
domain of Ai. Let D = D1 u D2 ... U Di. A relation r on the relation scheme
R, written r(R), is a finite set of mappings {tl,t 2 ,... ,t,} from R to D with
the restriction that for each mapping t E r, t(Ai) must be in Di, 1 < i < k,
where t(Ai) denotes the value obtained by restricting the mapping t to Ai. The
mappings are called tuples and t(A) is called the A-value of t. We use t(X) in
the obvious way and call it the X-value of t.

Mappings are used in our exposition to avoid any explicit ordering of the
attributes in the relation scheme. To simplify the notation, however, we will
henceforth denote relations by writing the attributes in a certain order and the
tuples as lists of values in the same order. Furthermore, the following relational
database conventions will be adopted for simplified notation. Uppercase letters
A, B, C from the beginning of the alphabet may be used to denote attributes. A
relation scheme R = {A 1,A 2 ,... ,AJ} may be written as simply A1A2 ... A,.
A relation r on scheme R is then written as either r(R) or r(AiA2 ... Am). The
singleton set {A} is sometimes written as A and concatenation XY may be used
to denote set union X U Y.

The select a, project 7r, and natural join m operators are defined as follows.
When the select operator a is applied to a relation r, it yields another relation

that is a subset of tuples of r with a certain value on a specified attribute. Let
r be a relation on scheme R, A G R, and a - DA. Then

UA=a(r) = {t I t c r and t(A) = a}.

Whereas the select operator chooses a subset of tuples in a relation, the
project operator 7r chooses a subset of attributes. Let r be a relation on R and
X a subset of R. The projection of r onto X, written 7rx(r), is defined as

r x(r) = I t (X) I t (Er }. (1)



A Comparative Study of Noncontextual and Contextual Dependencies 249

The natural join of two relations ri(X) and r 2 (Y), written ri(X) N r2(Y),
is defined as

ri(X) x r2 (Y)i = { t(XY) I t(X) E ri(X) and t(Y) G r 2 (Y) }. (2)

A fundamental database dependency, namely, multivalued dependency
(MVD), can now be defined.

Definition 1. Let X, Y, Z be pairwise disjoint subsets of scheme R = XYZ. A
relation r(XYZ) satisfies the multivalued dependency MVD(YX,Z), if for any
two tuples t, and t2 in r with tl(X) = t 2 (X), there exists a tuple t 3 in r with
t 3 (XY) = t1 (XY) and t 3 (Z) = t 2 (Z).

The multivalued dependency MVD(Y,X,Z) is a necessary and sufficient con-
dition for r(XYZ) to be losslessly decomposed as

r(XYZ) = 7rxy(r) m irxz(r). (3)

Example 1. The following relation r, (ABC) on the left satisfies the multivalued
dependency MVD(A,B,C), since

r,(ABC) = 7rAB(rl) x 7rBC(rl).

However, r 2 (ABC) on the right does not satisfy MVD(A,B,C) since

r 2 (ABC) # 7rAB (r2) X< 7rBC(r2).

ABC AB BC ABC AB BC ABC
ri(ABC) =0 0 0 [ < x0 0, r 2(ABC)=O0 000 0 O0 0 0 0

001 110 01 101 10 01 001
100 [ 1 1 100
101 101
110
111

2.2 Properties of Equivalence Relations

Since we suggest that dependencies can be conveniently expressed using equiva-
lence relations, we first recall some familiar notions about relations [6].

Given any subset X C R, we can define an equivalence relation O(X) on r (a
partition of r): for all ti,tj E r,

ti O(X) tj, if ti(X) = tj(X). (4)

The composition operator o is used to combine relations. Let T = {tl, t2,...,
t,} denote a finite set of objects. Consider two relations 01 and 02 on T. The
binary operator o, called the composition, is defined by: for ti, tk c T,

ti(01 o 02 )tk, if for some tj G T both ti0ltj and tj02tk. (5)



250 S.K.M Wong and C.J. Butz

It can be shown that the composition 01 o 02, of two individual equivalence
relations 01 and 02, is itself an equivalence relation (a partition) if and only if
01 0 02 = 02 0 01.

We can then define MVD using equivalence relations as follows:

Definition 2. Relation r(XYZ) satisfies MVD(Y,X,Z), if

O(X) = o(XY) o o(XZ) = o(XZ) o o(XY). (6)

3 Generalizing Multivalued Dependency

In this section, we generalize MVD with both contextual and noncontextual de-
pendencies. Contextual dependencies only decompose a subset of the relation,
while noncontextual dependencies decompose the entire relation.

3.1 Context Strong Multivalued Dependency (CSMVD)

Sometimes only a few tuples in a relation cause the violation of an MVD. In this
section, we introduce context strong multivalued dependency (CSMVD) in order
to losslessly decompose part (a subset) of a relation.

Consider the relation rl (ABC) in Figure 1. It can be verified that ri (ABC)
does not satisfy MVD(A,B,C). The reason is because the definition of MVD
requires that MVD(Y,X=x,Z) holds for all X-values x in relation r(XYZ). In
this example, this means that MVD(A,B=0,C) and MVD(A,B=l,C) must both
hold. However, it can be seen that the MVD(A,B,C) holds when B=O, but not
when B=1. The important point is that even though the entire relation r, (ABC)
cannot be losslessly decomposed using MVD, namely,

rl (ABC) 7ý 7raB(rl) X 71BC(rl),

it is still possible to losslessly decompose the tuples UB=o(rl) = {t 1 , t 2 , t 3 , t 4}:

OrB=O(rl) = IrAB(OB=o(r1)) I 7IBC((UB=O(rl)).

Definition 3. Relation r(XYZ) satisfies the context strong multivalued depen-
dency CSMVD(Y,X=x,Z), if the equivalence class defined by X = x in the equi-
valence relation O(X) satisfies the following condition:

o(X = x) = o(X = xY) o o(X = xZ) = o(X = xZ) o o(X = xY). (7)



A Comparative Study of Noncontextual and Contextual Dependencies 251

ABC ABC ABC
000 000 00-0
0011 0011 001

ri(ABC) = 1 0 0 , r 2(ABC)= 1 0 0 r 3 (ABC)= 1 0 0
1 01 1 01 10 1
010 202 2 0o2
011 3022 203
111 010 302

1101 111

Fig. 1. Relation ri(ABC) satisfies CSMVD(A,B=0,C). Relation r 2 (ABC) satisfies
WMVD(A,B,C). Relation r3(ABC) satisfies CWMVD(A,B=0,C).

Example 2. Context Strong Multivalued Dependency. Let us verify that rela-
tion ri(ABC) in Figure 1 satisfies CSMVD(A,B=0,C). By Equation (4), we
first obtain

O(B =0) = {[tl,t 2,t 3 ,t 4 I}.

By another application of Equation (4), we obtain the equivalence relations:

O(AB = 0) = I[tlt2],[t3,t4]},

and

O(B =OC) ={[tl,t 3], [t2,t 4]}.

Applying Equation (5) gives:

O(AB = O) oO(B = OC) = {[t 1 ,t 2 ,t 3 ,t 4]} = O(B = OC) o O(AB = 0).

We have our desired result since:

O(B =0) = O(AB =0) oO(B =OC) = O(B =OC) oO(AB =0).

However, it can be similarly verified that CSMVD(A,B=1,C) is not satisfied.

CSMVD generalizes MVD by only decomposing some of the tuples in a re-

lation. However, it is also possible to generalize MVD with a noncontextual
dependency, called weak multivalued dependency (WMVD), which decomposes
all of the tuples in a relation.

3.2 Weak Multivalued Dependency (WMVD)

Weak multivalued dependency (WMVD) [3] generalizes MVD(Y,X,Z) in Defini-
tion (2) by not requiring the equivalence relation O(XY) o O(XZ) = O(XZ) o
O(XY) to be equal to O(X).



252 S.K.M Wong and C.J. Butz

Definition 4. Relation r(XYZ) satisfies the weak multivalued dependency
WM VD(Y, X, Z), if

9(XY) 0 9(XZ) = 9(XZ) 0 O(XY). (8)

Example 3. Weak Multivalued Dependency. Let us verify that relation r2 (ABC)
in Figure 1 satisfies WMVD(A,B,C). By Equation (4), we obtain:

0O(AB) =I tt,[tt, t, t, t,[81,

and

O(BC) = f{[tl, t3], [t2 , t4], [t5 , t6], [t7 , t8]}I.

Applying Equation (5), we obtain our desired result since:

9(AB) o (BC)={[t1,t2,t 3,t 4], [t5,t6], [t7,t5]} = O(BO) oO(AB).

Thus, even though a relation does not satisfy MVD(Y,X,Z), it may still be
possible to losslessly decompose the entire relation using WMVD(Y,X,Z).

3.3 Context Weak Multivalued Dependency (CWMVD)

We can introduce a contextual version of WMVD, called context weak multiva-
lued dependency (CWMVD).

Definition 5. Relation r(XYZ) satisfies the context weak multivalued depen-
dency CWMVD(YX=xZ), if there exists a maximal disjoint compatibility class

{t,. I t~ in the relation O(X xY) o O(X =xZ).

Definition 5 implies that ...... , ti I satisfies MVD (Y,X, Z).

Example 4. Context Weak Multivalued Dependency. To verify that relation
r3(ABO) in Figure 1 satisfies WMVD(A,Br=0,C), we first obtain:

O(AB = 0) = f{[tl,t 2], [t3 , t4], [t5 , t6], [t4} ,

and

9(B - 00) = f[tl, t3], [t2 , t4], [t5 , t7], [t6 ]}I.

Applying Equation (5), we obtain 7Z. = O(AB = 0) o 9(B = 00):

7Z. = {t1 7Zt1 , tllZt2 , tl7Zt3 , tIIZt4 , t2 lZtl, t2 7Zt2 , t27Zt 3 , t2 7Zt4 ,

t37Ztl, talRt2 , t3 )Zt3 , t3 Zt4 , t47Ztl, t47Zt2 , t4 Zt3, t4 )Zt 4 ,

t57Zt 5, t5lZt6,t 51Zt7, t67Zt 5, t67Zt6, t67Zt7 , t7 7Zt5 , t77t 7}.

Note that t77Zt6 is not a member in R?. Thus, {tl, t2 , t3 , t4 } is a maximal disjoint
compatibility class, i.e., {t1 , t2 , t3 , t4} satisfies MVD(A,B,C). Therefore, relation
r(ABC) satisfies GWMVD(A,B=0,C).



A Comparative Study of Noncontextual and Contextual Dependencies 253

4 Comparing Strong Versus Weak Dependencies

Our purpose in this section is show that weak dependencies are more general
than strong dependencies.

Lemma 1. [2,3] MVD is a special case of WMVD.

Lemma 2. CSMVD is a special case of CWMVD.

Similarly, contextual dependencies are more general than their noncontextual
counterparts.

Lemma 3. CSMVD is a more general dependency than MVD.

Lemma 4. CWMVD is a more general dependency than WMVD.

The relationships between all of these dependencies can be summarized as:

MVD = WMVD = CWMVD,

and

MVD • CSMVD . CWMVD.

It should be noted that WMVD does not logically imply CSMVD, and vice
versa. For example, relation r2 (ABC) in Figure 1 satisfies WMVD(A,B,C), but
not CSMVD(A,B=O,C). On the other hand, relation r,(ABC) in Figure 1 satis-
fies CSMVD(A,B=O,C), but not WMVD(A,B,C).

5 Axiomatization of the Noncontextual Dependencies

By expressing dependencies using equivalence relations, it is straightforward to
show the soundness of several inference axioms.

The following two axioms (MW1) and (MW2) are a sound and complete
axiomatization for the mixture of MVD and WMVD [7]:

(MW1) If MVD(Y,X,Z), then WMVD(Y,X,Z);
(MW2) If WMVD(Y,XZ,W), WMVD(Y,XW,Z), and MVD(Z,XY,W),

then WMVD(Y,X,ZW).

The soundness of axiom (MW1) follows directly from the definitions of MVD
and WMVD. By definition, WMVD(Y,XZ,W), WMVD(Y,XW,Z), and MVD(Z,
XY,W) imply:

O(XZY) o O(XZW) = O(XZW) o O(XZY), (9)

O(XWY) o O(XZW) = o(XZW) o o(XWY), (10)



254 S.K.M Wong and C.J. Butz

and

9(XY) = 9(XYZ) o 9(XYW) = 9(XYW) o 9(XYZ), (11)

respectively. Using Equations (9)-(11) it follows

9(XY) a 9(XZW) 9 (XYZ) 0 9(XYW) a 9(XZW)

= 9(XYZ) o 9(XZW) a 9(XYW)

= 9(XZW) a 9(XYZ) a 9(XYW)

= 9(XZW) a 9(XY). (12)

Equation (12) indicates that WMVD(Y,X,ZW) as desired.
As a second example, the following four inference axioms (W1)-(W4) are a

sound and complete axiomatization for WMVD [2]:

(W1) If U C X, then WMVD(U,X,YZ);
(W2) If WMVD(YX,XVZ,W), then WMVD(Y,XVZ,W) and

WMVD(YXV,XVZ,W);
(W3) If WMVD(Y,X,ZW), then WMVD(Y,XZ,W);
(W4) If WMVD(Y,X,Z), then WMVD(Z,X,Y).

Two properties [6] of U C X are that 9(XU) =9(X) and

9(U) a 9(X) = 9(X) a 9(U) 9 (X).

Thus, inference axiom (Wi) is sound since 9(XU)o9(XYZ) = 9(X)oO(XYZ)=
9(XYZ) =9(XYZ) o (X) = 9(XYZ) o9(XU). Therefore, WMVD(U, X, YZ).

To show the soundness of (W2), we are given:

9(XVZYX) a 9(XVZW) =9(XVZW) a 9(XVZYX),

or equivalently,

9(XVZY) a 9(XVZW) =9(XVZW) a 9(XVZY).

This is the definition of WMVD (Y,XVZ,W). Now consider

9(XVZYXV) a 9(XVZW) = 9(XVZY) 0 9(XVZW)
= 9(XVZW) a 9(XVZY).

This is the definition of WMVD (YXV,X VZ ,W).
In inference axiom (WM), we are initially given:

9(XY) a 9(XZW) = 9(XZW) a 9(XY).

We want to show:

9(XYZ) a 9(XZW) = 9(XZW) a 9(XYZ).



A Comparative Study of Noncontextual and Contextual Dependencies 255

Consider

tlO(XYZ)t 2 and t2 0(XZW)t 3.

Since tj(XYZ) = t 2 (XYZ), this implies that

tlO(XY)t 2 and t 20(XZW)t 3 .

By the given WMVD(Y,X,ZW), we obtain

tlO(XZW)t 4 and t 40(XY)t 3 .

What remains to be shown is that t 4 (XYZ) = t 3 (XYZ), namely, t 4 (Z) = t 3 (Z).

Now t 4 (Z) = tl(Z) = t 2 (Z) = t 3 (Z). Therefore, we have our desired result:

tlO(XZW)t 4 and t 4 0(XYZ)t 3.

The soundness of (W4) follows directly from Definition 4.

6 Conclusion

In this paper, we have suggested a new characterization of MVD and WMVD ba-
sed on equivalence relations. This characterization clearly exhibits the difference
between not only these two database dependencies, but also their contextual
counterparts. By expressing MVD and WMVD with equivalence relations, other
results can be readily shown as we demonstrated by proving the soundness of the

corresponding inference axioms. More importantly, the results here can be ap-
plied to the recent interest in contextual probabilistic conditional independence
in Bayesian networks.

References

1. C. Boutilier, N. Friedman, M. Goldszmidt and D. Koller, Context-specific indepen-
dence in Bayesian networks, Proceedings of the Twelfth Conference on Uncertainty
in Artificial Intelligence, 115-123, 1996.

2. P. Fischer and D. Van Gucht, Weak multivalued dependencies, Proceedings of the
Third A CM SIGA CT-SIGMOD Symposium on the Principles of Database Systems,
266-274, 1984.

3. G. Jaeschke and H.J. Schek, Remarks on the algebra on non first normal form
relations, Proceedings of the First ACM SIGACT-SIGMOD Symposium on the
Principles of Database Systems, 124-138, 1982.

4. D. Maier, The Theory of Relational Databases, Computer Science Press, Rockville,
Maryland, 1983.

5. J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference, Morgan Kaufmann, San Francisco, California, 1988.

6. F. Preparata and R. Yeh, Introduction to Discrete Structures, Addison-Wesley,
Don Mills, Ontario, 1973.

7. D. Van Gucht and P. Fischer, MVDs, weak MVDs and nested relational structures,
Technical report, CS-84-19, Vanderbilt University, October, 1984.

8. S.K.M. Wong and C.J. Butz, Contextual weak independence in Bayesian networks,
Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence,
670-679, 1999.



Extended Query Answering Using Integrity Rules

Barry G.T. Lowden and Jerome Robinson

Department of Computer Science, The University of Essex,
Wivenhoe Park, Colchester C04 3SQ, Essex,

United Kingdom
lowdb@essex -ac. uk

Abstract. The conventional use of databases is commnonly restricted to the re-
trieval of factual data in the form of tuples or records. However most databases
also contain metadata in the form of integrity rules which can provide a rich
source of additional information not normally available to the user. Integrity
rules define what data values and relationships may exist within the database
and so their interrogation can provide answers as to whether a certain database
state is possible. Our paper describes how this may be achieved and specifies a
formal approach to implementing such an enquiry system.

1 Introduction

A database can be seen as comprising an extension, which is the set of tuples repre-
senting the current state of the database content, and the schema which describes the
structure of and permitted relationships within the database. An important component
of the latter is the set of integrity rules (constraints) which define the conditions which
must apply to all entries within the extension [2,3,5]. These rules are enforced when-
ever changes are made to the database content. Most relational systems only permit
query execution against the extension, the query result then consisting of a subset of
the current database content. This means that query answers are limited to the current
situation since they relate to the particular state of the database at the time of the
query. Integrity rules, on the other hand, embody information which defines all legal
states of the database, that is they specify what is possible.

Being able to access integrity information would permit the formulation of modal
queries i.e. queries about what can be or must be the case. Examples of modal queries
might be 'must all managers who earn more than £30,000' and work in London, be
provided with a company car?', or 'under what conditions can Jones earn £25,000?'.
Most current systems permit only limited access to the integrity rules and do not allow
the user to formulate this type of query, even though the information is available to
provide an answer. Note that this type of question is different from the 'what if sce-
nario of say financial planning [12] or AI reasoning [14] where the user is interested in
the implications of some hypothetical update of the database which is known to be
valid, see also earlier work [13]. We are here concerned with whether certain database
states are permissible with respect to the integrity rules and, if not, what further condi-
tions would make them permissible.

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 256-265, 2000.
0 Springer-Verlag Berlin Heidelberg 2000



Extended Query Answering Using Integrity Rules 257

In the following sections we describe an approach to processing certain classes of
modal query which can be used to enhance and augment an existing conventional
query system. Section 2 outlines the basis for our approach and presents a restricted
specification for the query constructs. In section 3 we show, through a series of exam-
ples, the algorithm for generating a modified database state which reflects the re-
quirements of the modal query. The process of evaluating this changed state against
the integrity rules is then described in section 4 while finally our conclusions are pre-
sented in section 5. This work is an extension to the programme of research, by the
authors, into the generation, evaluation and application of rules in databases [6,7,8, 11].

2 Representation of Modal Queries

Referring back to our second example above, we can see that were we to simulate a
modification to the database so that Jones did indeed earn £25,000 and then determine
whether the modified state violated any of the integrity rules then we would know the
answer to the query. Any violations could be reported together with a brief explanation
of their nature. If, however, there are no rule violations, associated with the hypotheti-
cal update, then it may be seen that there are no required conditions for the specified
state to be permissible. The basis of our approach is therefore to generate a set of
modifications to the existing database state which makes the query true, and then
evaluate the integrity rules with respect to this modified state.

In relational systems, integrity rules are traditionally expressed in some form of the
predicate calculus [4,9, 10], however, in order not to restrict ourselves to any particular
implementation, we will use a standard version of the Tuple Relational Calculus
(TRC) to express both queries and integrity rules [4]. To simplify matters further we
will concern ourselves only with the modal operator of possibility P, and make the
assumption that modal expressions may contain only existential quantification, con-
junction and the standard comparison operators. The syntax of our restricted TRC
subset is therefore:

Modal queries: PO~
Sentences 0 17 :: = (0 A '77) I(3VETO) I (X OY)
Terms x, y ::=icIV a

where -r c Type, ic E Constant, v e Variable, ca e Attribute

A modal query of the form P O would be checked initially to determine whether 0 was
true with respect to the current database state. If this were the case then the query
processing mechanism terminates with a response to the user that the proposition is
currently true. If, however, it is the case that 0 does not hold with respect to the cur-
rent database state then we need to find some modification to the existing state which
makes P q0 true and then check this modified state against the integrity rules.



258 B.G.T. Lowden and J. Robinson

3 Generating Hypothetical Modifications to the Database

The process of generating database modifications which make 0 true involves build-

ing a representation of the basic requirements of the query and then instantiating this
representation according to information currently in the database relations. The proc-
ess will now be illustrated, by means of a simple example, with respect to the follow-

ing database relation:

EMP(name, status, salary, department).

which contains the tuple:

(name = Jones, status = full-time, salary = 35K, department = Sales)

Let us assume that we wish to pose the query 'Can Jones work in Accounts?'. This

query translates to the TRC expression:

J01: P3xe EMP[x.name = Jones A% x.department = Accounts]

To begin with, we encode the requirements of the query using a procedure taking

four arguments: the TRC expression 0, a variable binding environment E, an incoming
list of tuples IN and an outgoing list of tuples OUT. The initial state is a full TRC
expression, an empty environment and an empty list of incoming tuples, whilst the
outgoing tuples are unknown.

Thus, for the above example:

TRC = 3xe EMP[x.name=Jones A x.department=Accounts]

E = NULL
IN = NULL
OUT =?

For each occurrence of an existential quantifier, in the query expression, we gener-
ate a unique tuple identifier together with an extended environment in which the
quantified variable is associated with this identifier. For each associated relation, we
also define a tuple template in which each attribute value is associated with a unique
uninstantiated variable. The template(s), together with the tuple identifier(s), is then
added to the incoming list, IN. We may now process the body of the quantified ex-
pression with respect to the new environment and the extended incoming list.
Thus:

TRC = x.name=Jones A x.department=Accounts

E = [x:tl]

IN = [tl: (name=ul, status= u2, salary= u3, department= u4)EEMP]

OUT= ?

Conjunction is handled by processing each branch of the conjunct separately. Each
conjunct will inherit the same environment, but the left conjunct is processed with
respect to the IN list of the whole conjunction whilst the IN list of the right conjunct is
set to the OUT list of the left conjunct.



Extended Query Answering Using Integrity Rules 259

We will consider the left conjunct first.
TRC = x.name=Jones

E = [x:tl]

IN = [tl: (name= ul, status= u2, salary= u3, department= u4)eEMP]
OUT =?

This is the base case for the recursive process and we now unify [1] the objects
denoted by each side of the equality. To do this we retrieve the value associated with
x.name by noting that the variable x is associated with the tuple tl, and tI identifies
the tuple whose name attribute has the value ul. Unifying Jones with ul therefore
instantiates tuple tl's name attribute to the value Jones. In cases where there is a vari-
able on each side of the equality, unification will ensure that the appropriate attributes
take the same value, whilst if there is a constant on each side then the unification pro-
cess will only succeed if their values are the same.

Having unified the appropriate objects we now simply copy the IN list to the OUT
list and begin to unwind the recursion. We will therefore exit with the values:

TRC = x.name=Jones
E = [x:tl]

IN = [t]: (name=Jones, status= u2, salary= u3, department= u4)eEMP]
OUT = [tl: (name=Jones, status= u2, salary= u3, department= u4)eEMP]

We may now proceed to process the right branch of the conjunction, which inherits its
IN list from the OUT list of the left conjunct.

TRC = x.department=Accounts
E = [x:tl]
IN = [tl: (name=Jones, status= u2, salary= u3, department= u4)EEMP]
OUT ?

This is also a base case and, using the procedure described, we exit with the values:
TRC x.department=Accounts
E = [x:tl]

IN [t]: (name=Jones, status= u2, salary= u3, department=Accounts)cEMP]
OUT = [t]: (name=Jones, status= u2, salary= u3, department=Accounts)EEMP]

Each branch of the conjunction has now been processed and we exit by setting the
OUT list of the whole conjunction to be the OUT list of the right conjunct, ie.

TRC = x.name=Jones A x.department=Accounts
E = [x:tl]
IN = [tl: (name=Jones, status= u2, salary= u3, department=Accounts)eEMP]

OUT = [tl: (name=Jones, status= u2, salary= u3, department=Accounts)eEMP]

The final stage of our query processing algorithm is to set the OUT list of the exis-
tentially quantified expression to be that of the body of the expression (the conjunc-
tion):



260 B.G.T. Lowden and J. Robinson

TRC = _xe EMP[x.name=Jones A x.department=Accounts]
E = NULL
IN = NULL

OUT = [t]: (name=Jones, status= u2, salary= u3, department=Accounts) eEMP]

and we see that, in order for the TRC expression associated with our query to be true,
a tuple of the form:

(name=Jones, status= u2, salary= u3, department=Accounts)EEMP

must be present in the database.

Before attempting to instantiate this with respect to the current database state we
must merge any generated tuples which have the same key fields. For example, the
TRC translation for 'Can Jones work in Accounts and earn 30K?' is:

P[_x e EMP[x.name=Jones A x.department=Accounts]

A 3xc EMP[x.name=Jones A x.salary= 30K]

Applying the above algorithm, returns two tuples:

(name=Jones, status= u2, salary= u3, department=Accounts} cEMP
(name=Jones, status= u2, salary= 30K, department= u4} eEMP

Since name, however, is the key field of EMP, these tuples must be the same and we
therefore merge them to produce a single tuple:

(name=Jones, status= u2, salary= 30K, department=Accounts} eEMP

The process, described above, can fail at two points, namely when we attempt to
unify both sides of an equality which equates different values, and when we attempt to
merge tuples whose keys are the same yet which differ in some other attribute. In both
cases the underlying problem is that the query is about a contradictory database state,
ie a state which would be impossible regardless of any constraints that might exist. In
such cases we proceed no further, reporting this reason for failure to the user.

Having generated the query encoded tuples, the next stage involves hypothetically
modifying the database so that it contains tuples which match their characteristics.
Changes to a database may be effected in three main ways: inserting a new tuple,
modifying an existing tuple or deleting an existing tuple. Our system makes use of
inserts and updates, there being one of these operations for each query tuple generated
by the query expression. The information contained in the tuple determines which of
the above operations is applied. Where the key field of the query tuple is fully instanti-
ated and matches the key field of an existing tuple, then the information in the query
tuple will be used to update the existing tuple. If there is no key match then the query
tuple will be used to insert a new tuple into the database.



Extended Query Answering Using Integrity Rules 261

Updates

We first consider modal queries which lead to updates only. Returning to our example,
it is clear that a tuple of the form:

tl(name=Jones, status= u2, salary= u3, department=Accounts) eEMP

must be present in the database for the query to be true. However, it is the case that
the tuple:

(name=Jones, status= 'full-time', salary= 35K, department=Sales)

already exists.

Thus we have the situation where the key of the query tuple is instantiated and
matches the key field of an existing tuple. The other attributes of the query tuple may
now be instantiated to provide a specification of the appropriate tuple. This is accom-
plished by setting each uninstantiated attribute to the value of the associated attribute
in the existing tuple. Thus the query tuple, in our example, becomes:

tl(name= Jones, status= full-time, salary= 35K, department=Accounts) eEMP

The next step is to hypothetically update the existing tuple to the new values speci-
fied and check the integrity rules, using a standard integrity enforcement mechanism,
with respect to the modified state. If none are violated then the modified state is legal,

and the system responds to the modal question in the affirmative. If there are any
violations, then these can be reported together with an explanatory message indicating
which rules were violated and thus the reasons why the state specified by the query is

not possible. The database is then returned to its original state.

Ambiguous Queries

Unlike conventional queries, modal queries may involve ambiguity which is only
made apparent when the query tuples are instantiated with respect to the current data-
base. Consider, for example, the query 'Can Jones earn Smith's salary?' which trans-
lates to:

0•2: P3xeEMP3yeEMP[x.name= Jones Ay.name= Smith Ax.salary= y.salary]

This generates the two query tuples:

tl[name = Jones, status = u2, salary =u3, department = u4) )e EMP

t2[name = Smith, status = u6, salary = u3, department = u8 ) E EMP

where the salary attributes of both tuples, though uninstantiated, have the same value.

Let the EMP relation contain the following tuples:

[name = Jones, status = full-time, salary = 35K, department = Sales]
[name = Smith, status = part-time, salary = 40K, department = Engineering]

Note that both of the query tuples will result in updates, since their keys match exist-
ing tuples, but the resulting database state will be determined by which of the tuples
we instantiate first. Choosing 'Jones' gives:



262 B.G.T. Lowden and J. Robinson

tl[name=Jones, status=full-time, salary= 35K, department=Sales] EEMP
t2[name=Smith, status= u6, salary= 35K, department= u8])EEMP

and we see that instantiating Jones' tuple also sets the salary attribute of Smith's tuple.
Instantiating this second tuple with respect to the database results in:

tl[name=Jones, status= full-time, salary=35K, department=Sales]) EEMP
t2[name=Smith', status= part-time, salary=35K, department=Engineering] eEMP

The overall effect then, is of leaving Jones' tuple unchanged while setting Smith's
salary to that of Jones. Instantiating Smith's tuple first, however, gives:

tl[name = Jones, status = u2, salary = 40K, department = u4}) E EMP

t2[name=Smith, status=part-time, salary=40K, department=Engineering] EEMP

then instantiating Jones' tuple produces the following query tuples:

tl[name=Jones, status= full-time, salary=40K, department=Sales)) GEMP
t2[name=Smith, status=part-time, salary=40K, department=Engineering] EEMP

In this latter case, the resulting database state would reflect that Smith's tuple was
unchanged, and Jones' salary is set to Smith's. Whilst, intuitively, this modification
seems more consistent with what was intended, both alternatives would appear to be
acceptable. The system must therefore recognise that ambiguity can arise, in this type
of situation, and be able to present the user with some means of choosing between the
alternatives available.

Insertions

We now consider modal queries which generate tuple inserts to the database. Let us
assume that we wish to check whether certain employment conditions are valid before
making an offer of employment to a candidate named Walker. A possible query might
be 'Can Walker have part-time working status and earn 35K and work in Engineer-
ing?' This translates to the following TRC query:

03: P3xe EMP[x.name= WalkerA x.status=part-time A x.salary=35K
A x.department=Engineering]

resulting in the single query tuple:

tl(name= Walker, status=part-time, salary=35K, department=Engineering) CEMP

There is no existing tuple with a key field value of Walker, but all the attributes are
instantiated. An attempt may therefore be made to insert this hypothetical tuple into
the database. Should the transaction lead to an integrity violation then this would im-
ply that the above conditions of employment were not valid with respect to the data-
base.



Extended Query Answering Using Integrity Rules 263

Evaluation of 'must' type queries may be seen conceptually as the construction of two
possibility sub-queries. Thus the query 'must all full-time salespersons earn at least
20K ?' would translate to:

(1) 'Can a person be full-time and work in Sales ?'
and if so (2) 'Can a person be full-time and work in Sales and earn less than 20K ?'

A positive response to (1) and a negative response to (2) would be required to
establish the truth of the original query. It is necessary to establish the truth of the first
sub-query since a negative response to the second alone may be attributable, for ex-

ample, to violation of an integrity rule which requires that salespersons have to be
either 'occasional' or 'part-time'.

In practice it is sufficient to pose the first sub-query and then let the system deter-
mine what assumptions need to be made regarding any unknown values in order for
the modal record to be a legal transaction with respect to the integrity rules. Thus if
one such assumption were that the employee earns 20K, or more, then this would
imply a positive response to the original question. This process is discussed further in
the next section.

4 Integrity Rule Evaluation

In cases where the database is modified using query tuples in which all attribute values
are known, the program for checking the new database state against the integrity rules
is relatively straightforward. Problems arise, however, when the query tuples contain
unknown values ie. ones which have not been instantiated. In such cases it is necessary
for the algorithm to make assumptions about these values based on the conditions
imposed by the integrity rules. If a set of assumptions can be established which meets
the criteria for satisfying all the integrity rules then the database state is deemed con-
sistent and the query may be answered in the affirmative. If, however, no such set of
assumptions can be constructed then the hypothetical update fails and the query con-
ditions cannot be met.

For example, assume that our database relation is extended to include the attribute
location and we wish to determine under what conditions a new employee can work in
Engineering and also be located in London. This translates to the modal query:

05: P3x e EMP[x.department=Engineering A x.location=London]

resulting, since no further values may be instantiated, in the query tuple:

t l(name= ul, status=u2, salary=u3, department=Engineering, location=London)
cEMP

Assume further that we have the following integrity rules:

TF1: Vx cEMP[ x.status [part-time, full-time, occasional)]

P2: VxEEMP[x.status = occasional -) x.salary < ]OK]

'P3: Vx eEMP[x.department=Engineering -- x. salary > 20K]

TP4: Vx eEMP[x.department=Engineering -: x. location= [Hull, London, Swindon]]



264 B.G.T. Lowden and J. Robinson

The evaluation algorithm processes through the rules as follows:

(i) T1l is true if (u2 = [part-time, full-time, occasional]))
(ii) TP2 is true if (u2 = occasional) A (u3 < 10K)
(iii) TP3 is true if (u3 > 20K)
(iv) 'T4 is true.

Clearly (ii) and (iii) are inconsistent and the algorithm now re-examines the necessary
conditions which make these rules true. Simple analysis reveals that TP2 is also satis-
fied by:

(a) -,(u2 = occasional) A% (u3 < 10K)
or (b) -, (u2 = occasional) A -~(u3 < 10K)

Whilst (a) still yields an inconsistency, it may be seen that (b) makes the query true
with respect to the rules and so the necessary conditions for answering in the affirma-
tive are that:

(u2 = [part-time, full-time, occasional) A ý7(u2 = occasional) ) A (u3 > 20K)

The system response is therefore that the database state implied by the original ques-
tion is possible provided that the employee's status is 'part-time' or 'full-time' and
that his/her salary is greater that 20K.

In practice the algorithm can be made to terminate when a set of necessary condi-
tions is found or, alternatively, it may continue to find all possible sets of necessary
conditions and report to the user that any one of these sets will result in an affirmative
answer. This latter response enables the user to explore the complete range of possi-
bilities for making the desired state true. Assumptions common to all possible sets
imply a necessary condition which must be met.

Whilst, in the interests of clarity, we have limited ourselves to relatively simple
examples in presenting the rule evaluation process, the working algorithm is equally
suited to large and complex integrity rule sets.

5 Conclusions

In this paper, we have explained how it is possible to provide an extended database
answering system which permits modal queries against the database integrity rules. An
algorithm has been described which takes the query and from it constructs a set of
database modification tuples which, when applied, bring about a changed state of the
database which is consistent with the original question.

This changed state may then be checked against the integrity rules to determine
whether the required conditions have been met and whether the question may be an-
swered in the affirmative. We have also addressed the issue of ambiguity inherent in



Extended Query Answering Using Integrity Rules 265

many questions concerning possibility and shown that our system can respond in a
manner which permits the user to choose the interpretation closest to her intentions.

We have also examined the situation where the answers to modal questions are
qualified by imposing one or more conditions and the way in which different condition

scenarios may be presented to the user. This further enhances the user's understanding
of the relationships inherent in the database which determine the system's response,
thereby providing further information which is helpful in guiding the query process.

Work is currently being carried out on implementing a more comprehensive system
to incorporate a greater range of query constructs and operators.

6 References

[1] Bundy A., 'The computer modeling of mathematical reasoning', Academic Press, London,
1986.

[21 Codd E.F., 'Domains, keys and referential integrity in relational databases', Info DB3, No. 1,
1988

[3] Elmasri R. and Navathe S.B., 'Fundamentals of database systems', 3nd Edition, Addison-
Wesley, 2000

[41 Freytag J. and Goodman N., 'On the translation of relational queries into iterative pro-
grams', ACM Trans. Database Syst. Vol.14, No.1, 1 -27, 1989.

[5] Godfrey P., Grant J., Gryz J. and Minker J., 'Integrity Constraints: Semantics and applica-
tions', Logics for Databases and Information Systems, Kluwer, Ch.9, 1998.

[6] Lowden B.G.T. and Robinson J., 'A semantic query optimiser using automatic rule deriva-
tion', Proc. Fifth Annual Workshop on Information Technologies and Systems, Netherlands,
68-76, December 1995.

[7] Lowden B.G.T. and Robinson J., 'A statistical approach to rule selection in semantic query
optimisation', Proc. 11 " ISMIS International Symposium on Methodologies for Intelligent
Systems, Warsaw, June 1999.

[8] Lowden B.G.T. and Robinson J., 'A fast method for ensuring the consistency of integrity
constraints', Proc. 10" International DEXA conference on Database and Expert Systems Ap-
plications, Florence, August 1999

[9] Qian X., 'The expressive power of the bounded-iteration construct', Acta Inf. 28, 631 - 656,
October 1991.

[10] Qian X., 'The deductive synthesis of database transactions', ACM Trans. Database Syst.
18, 4, 626 - 677, December 1993.

[11] Sayli A.and Lowden B.G.T., 'A fast transformation method for semantic query optimisa-
tion', Proc. IDEAS'97, IEEE, Montreal, 319-326, 1997.

[12] Sprague R.H. & Watson H.J., Decision support systems: putting theory into practice, Pren-
tice Hall, 1989.

[13] Stonebraker M., Hypothetical databases as views, Proc. ACM Sigmod International Con-
ference on Management of Data, 1981.

[14] Vielle L. et al., The EKS- VI system, Proc. International Conference on Logic Program-
ming & Automated Reasoning, Springer Verlag, 1992.



Finding Temporal Relations: Causal Bayesian Networks
vs. C4.5

Kamran Karimi and Howard J. Hamilton

Department of Computer Science
University of Regina

Regina, SK
Canada S4S 0A2

{karimi,hamilton} @cs.uregina. ca

Abstract. Observing the world and finding trends and relations among the
variables of interest is an important and common learning activity. In this paper
we apply TETRAD, a program that uses Bayesian networks to discover causal
rules, and C4.5, which creates decision trees, to the problem of discovering
relations among a set of variables in the controlled environment of an Artificial
Life simulator. All data in this environment are generated by a single entity
over time. The rules in the domain are known, so we are able to assess the
effectiveness of each method. The agent's sensings of its environment and its
own actions are saved in data records over time. We first compare TETRAD
and C4.5 in discovering the relations between variables in a single record. We
next attempt to find temporal relations among the variables of consecutive
records. Since both these programs disregard the passage of time among the
records, we introduce the flattening operation as a way to span time and bring
the variables of interest together in a new single record. We observe that
flattening allows C4.5 to discover relations among variables over time, while it
does not improve TETRAD's output.

1 Introduction

In this paper we consider the problem of discovering relations among a set of
variables that represent the states of a single system as time progresses. The data are a
sequence of temporally ordered records without a distinguished time variable. Our
aim is identify as many cases as possible where two or more variables' values depend
on each other. Knowing this would allow us to explain how the system may be
working. We may also like to control some of the variables by changing other
variables. We use data from a simple Artificial Life [6] domain because it allows us to
verify the results, and thus compare the effectiveness of the algorithms.

Finding associations among the observed variables is considered a useful
knowledge discovery activity. For example, if we observe that (x = 5) is always true
when (y = 2), then we could predict the value of y as 2 when we see that x is 5.
Alternatively, we could assume that we have the rule: if I (x = 5)) then (y = 2), and
use it to set the value of y to 2 by setting the value of x to 5. Some researchers [1, 10]
have tried to find the stronger notion of causality among the observed variables. In the
previous example, they may call x a cause of y.

z.w. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 266-273, 2000.
© Springer-Verlag Berlin Heidelberg 2000



finding Temporal Relations: Causal Bayesian Networks vs. C4.5 267

In this paper we consider two approaches to the problem of finding relations
among variables. TETRAD [9] is a well-known causality miner that uses Bayesian
networks [3] to find causal relations. One example of the type of rules discovered by
TETRAD is x -> y, which means that x causes y. From the examples in [1, 10], it
appears that Bayesian networks discover more causal relations than actually exist in
the domain. Bayesian networks find causality even in domains where the existence of
causal relations itself is a matter a debate. For words in political texts, Bayesian
networks find rules such as "Minister" is caused by "Prime" [10]. This
suggests that there is a considerable amount of disagreement about the concept of
causality. There are ongoing debates about the suitability of using Bayesian networks
for mining causality [2, 4, 5, 11]. Here we apply TETRAD to identify relationships
between variables without claiming that all of them are causal relationships.

C4.5 [8] creates decision trees that can be used to predict the value of one variable
from the values of a number of other variables. A decision tree can easily be
converted to a number of rules of the form if ( (x = a) AND (y = A~ I then (z = 0). The
variables x and y may be causing the value of y, or they may be associated together
because of some other reason. C4.5 makes no claim about the nature of the
relationship.

Both these programs ignore any temporal order among the records, while in the
data that we use there does exist relations among the variables in consecutive records,
in the sense that the values of some variables in a record affect the values of variables
in later records. We will describe the method used to overcome this problem.

The rest of the paper is organized as follows. Section 2 describes the simple
environment that we chose for testing the different methods. In Section 3 we first
compare the results obtained from TETRAD and C4.5 when there is an association
among the variables of a record, but no causality. After that we attempt to discover
temporal relations among the records. Section 4 concludes the paper.

2 An Agent's View of Its Environment

We use an Artificial Life simulator called URAL [12] to generate data for the
experiments. UJRAL is a discrete event simulator with well known rules that govern
the artificial environment. There is little ambiguity about what causes what. This
helps to judge the quality of the discovered rules.

The world in URAL is made of a two dimensional board with one or more agents
(called creatures in Artificial Life literature) living in it. An agent moves around and
if it finds food, eats it. Food is produced by the simulator and placed at positions that
are randomly determined at the start of each run of the simulator. There is a maximum
for the number of positions that may have food at any one time, so a position that was
determined as capable of having food may or may not have food at a given time. The
agent can sense its position and also the presence of food at its current position. At
each time-step, it randomly chooses to move from its current position to Up, Down,
Left, or Right. It cannot get out of the board, or go through the obstacles that are
placed in the board by the simulator. In such cases, a move action will not change the
agent's position. The agent can sense which action it takes in each situation. The aim
is to learn the effects of its actions at each particular place.



268 K. Karinii and H.J. Hamilton

URAL employs Situation Calculus [7] to build graphs with observed situations as
the nodes and the actions as transition arcs between the situations. Agents use the
graphs to store their observations of the world and to make plans for finding food.
URAL differentiates between volatile and non-volatile properties of a situation. The x
and y positions are non-volatile, and are used to distinguish among the situations. The
presence of food is a volatile property, which means that the same situation can be in
different states. The creature only keeps the last observed state of a situation. URAL
was modified for this experiment to log each encountered situation in a file.

For our agent, time passes in discrete steps. At each time step, it takes a snapshot of
its sensors and randomly decides which action it should perform. This results in
records such as <x position, y position, is food here?, action>. C4.5 treats the last
variable in a record as the decision attribute, so if necessary the variables are
rearranged in the log file. Figure 1 shows two example sequences of records. In
Figure I1(a) the last variable is the action, while in 1(b) it is the x position. Here time
passes vertically, from top to bottom.

<x, y, f a> <y, f,a, x>

<1, 3, false, L> <3, false, L, 1>
<0, 3, false, L> <3, false, L, 0>
<0, 3, true, D> <3, true, D, 0>
<0, 4, false, U> <4, false, U, 0>
<0, 3, true, D> <3, true, D, 0>

(a) (b)
Fig. 1. Two example sequences of records

The agent, moving randomly around, can visit the same position more than once.
Unlike the real-world data studied by many people [1, 2, 10], here we can reliably
assume a temporal order among the saved records, as each observation follows the
previous one in time. Considering the similarities between data gathered by an agent
and the statistical observations done by people for real-world problems, it is
interesting to see if we can use the same data mining techniques to extract knowledge
about this environment.

The agent can move around in this very simple world, so it has a way of changing
its position by performing a move action. Creating food, on the other hand, is
completely beyond its power. Finding the effects of the agent's actions requires
looking at more than one record at a time (two consecutive records in this
environment), because in this environment the effects of an action always appears at a
later time. Any algorithm that does not consider the passage of time is limiting itself
in finding causal rules. So this domain contains causal relations detectable by the
agents over time (the effects of moving), as well as relations that are not detectable by
the agent (the place of food).

3 Experimental Results

The effectiveness of TETRAD and C4.5 at finding valid relations is assessed in two
situations: within a single record and within consecutive pairs of records.



Einding Temporal Relations: Causal Bayesian Networks vs. C4.5 269

3.1 Experiment 1: Relationships within a Single Record

From the semantics of the domain, we know that no causal relationship exists within a
single record. Causal relations appear across the records. However, there is an
association between the x and y position of an agent and the presence of food at that
position, as the simulator places food at only certain places. A position may or may
not contain food at any given time. We created a log file of the first 1000 situations
encountered by a single agent and used it for the experiments.

We first fed the log file to TETRAD version 3. 1. In TETRAD's notation, A 0-> B
means that either A causes B, or they both have a hidden common cause, A 0-s B
means that A causes B or B causes A, or they both have a hidden common cause, and
A <-> B means that both A and B have a hidden common cause.

TETRAD would not accept more than 8 different values for each variable, so the
world was limited to an 8 x 8 square with no obstacles. In the log file, x and y denote
the agent's position, f denotes the presence of food, and a is the performed action. The
presence of food and the actions were represented by numerical values to make them
compatible with what TETRAD expects as input. The results were generated by the
"Build" command. It did assume the existence of latent common causes, and used the
exact algorithm. TETRAD's output is shown in Table 1.

Table 1. The rules discovered by TETRAD.

Case Significance Level(s) Discovered Rules C PC W
1 0.0001 y ->x, f, a --- x I 1 1]
2 0.001, 0.005, 0.01 aeo->y, x e-ea, x 9-4y, f -4y 0_2_
3 0.05, 0.1 x o-ey, f.-"x, a a ---x, f 9-4y, a o.->y 0 2 2
4 0.2 x .- y, x e-of x o-o a, y o-of 0 4 2

Based on the rules enforced by URAL in the artificial environment, the desired
output in TEDRAD's notation would be the following relations: x O-Of (x and fare
associated), y 9-. f (y and f are associated), f (f has no cause and does not cause
others). The relations that are not totally wrong are shown in bold. In the table the C
column indicates the number of Correct rules, the PC column show the number of
Partially Correct (non-conclusive) rules, and W shows the number of Wrong rules.

The appearance of food at a certain position depends on a random variable inside
the URAL code, and there is no causal relation that the agent can discover, but there is
an association between positions and the presence of food.

In case 1 the rule a 9--- x correctly guesses that a may be a cause of x. However
this is not conclusive in the sense that it considers it possible for a hidden common
cause to exist. This is an important distinction. In the next rule f, TETRAD identifies f
as something that does not cause anything, and is not caused by anything else. The
other rule, y e--> x, is wrong because the y coordinate of a position does not determine
the x coordinate. Case 2 does not go wrong in the first two rules, even though none of
them is conclusive. The other two rules are wrong. Case 3 does better in finding the
relationships among a and x, and a and y, but the results are still not conclusive. Case
5 finds associations among x, y andf, but then wrongly does the same for a andf too.



270 K. Karimit and H.J. Hamilton

As seen, TETRAD draws many wrong conclusions from the data, and with the
exception of one rule (/), the rest are not conclusive. Notice that here we have been
generously interpreting the rules involving a as if TETRAD is aware that an action
will have an effect on the next value, and not the current value, of x or y.

We then tried the c4.5rules program of the C4.5 package in the default
configuration, on the same data. We assigned the presence of food as the decision
attribute. C4.5rules eliminates unneeded condition attributes when creating rules. For
example, if the value of x, is sufficient to predict the outcome regardless of the value
y2, the generated rule will not include y,. We are looking for rules of the form if I (x =
a) AND (y = A/I} then (f = ý, which means that there is a relation between the
position (x and y) and the presence of food.

Table 2 shows the c4.Srules program's results for determining the value off. Rules
that are actually and useful for finding food are shown in bold. The rules predicting
the presence of food correctly included both x and y. The rest of the rules deal with
cases where no food was present.

Table 2. Attributes used in rules generated by C4.5 to determine the presence of food.

Decision Condition Number Example Correctness
Attribute Attribute(s) of Rules _____________ _______

f X 1 IQ{(x = 5)1 then (f = 0) Correct
f y 2 If[ (y =2))}then (f =0) Correct
f a 1 If({(a = L))}then (f = 0) Wrong
f x~y 2 I~f{(x =2) AND (y =3)} Correct

________ ________ _______then (f = 1)______

C4.5 was unable to find useful rules for determining the values of x or y, as they
depend on the previous position and action, which are not available. The decision tree
for x, for example, wrongly included the presence of food as a condition attribute.

3.2 Experiment 2: Relationships among Consecutive Records

As mentioned, the log file consists of temporally ordered records. Neither C4.5 nor
TETRAD considers the temporal order and adding a simple discrete time stamp as an
attribute will not allow them to find temporal relationships. With the semantics of our
example domain in mind, the most one can hope for in the previous tests is finding a
correct association between the agent's position and the presence of food.

The effects of an action will not be seen until later in time. Using a preprocessing
step, a flattened log file is created with two or more consecutive records as a single
record. Flattening the sequences in Figure 1(a) and 1(b) using a time window of size 2
gives the sequences sown in Figure 2(a) and 2(b) respectably, where time passes
horizontally from left to right and also vertically from top to bottom. Here we have
renamed the variables to remove name clashes. With the exception of the first and last
records, every record appears twice, once as the second half (effect), and then as the
first half (cause) of a combined record.

The appropriate size of the time window depends on the domain. It should be wide
enough to include any cause and all its effects. If we suspect that the effects of an
action will be seen in the next two records, then we may flatten Figure 1(a) to get
records like: <1, 3, false, L, 0, 3, false, L, 0, 3, true, D>. The algorithms accepting the



Ending Temporal Relations: Causal Bayesian Networks vs. C4.5 271

flattened records as input may not know about the passage of time, but flattening
brings the causes and the effects together, and the resulting record then has the
information about any changes in time.

<x1, yf, a,, x,, y,,f, ay,,f,,f, a,, x1, y, f, a,, x,>

<1, 3, false, L, 0, 3, false, L > <3, false, L, 1, 3, false, L, 0 >
<0, 3, false, L, 0, 3, true, D > <3, false, L, 0, 3, true, D, 0 >
<0, 3, true, D, 0, 4, false, U > <3, true, D, 0, 4, false, U, 0 >
<0, 4, false, U, 0, 3, true, D > <4, false, U, 0, 3, true, D, 0 >

(a) (b)

Fig. 2. The flattened sequences of Figures l(a) and l(b).

For the next experiment, a window size of 2 was used because in the URAL
domain the effects of an action are perceived by the agent in the next situation. In the
combined record, x,, y,, f, and a, belong to the first record, and x2, y2, f 2 and a, belong
to the next one. TETRAD's output for the resulting data is shown in Table 3.

Table 3. The rules discovered by TETRAD from the flattened records.

Case Significance Level(s) Discovered Rules C PC W
1 0.0001 y, x-1Xa, a, o---x, x .-. x2, Y2 0-*X,1 2 4 8

a2 On'Xl, y1 X--X2, y, o--->y a, 9->x2,
a, <->yv a2 * a1, y2 *-- x2, a2 " -x 21 fA,
L

2 0.0005, 0.001, y, 9-- x, x, e-9 a1, x -o x2, x1 .- y2 , 2 4 10
0.005, 0.01 a2  *- -x, y, *-- a1, y, *--->x2, y, o->y2,

a, x-*.x a, -' yr a2 *-) a1, x2 *-oY2

a, e--.- x2, a2 e--.- y2, fv f,

3 0.1 x a--> y, x, -oa,, x, o--x 2r xi o-oy2, 0 3 14
x, -o a2,f 1 ->y, a, e--->yl, y, <-->x2,

Y2 *---y, a2 o--yl, a, 9--> x, a, -ey 2,

a, *-* a2, y 2 9---x 2 , f2 *--x 2 , a2 *--- X2,
y, *-a a2

4 0.2 x- e--°Y 1, f1 e-')X,, X (4->a, Xl k->X2 ' 0 1 18

Y2 e-"x,, a 2 e-->xV fA e--> Yl, Y< (--al,
y, "->x2, y2 e-4-y, a2 e-*-4y, a, -. x2,
Y2 *--> a,, f, o-> a,, a2 *-- a1, y2 --- x.,

f2 *o, x2, a, 9- x2, y, o-o a2

Here we are looking for the following relations: x, e-ef, (x, andf , are associated),

yý - fý (y, and f, are associated), f , f2 (f, and f. have no causes and do not cause
anything), x2 *-ef2 (x2 andf2 are associated), y, *-*f 2 (Y2 andf 2 are associated), a, ---> x2

(a, causes x2), a, -> y, (a, causes x.), x1 -* x2 (xl causes x2), and y, -4 y2 (y, causes Y2)

The relations that are not totally wrong are shown in bold.
Most rules discovered by TETRAD on this data are wrong. In comparison with

Experiment 1, the increased number of variables in Experiment 2 has resulted in an



272 K. Kariini and H.J. Hamilton

increase in the number of discovered rules, most of which are either wrong or not
conclusive.

We applied C4.5 to the same data. The desired output rules are of the following
forms: if I (x2 = a) AND (y2 = 83) then (f2 = 0 (Association between x, y, and food), if
I{(x, = a) AND (a, = 8ij) then (x2 = ý (predicting the next value of x), and if f{(y, = 0
AND (a, = fl) I then (Y2 = ý (predicting the next value of y). The results produced by
c4.5rules are shown in Table 4.

Table 4. C4.5's results after flattening the records.

Decision Attribute Condition Attribute(s) Number of Rules Validity
1, Correct

Y,2 Correct
Aa, 1 Wrong

x,, y, 2 Correct
__________ x,, a, 32 Correct

__________ y,, a, 32 Correct

Rules that can actually be used for finding and reaching food are shown in bold.
C4.5rules generated 32 correct rules for each of x2 and y2. In a two-dimensional space,
there are 4 possible actions and 8 distinct values for x, and y,. In this example the
creature has explored all the world, and there are 32 (8 x 4) rules for predicting the
next value of x, and y 2 . There were no changes in the rules for f2 (the actually useful
rules that predict the presence of food still depend on both x2 and y2) even though C4.5
now has more variables to choose from. This is because the current value off2 is not
determined by any temporal relationship. Overall, C4.5 did a much better job in
pruning the irrelevant attributes than TETRAD.

4 Concluding Remarks

People interested in finding relations among observed variables usually gather data
from different systems at the same time. Here we used data that represented the state
of a single system over time. While there were relations among the variables in each
state, some interesting temporal relations existed among the variables of different
states.

We applied a causality miner that uses Bayesian networks to find relations in a
very simple and well-defined domain. The results were similar to the real-world
problems: both correct and wrong rules were found. Bayesian causality miners need a
domain expert (a more powerful causal relation discoverer) to prune the output.
Flattening the records to give the algorithm more relevant data resulted in many more
irrelevant rules being discovered. We also tested C4.5 on the same data, and observed
that it is very good in pruning non-relevant attributes of the records and finding
temporal relations without actually claiming to be a causality discoverer. One
consideration with C4.5 is that the user has to identify the decision attribute of
interest.



Ending Temporal Relations: Causal Bayesian Networks vs. C4.5 273

We observed that flattening enabled C4.5 to discover new relations that it could not
find otherwise. Flattening increases the number of variables in the resulting records.
While creating a bigger search space for rule mining, flattening gives more
information to the rule miner, and makes temporal relations explicit.

Acknowledgements

We thank Yang Xiang, Clark Glymour, and Peter Spirtes for their help. Funding was
provided by a Strategic Grant from Natural Science Engineering Research Council of
Canada.

References

1. Bowes, J., Neufeld, E., Greer, J. E. and Cooke, J., A Comparison of Association Rule
Discovery and Bayesian Network Causal Inference Algorithms to Discover Relationships in
Discrete Data, Proceedings of the Thirteenth Canadian Artificial Intelligence Conference
(AI2000), Montreal, Canada, 2000.

2. Freedman, D. and Humphreys, P., Are There Algorithms that Discover Causal Structure?,
Technical Report 514, Department of Statistics, University of California at Berkeley, 1998.

3. Heckerman, D., A Bayesian Approach to Learning Causal Networks, Microsoft Technical
Report MSR-TR-95-04, Microsoft Corporation, May 1995.

4. Humphreys, P. and Freedman, D., The Grand Leap, British Journal of the Philosophy of
Science 47, pp. 113-123, 1996.

5. Korb, K. B. and Wallace, C. S., In Search of Philosopher's Stone: Remarks on Humphreys
and Freedman's Critique of Causal Discovery, British Journal of the Philosophy of Science
48, pp. 543- 553, 1997.

6. Levy, S., Artificial Life: A Quest for a New Creation, Pantheon Books, 1992.
7. McCarthy, J. and Hayes, P. C. Some Philosophical Problems from the Standpoint of

Artificial Intelligence, Machine Intelligence 4, 1969.
8. Quinlan, J. R., C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993.
9. Scheines R., Spirtes P., Glymour C. and Meek C., Tetrad II: Tools for Causal Modeling,

Lawrence Erlbaurn Associates, Hillsdale, NJ, 1994.
10. Silverstein, C., Brin, S., Motwani, R. and Ullman J., Scalable Techniques for Mining

Causal Structures, Proceedings of the 24"h VLDB Conference, pp. 594-605, New York, USA,
1998.

11. Spirtes, P. and Scheines, R., Reply to Freedman, V. McKim and S. Turner (editors),
Causality in Crisis, University of Notre Dame Press, pp. 163-176, 1997.

12. ftp://orion.cs.uregina.ca/pub/ural/URAL.java



Learning Relational Cliches with Contextual LGG

Johanne Morin and Stan Matwin

School of Information Technology and Engineering, University of Ottawa
Ontario, K1N 6N5, Canada

jmorin@ site. uottawa. ca

Abstract. Top-down learners suffer often from the plateau problem (or myopia)
of their greedy search algorithms. One way to address this is to extend the top-
down greedy search, which grows the clauses, with relational cliches. Using cli-
ch6s the search is no longer constrained to adding one literal at a time: combi-
nations of literals instantiating clich6s are tried as well. The paper presents
CLUSE: Clich6s Learned and USEd, a system that learns clich6s that are then
used either within a domain, or across domains. CLUSE is a bottom-up learner,
in which generalization proceeds according to Contextual LGG (CLGG). CLGG
is an extension of LGG that takes into account the context in which a pair of lit-
erals is generalized. The paper defines CLGG, illustrates how clich6s are
learned, and shows that the complexity of this learning is polynomial.

1 Introduction

Inductive learners that use a first-order language to express examples, background
knowledge and hypotheses (or concept descriptions) are called inductive relational
learners. Because they induce hypotheses in the form of logic programs they are also
called inductive logic programming (ILP) systems. Top-down inductive relational
learners such as FOIL [13] and FOCL [10] learn Horn clauses adding one literal at a
time using a greedy-search algorithm. At each step the coverage of the rule after add-
ing a literal is tested on training examples. The literal that best discriminates the re-
maining positive and negative examples is added to the current clause. The clause is
complete when it no longer covers negative examples. Top-down systems suffer from
myopia, which arises when the best discrimination would be obtained by adding more
than one literal at once. Solving the problem requires searching for combinations of
literals rather than just single literals. Unfortunately, trying all possible combinations
of literals can be intractable. A mechanism to search efficiently through the space of
combinations of literals is needed. A learner can be provided with such a mechanism
in form of a special-purpose bias.

We propose CLUSE (Clich6s Learned and Used) [6] to learn combinations of liter-
als automatically as a particular type of bias. These combinations of literals are called
relational clichds. The underlying idea is to learn clichds from examples of a concept
and to use them within and across domains 0. Assuming that clichds express subcon-
cepts common to a domain, and that in the same domain literals used to express differ

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 274-282, 2000.
© Springer-Verlag Berlin Heidelberg 2000



Learning Relational Clich6s with Contextual LGG 275

ent concepts overlap, then clich6s learned from one concept should provide appropri-
ate lookahead to learn other concepts in the same domain. On the other hand, these
clich6s probably have few literals in common with concepts in other domains, hence
the need for more general clich6s. To solve this, CLUSE learns two kinds of clich6s:
Domain Dependent Clichds (DDCs) expressed as a conjunction of literals specific to a
domain, and Domain Independent Cliches (DICs) where literals have variable predi-
cate symbols (hence they are notspecific to a domain). When DICs are transferred
across domains they are instantiated with literals in the domain of the target concept.

CLUSE is a bottom-up inductive relational learner based on Relative Least General
Generalization (RLGG) [12]remedy the inefficiency and the overgeneralization prob-
lems of RLGG, we have also developed a modified version of RLGG that exploits the
context in which LGG is applied. The modified RLGG is called Contextual Least
General Generalization (CLGG).

DICs
CLUS•

Conep, oncept Coc

Figure 1. CLUSE learns relational clich6s (DDCs and DICs) from examples of a
concept in one domain. DDCs are useful to learn concept within the same domain,
whereas DICs are useful across domains.

This paper describes the learning of relational clich6s with CLUSE. It introduces
CLGG, the similarity measures, and the notion of chains used in CLUSE. It describes
CLUSE's algorithm and its complexity. How these clich6s address the myopia prob-
lem of an inductive relational learner is described in [7].

2. CLGG: Contextual Least General Generalization

Much of the existing work in learning in the first-order logic setting is based on Plot-
kin's Least General Generalization LGG [11], and on its extension - called Relative
LGG (RLGG) [ 12]. From the machine learning perspective, however, there are certain
practical shortcomings of the LGG approach to generalization. First, in the worst case,
the cost of applying LGG on two clauses is equal to the length of the first clause times
the length of the second one. So the cost of applying LGG on a set of clauses is expo-
nential in the number of literals to generalize. Second, additional knowledge (e.g.
taxonomic hierarchies) is often available during generalization. Many learning meth-
ods take such knowledge into account in the generalization process [1, 10]. LGG does
not use any background knowledge (BK) in the generalization process. RLGG is sup-
posed to address knowledge-driven generalization, but since RLGG compiles all the



276 J. Morin and S. Matwin

knowledge during generalization in the form of additional literals, this compounds the
efficiency problems of LGG.

The learning system GOLEM [9] is based on RLGG but reduces the cost by con-
straining the BK to a finite Herbrand model. Even using a finite model, the length of
the LGGs is exponential in the number of given examples. By using restrictions like
the ij-determinism and syntactically generative1 background clauses, the length of the
LGG of a set of examples no longer depends on the number of examples. ITOU [15],
CLINT [3], and Kodratoff's system [4] encounter the same problem of efficiency as
RLGG, generating the Herbrand models of the BK (by an exhaustive saturation proc-
ess). Other learning systems like FOCL [16] and CIGOL [8] use BK, but these are not
based on RLGG.

This section (see [6] for a full presentation) outlines an alternative to LGG that ex-
ploits the context in which LGG is applied. The context is meant here to include both
the additional knowledge available during generalization, as well as the similarity of
literals in the context of the clauses being generalized. Although CLGG is defined for
literals with nested arguments involving functors, in this presentation we limit our-
selves to simpler functor-free arguments.

To extend LGG so that context is taken into account during generalization, the
similarity between every pair of constants (or bindings) occurring in the same relation
in the two clauses being generalized is computed before the generalization. The simi-
larity of constants takes into account their occurrences in clauses (see below). Con-
stant bindings with a similarity higher than a'threshold are bound to a variable. The
constants and the variable constitute the similarity bindings, which are then passed to
the CLGG to limit its search. When generalizing two clauses, literals that match' (even
with multiple occurrences) must have at least-one similarity binding to be generalized.
Moreover, to take into account the context-in -which the generalization of two clauses
takes place and to address the shortcomings' of RLGG, the BK is used in a lazy man-
ner. Only unmatched literals restricted with similarity bindings that find a generaliza-
tion in the BK are generalized.

2.1 Similarity Measure Evaluates Bindings of Constants

We borrowed the similarity measure from Bisson [2] to evaluate the bindings of con-
stants in clauses. For each constant ai, a list of occurrences (denoted by occ(ai)) is
made of pairs (predicate-ai, position-of-ai) for each literal where the constant occurs.
The predicate-ai is the literal's predicate and the position-of-ai is the term's position
among the arguments of predicate-a,.

Two constants match if they occur in two literals whose predicates are identical.
The similarity between two constants from two clauses is the ratio of the length of the
lists of common occurrences to the maximum length of constants' occurrences in the

A clause is said to be syntactically generative if the variables in its head are a subset of the
variables in its body.

2 Two literals match if they have the same predicate and arity.



Learning Relational Clich6s with Contextual LGG 277

two clauses. It results in a value between [0.. 1], where the closer the value gets to 1,
the more similar the constants are. The similarity measure formula is:

sim(ai, aj) = length(occ(ai) n occ(ajl)

MAX(length(occ(ai)), length(occ(aj)))

The overall idea of this definition is that constants occurring in two clauses are
similar if they occur in a similar enough context. It is required that occurrences of
constants in relations (i.e. literals with more than one argument) match, otherwise their
similarity binding is zero3.

2.2 CLGG Relative to a BK

As in RLGG, the CLGG (in the functor-free case) of two clauses C1 and C2 (denoted
CLGG(CJ, C2)) is the least upper bound (or least general generalization) of Cl and
C2 in the asubsumption lattice. Unlike RLGG, CLGG exploits an intensional BK in a
lazy way. It first generalizes clauses and then uses the BK to generalize unmatched
literals that have at least one similarity binding.

Figure 2 illustrates the extent to which similarity bindings limit CLGG search when
there exist multiple examples of the same predicate in clauses (black/1). Unlike
RLGG, CLGG limits the generalization of the predicate black to combinations with
one similarity binding (e.g. vi and v2). It results in a generalization (above (Vi,

V2) , black(V1) , black(V2)) and unmatched literals tri (a) , rect (b), and
small (b) for Cl, and sq (c) , sq(d) for C2. When a literal from the BK subsumes
unmatched literals with a similarity binding, then the subsuming literal is added to the
generalization and unmatched literals are discarded. For instance, Poly (Vl) is added

to the generalization because it subsumes tri (a) and sq (c).

Cl:scene(a, b):- above(a, b), tri(a), rect(b), small(b),
black(a), black(b).

C2: scene(c, d):- above(c, d), sq(c), sq(d), black(c),
black(d).

CLGG(C1, C2) with BK:
Sscene(Vl,V2):- above(Vl, V2), black(Vl), black(V2),

Poly(Vl), Rect(V2).
Generalized literals: Poly(Vl) = (tri(a), sq(c))

Rect(V2) = (rect(b), sq(d))
Unmatched literals: small (b)
Bindings: Vl = (a, c), V2 = (b, d)

Figure 2. CLGG relative to the BK. Predicates with a capital letter are learned using a
taxonomy of geometric forms.

3 CLGG is used to learn relational clich6s where relations are more important than attributes
[6].



278 J. Morin and S. Matwin

3 CLUSE Learns Relational Cliches

The generalization problem of learning clich6s consists of finding common parts in
examples. In relational domains, examples are represented with different relations and

features, which makes it difficult to find a generalization process that will succeed in
finding common parts of a set of examples. Moreover, in most of these domains, im-
portant concepts are represented by a small number of connections among constants

defining examples. For these reasons, CLUSE splits examples into their shortest
chains. This is similar to the idea of relational path finding [14]. Intuitively, a chain is

a pattern showing how objects are related to one another and how their features are
used in examples. So, each relation in an example (which provides the structural in-
formation between objects) and all features of the related objects form a chain. Every
relation and feature of an example is preserved and some features may occur in more
than one chain. A chain is thus defined as a connected conjunction of literals where
one and only one literal is a relation.

E: on(x, y), cir(x), rect(y), leftof(y, z), iso(z)
Cl: on(x, y), cir(x), rect(y)
C2: leftof(y, z), rect(y), iso(z)

Figure 3. Example E expressed in terms of chains (Cl and C2).

Figure 3 shows the shortest chains cl and C2 in the example E. They are connected
combinations of literals with a single relation (on (x, y) and leftof (y, z)). Be-

cause relevant relations are not always connected to the head of examples, chains are
used without the example's head. For instance, both relations on (x, y) and

leftof(y, z) would be related to the head scene(x, y). On the other hand,
leftof (y, z) would not be connected if the head is scene (x).

3.1 CLUSE's Algorithm

The general algorithm of learning DDCs and DICs with CLUSE is as follows. Positive
and negative examples (and optionally) the BK are given to CLUSE. Examples are
split into chains. At the beginning, positive chains are considered roots of the struc-
ture. CLUSE evaluates the similarity of each pair of roots. It chooses the two most
similar roots and generalizes them using CLGG. The resulting generalization becomes
the parent (and the new root) of the two generalized chains. The similarity of this root
with each other root is evaluated. CLUSE repeats this process until no more generali-
zations are possible. When taxonomies are available to CLUSE, the most similar

chains with the lowest cost are generalized first. The cost expresses the distance be-
tween predicates in the taxonomy. CLUSE uses the similarity of clauses to choose the
two most similar chains to generalize first. The similarity measure of two clauses is
computed from similarity bindings of constants. The formula is:

n m

sim(C1, C2) = • 1 sim(ali ,a2j) for sim(al , a2) •0
i=1 j=1



Learning Relational Cliches with Contextual LGG 279

where a]lj e Cl and a;. E' C2, n is the number of constants in al, and m is the num-

ber of constants in a2.
A generalization is added to the structure as the parent of the two chains that it gen-

eralizes. To avoid a tree with duplicate generalizations (when many chains result in
the same generalization), chains that are exactly subsumed by their generalization (i.e.
they differ only by their argument names) are removed. Every unmatched literal
(when combined with the generalization) that is exactly subsumed by the generaliza-
tion it accompanies, is also removed.

Pruning the structure preserves generalizations (DDCs) with good coverage of ex-
amples and discards others. CLUSE traverses a structure depth-first and computes
coverage frequencies for positive and negative examples. Coverage frequencies corre-
spond to the number of positive (or negative) examples subsumed by the generaliza-
tion divided by the total number of positive (or negative) examples4 . A generalization
is preserved when it covers fewer negative examples than the generalization that sub-
sumes it, and satisfies the user-defined coverage thresholds. This way, the pruning
eliminates generalizations with low recall and low precision.

DDCs are useful for learning concepts in the same domain where they are learned.
On the other hand, clichds independent of the domain are useful for learning concepts
in other domains. To learn such clichds, first-order predicates of DDCs are replaced
with second-order predicates giving DICs. The information as to whether a predicate
of a DDC is generalized using the BK or not is preserved within the predicate name in
the DIC. A predicate that subsumes other predicates on the taxonomy in called an
intensional predicate, whereas a predicate that belongs to examples is called an exten-
sional predicate. Intensional predicates are generalized to a predicate variable of the
form intp# and extensional predicates to a predicate variable of the form ExtP#. SO,
When DICs are used to learn a concept in a new domain, this information can be re-
covered and used to instantiate second-order predicates with intensional or extensional
predicates of the new domain.

The overall complexity of learning clich6s is polynomial, due to the similarity
evaluation of all chains O(k~n4) where k is the maximum number of arguments for any
relation, and n the number of literals (see [6] for a full presentation).

3.2 Examples of Learning Relational Cliches

This section illustrates an example of CLUSE learning the concept Scene in the blocks
domain5. It shows the chains used for learning, the structure of generalizations, the

4~ The frequency of coverage gives more flexibility than a measure like information gain [13].
Unlike information gain, the coverage frequencies of a generalization explicitly represent the
proportion of subsumed positive and negative examples. This allows the user to fix two dif-
ferent coverage thresholds for choosing generalizations. For instance, the user may choose to
preserve only generalizations that cover at least 50% of the positive and at most 25% of the
negatives.

5 CLUSE has also been used to learn cliches in the real-life domain of the Finite Element Mesh
Design (see http://www.site.uottawa.ca/-jmorin/Programs/CLUSE/Output/Mesh/).



280 J. Morin and S. Matwin

DDCs and the DICs learned. Scene is a disjunctive concept describing 1) an ellipse
above a rectangle, which is left of an isosceles triangle; 2) an ellipse above an isosce-
les triangle and a rectangle left of the triangle. In both cases the ellipse may be small,
the rectangle may be large and the triangle may be red. Moreover, the ellipse can also

be a circle, the rectangle a square, and the isosceles triangle a right-angled isosceles

triangle.

Figure 4 illustrates a part of the structure of generalizations built with CLUSE for
the concept Scene. Each level includes: the generalization, the coverage frequencies of

chains, unmatched literals (generalized or not) and the positive chains subsumed6. For
instance, at the lowest level of the structure, generalization G46 subsumes chains 1, 7
and 17 with one unmatched literal large (xl) that belongs to the chain {1}. G49
subsumes G46 and chain 13. CLUSE knows from the BK (a taxonomy of geometric
forms) that an equilateral triangle and an isosceles right-angled triangle are also isos-
celes triangles. So, equil (V12) from G46 and isorangl (x26) from chain 13 are
generalized into Iso (V18) in G49.

The Structure of generalization F+ F-
G58: leftof(V1,V2),Rect(V1), Iso(V2). 0.5 0.25

Rect(V1) -> (sq(x37), rcct(V21)).
Iso(V2) -> (equil(x38), iso(V22)).
large(x29) {15} 0.05 0
Subs. chains: 11, 3, 5, 7, 9, 11, 13, 15, 17, 191
G51: leftof(V21,V22), Rect(V21), iso(V22), red(V22). 0.4 0

Rect(V21) -> (sq(V17), rect(V9)).
Subs. chains: {1, 3, 5, 7, 9, 11, 13, 17}
G149: leftof(V17,VIS), sq(Y17), Iso(V18), red(V18).

Iso(V VIS )-> (cqui](V12), iscorangzlx26)).
Snibs. chains: i 1, 7, 11 17a
G46: aeftof(pVo1,V1Zr), sq(V1I), equnl(V12), red(V12)l

Subs. ch4ans: 11, 7,7 1
G45. Ieftof(V9,VIO), Jarge(V9), rect(V9), lso(VIO), red(VIO).

Iso(VIO ,) -> (iso(VI), iso~rangl(x6)).
Subs. chains: (359

Figure 4. CLUSE generalizes chains into a structure and prunes this structure ac-
cording to generalizations' coverage frequencies. Generalizations are identified by G#
(and appear in bold), followed by predicate bindings, unmatched literals, and sub-
sumed chains. Generalizations G45, G46, and G49 are pruned (shaded).

After the generalization, CLUSE prunes the structure in a top-down manner ac-
cording to the coverage frequencies of generalizations. For instance, CLUSE preserves
058, which covers 50% of the positives and 25% of the negatives (F+ = 0.5 and F-

= 0.25). The combination of the unmatched literal large (x29) with G58 covers 5%

of the positives and none of the negatives. It covers fewer negatives than G58 itself, so

6 Similarly for negative chains subsumed.



Learning Relational Cliches with Contextual LGG 281

the unmatched literal is preserved. CLUSE continues with G51 and finds the coverage
frequencies to be 40% for the positives and 0% for the negatives. G51 covers fewer
negative examples than G58, so CLUSE preserves it. Since the coverage of negatives
is already at the minimum and generalizations under G51 are more specific than G51
(and similarly if G51 had unmatched literals), CLUSE knows that no generalizations

under G51 can cover fewer negatives than G51. Therefore, CLUSE prunes all descen-
dants of G51 (i.e. G49, G46, and G45).

Generalizations left after pruning, are returned with their frequencies as learned
DDCs (Table 1)7. A generalization with each of its unmatched literals makes a DDC.
For instance, DDCs 1 and 2 are created from generalization G58: DDC 1 corresponds
to G58 itself, DDC 2 corresponds to G58 with its unmatched literals large (Y). Table
1 also shows DICs generalized from each DDC.

Table 1. Learned DDCs with their coverage frequencies and their corresponding

DIC.

G# DDC F+ F- DIC
58 leftof(X,Y),Rect(X),Iso(Y) 0.5 0.25 ExtPI(X,Y),IntPl(X),IntP2(Y)
58 leftof(X,Y),Rect(X),Iarge(X),Iso(Y 0.05 0 ExtPl(X,Y),IntPl(X),Extp2(X),IntP2(Y)

51 leftof(X,Y),Rect(X),iso(Y),red(Y) 0.4 0 ExtPl(X,Y),IntPI(X),ExtP2(Y),ExtP3(Y)

4 Conclusion

The paper presented an extension of LGG/RLGG that exploits additional knowledge
available during generalization and the similarity of literals in the context of the
clauses being generalized. CLGG is less expensive to apply than LGG/RLGG. No
literals are added to clauses prior to the generalization, and matching is restricted to
literals with similarity bindings.

This paper showed the underlying algorithm to learn cliches with CLUSE and the
algorithm's complexity. CLUSE uses CLGG and the notion of chains to learn rela-
tional cliches in a bottom-up manner into a hierarchy of generalizations. CLUSE
prunes this hierarchy according to the generalizations' coverage frequencies of chains.
Preserved generalizations and their coverages are returned as learned DDCs. DDCs
are further generalized into DICs with variable predicates. DDCs are considered do-
main-dependent, since they are expressed with predicates specific to a domain,
whereas DICs are domain-independent.

CLUSE could be used to create a library of concept hierarchies from different do-
mains of application. Concept hierarchies (as described in Langley [5]) provide a
better memory organization than flat lists of cliches and allow some pruning, giving a
solution to the utility problem [5]. Classifying new instances with a concept hierarchy
involves moving downward through the hierarchy. At each level, instantiate the clich6
or use coverage frequencies on the alternative nodes to select one to expand, then
recurse to the next level.

7 For simplicity, variable names are changed.



282 J. Morin and S. Matwin

Reference

1. BISSON, G. (1990). "KBG: A Knowledge Based Generalizer." Proceedings of the Seventh
International Conference on Machine Learning, Austin, Texas, Morgan Kaufmann, 9-15.

2. BISSON, G. (1992). "Learning in FOL with a Similarity Measure." Proceedings of the Tenth
National Conference on Artificial Intelligence, San Jose, CA, Morgan Kaufmann, 82-87.

3. DE RAEDT, L. AND M. BRUYNOOGHE (1992). "An Overview of the Interactive Concept-
Learner and Theory Revisor CLINT." Inductive Logic Programming, Muggleton S. (ed.),
Academic Press, 163-191.

4. KODRATOFF, Y. (1990). "Learning Expert Knowledge by Improving the Explanations Pro-
vided by the System." Machine Learning: An Artificial Intelligence Approach-III, Michalski
R. S. and Y. Kodratoff (eds.), Morgan Kaufmann, 433-473.

5. LANGLEY, P. (1996). Elements of Machine Learning, Morgan Kaufmann.
6. MORIN, J. (1999). "Learning Relational Clich6s with Contextual Generalization". PhD

Thesis, School of Information Technology and Engineering, University of Ottawa.
7. MORIN, J. AND S. MATWIN (2000). "An Empirical Evaluation of Relational Clich6s used

Within and Across Domains." Submitted.
8. MUGGLETON, S. AND W. BUNTINE (1992). "Machine invention of first-order predicates by

inverting resolution." Inductive Logic Programming, Muggleton S. (eds.), Academic-Press,
261-280.

9. MUGGLETON, S. AND C. FENG (1992). "Efficient Induction of Logic Programs." Inductive

Logic Programming, Muggleton S. (eds.), Academic Press, 281-298.
10. PAZZANI, M. AND D. KIBLER (1992). "The Utility of Knowledge in Inductive Learning."

Machine Learning, 9(1):57-94.

11. PLOTKN, G. (1970). "A note on inductive generalization." Machine Intelligence, Meltzer, B.

and D. Michie (eds.), Edinburg University Press, Edinburg, 5, 153-163.

12. PLOTKIN, G. (1971). "A Further Note on Inductive Generalization." Machine Intelligence,

Meltzer B. and D. Michie (eds.), 6, 101-124, Edinburgh.
13. QUINLAN, R. (1990). "Learning Logical Definitions from Relations." Machine Learning,

5:239-266.

14. RIcHARDs, B. L. AND R. J. MOONEY (1992). "Learning Relations by Pathfinding." Proceed-

ings of the Tenth National Conference on Artificial Intelligence, San Jose, CA, AAAI Press,

50-55.
15. ROUVEmOL, C. (1991). "ITOU: Induction of First Order Theories." Proceedings of the

International Workshop on Inductive Logic Programming, Vienna de Castelo, Portugal,

127-151.

16. SILVERSTEiN, G. AND M. PAZZANI (1991). "Relational ClichEs: Constraining constructive
induction during relational learning." Proceedings of the Eighth International Conference

on Machine Learning, Evanston, Illinois, Morgan Kaufmann, 203-207.



Design of Rough Neurons: Rough Set Foundation and
Petri Net Model

J.F. Peters', A. Skowron2, Z. Suraj3, L. Han', and S. Ramanna'

Computer Engineering, Univ. of Manitoba, Winnipeg, MB R3T 5V6 Canada
2Institute of Mathematics, Warsaw Univ., Banacha 2, 02-097 Warsaw, Poland

3Institute of Mathematics, Pedagogical Univ., Rejtana 16A, 35-310 Rzesz6w, Poland
ljfpeters,liting,ramanna} @ee.umanitoba.ca

Abstract. This paper introduces the design of rough neurons based on rough
sets. Rough neurons instantiate approximate reasoning in assessing knowledge
gleaned from input data. Each neuron constructs upper and lower
approximations as an aid to classifying inputs. The particular form of rough
neuron considered in this paper relies on what is known as a rough membership
function in assessing the accuracy of a classification of input signals. The
architecture of a rough neuron includes one or more input ports which filter
inputs relative to selected bands of values and one or more output ports which
produce measurements of the degree of overlap between an approximation set
and a reference set of values in classifying neural stimuli. A class of Petri nets
called rough Petri nets with guarded transitions is used to model a rough neuron.
An application of rough neural computing is briefly considered in classifying
the waveforms of power system faults. The contribution of this article is the
presentation of a Petri net model which can be used to simulate and analyze
rough neural computations.

1. Introduction

This paper considers the design of a rough neuron, which is based on rough set theory
[1]-[3]. The study of rough neurons is part of a growing number of papers on neural
networks based on rough sets. Rough-fuzzy multilayer perceptrons in knowledge
encoding and classification were introduced in [4]. Rough-fuzzy neural networks
have recently been also used in classifying the waveforms of power system faults [5]-
[6]. Purely rough membership function neural networks were introduced in [7] in the
context of rough sets and the recent introduction of rough membership functions [8].
There are two types of rough neurons: approximation neurons and rule-based decider
neurons. An approximation neuron consists of a number of input ports governed by
filters, a processing element which constructs a rough set, and one or more output
ports which utilizes a rough membership function to compute the degree-of-accuracy
of the approximate knowledge represented by the rough set derived by the neuron.
The notion of an input port filter comes from signal processing. A filter is a device

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 283-291, 2000.
© Springer-Verlag Berlin Heidelberg 2000



284 J.F. Peters et al.

which transmits signals in a selected band of frequencies and rejects (or attenuates)
signals in other bands [9]-[10]. Filters can be calibrated by adjusting the bandwidth
of values, which can stimulate an approximation neuron. The contribution of this
article is the presentation of a Petri net model of a rough neuron which can be used to
simulate and analyze rough neural computations.

This paper is organized as follows. The basic concepts of rough sets,
decision rules and rough membership functions underlying the design of rough
neurons are presented in Section 2. The design of sample rough neurons is also
presented in Section 2. A Petri net model of a rough neuron is given in Section 4.

2. Basic Concepts

A brief introduction to the basic concepts underlying the design of rough membership
function neurons is given in this section.

2.1 Rough Sets

Rough set theory offers a systematic approach to set approximation [1]-[3], [8]. To
begin, let S = (U, A) be an information system where U is a non-empty finite set of
objects and A is a non-empty finite set of attributes where a: U -- Va for every a e

A. For each B c A, there is associated an equivalence relation IndA(B) such that

IndA(B) = {(x,x') E U2 I Va c B. a(x) = a(x')1 (1)

If (x, x) c IndA(B), we say that objects x and x' are indiscernible from each other
relative to attributes from B. The notation [x]B denotes equivalence classes of
IndA(B). For X c U, the set X can be approximated only from information
contained in B by constructing a B-lower and B-upper approximation denoted by fLX

and BX respectively, where BX = { x I [x]B -- X } and

BX = { x I[x]B n X # 0 }. The objects of BX can be classified as members of X

with certainty, while the objects of BX can only be classified as possible members of

X. Let BNB(X) = BX - LX. A set X is rough if BNB(X) is not empty.

2.2 Rough Membership Functions

A rough membership function (rmf) makes it possible to measure the degree that any
specified object with given attribute values belongs to a given set X [8], [16]. A rm

function 'UXB is defined relative to a set of attributes B c A in information system S =

(U, A) and a given set of objects X. The equivalence class [x]B induces a partition of



Design of Rough Neurons: Rough Set Foundation and Petri Net Model 285

the universe. Let B c A, and let X be a set of observations of interest. The degree
of overlap between X and [x], containing x can be quantified with a rmf given in (2):

/uB: U -> [0,1] defined by B (x) - 1[ X X (2)

Itx]BI

2.3 Example Rough Membership Function

A sample rough member function computation is given in this section (see Fig. 1(a)).

jjF n) -[u ],I 1 BF [U]B

11[u]II - 4 L

Fig. 1(a). Sample rmf value Fig. 1(b). Overlapping regions

Let B be a set of attributes of waveforms of power system faults (e.g., bl = phase
current, b2 = maximum phase current, and so on). Let F be a set of fault signal files.
Further, let BF = {f3,f4,f7,f8} be an upper approximation, and let [u]B = {f4, f9, f10,
f 151 be an equivalence class containing files representing a known fault. For
overlapping regions shown in Fig. 1(b), the degree of overlap between BF and [u]B
can be computed as in Fig. 1(a).

2.4 Design of Rough Neurons

Neural networks are collections of massively parallel computation units called
neurons. A neuron is a processing element in a neural network. Two types of rough
neurons have been identified: approximation and decider neurons [7]. Let BX be an
upper approximaton relative a set of attributes B and reference set X. An

approximation neuron Tl computes y =,u1
1 (BX,[u]j). A decider rough neuron

implements a collection of decision rules by (i) constructing a condition vector co
from its inputs which are rm function values (ii) discovering the rule c, => d, with a
condition vector c, which most closely matches an input condition vector c,.p, and (iii)
outputs min(eid) where d, e {0,1 1 and e, = Ilex - c, )lI/IlcII E [0,1]. In cases where d
= 0, then y,,, = min(e,d,) = 0, and the classification is unsuccessful. If d = 1, then Yrle
= min(e,d) = e, indicates the relative error in a successful classification.



286 J.F. Peters et al.

2.5 Sample Rough Neural Network

A high voltage direct current (dc) transmission system connected between ac source
and ac power distribution system has two converters. In the case where the flow of
power is from the ac side to the dc side as in Fig. 2, then a converter acts as a rectifier
in changing ac to dc. The inverter in Fig. 2 converts dc power to ac power at desired
output voltage and frequency. The Dorsey Station in the Manitoba Hydro system, for
example, acts as an inverter in converting dc to ac, which is distributed throughout
North America.

11 coil - coil

Fig. 2. dc Link Between ac Systems

A decision (d) to classify a waveform for a power transmission fault depends on an
assessment of phase current (pc), current setting (cs), maximum phase current (max
pc), ac voltage error (acve), pole line voltage (plvw) and phase current (pcw)
waveforms. A sample commutation failure decision table is given next. In Table 1,
d = 1 {0} indicates that the waveform for a fault represents {does not represent) a
power system failure.

Table 1. Sample Power System Failure Decision Table

acve pc/cs pivw pcw cs max pc d
file 0.059 0.069 0 0.0187 0 0 0
1
file 0.059 0.069 1 0.0187 0.1667 0.0856 1
3

Signal data needed to construct the condition granules in Table 1 come from files
specified in column 1 of the table. Sample discretized rules derived from Table 1
using Rosetta [17] are given in (3) and (4).

plvw([*, 0.750)) AND cs([0.111, *)) AND max-pc([*, 0.043)) => d(no) (3)

plvw([0.750, *)) AND cs([0.111, *)) AND max-pc([0.043, *)) => d(yes) (4)



Design of Rough Neurons: Rough Set Foundation and Petri Net Model 287

(x (x

(X (x ... A7 (X) Fig. 3(b). Appoximation neuron

Fig. 3(a). Partial rough neural network B,F f(BF,[u])

Fig. 3(c). Decider neuron

The basic structure of a rough neural network is given in Fig. 3(a)The decider
neuron in Fig. 3(b) implements rules derived from Table 1. In the network in Fig.
3(a), the parameters to be tuned are represented by B, the set of relevant features.
The goal of tuning is to improve the quality of concept (Fault) approximation.

2.6 Sample Verification

A comparison between the output from a rough neural network used to classify power
system faults relative to 24 fault files and known classification of the sample fault data
is given in Fig 4. In all of the cases considered in Fig. 4, there is a close match
between the target faults and the faults identified the neural network.

3. Petri Net Model of a Rough Neuron

In what follows, it is assumed that the reader is familiar with classical Petri nets [19]
and coloured Petri nets [20]. Rough Petri nets are derived from coloured and
hierarchical Petri nets as well as from rough set theory [21]. A rough Petri net
provides a basis for modeling, simulating and analyzing rough neurons, rough neural
networks, and granular decision systems.

3.1 Rough Petri Nets

A rough Petri net (rPn) is a structure (E P, T, A, N, C, G, E, I, W, 91, ý) where
"* S is a finite set of non-empty data types called color sets.
"* N is a 1-1 node function where N: A -> (P x T) u (T x P).



288 J.F. Peters et al.

"* C is a color function where C: P---Y
"* G is a guard function where G: T --> [0, 1].
"* E is an arc expression function where E: A ---> Set-ofExpressions where E(a) is an

expression of type C(p(a)) and p(a) is the place component of N(a).
"* I is an initialization function where I: P---* Set ofClosedExpressions where I(p) is

an expression of type C(p).
"* W is a set of strengths-of-connections where ý: A -- W.

9Z = { p I p constructs ý e {[rough set structure II

Let U, S, A, d be a set of inputs, information system S, attributes of S, decision d,
respectively. Examples of rough set structures constructed by p from information
granules are the decision system S = (U, A u [d}) and the set OPT(S) of all rules
derived from reducts of a decisions system table for S. Borrowing from coloured
Petri nets, a rough Petri net provides data typing (colour sets) and sets of values of a
specified type for each place. The expression E(p, t) specifies the input associated
with the arc from input place p to transition t, and the expression E(t, p') specifies a
transformation (activity) performed by transition t on its inputs {E(p, t) to produce an
output for place p'.

0.9 ~ ~ ..... I targetnewr upt•.I.

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 C .-..................... ..................... .................
0 5 10 15 20 25

Fig. 4. Sample Verification

3.2 Guarded Transitions

In a rough Petri net, various families of guards can be defined which induce a level-of-
enabling of transitions [21]. Consideration of level-of-enabling stems from guards



Design of Rough Neurons: Rough Set Foundation and Petri Net Model 289

named after Jan Lukasiewicz [22], who inaugurated the study of multivalued logic.
Let U denote a universe of objects, and let X c U. Let X:U ->[0, 1].

Def. 1 Lukasiewicz Guard. A Lukasiewicz guard on transition t with input x is a
higher order propositional function P(X(x)) labeling the transition t with input x and
output ?(x). The guard P(X(x)) = X(x) E (0,1], where 0 < X(x) < 1 enables t.

With one exception, notice that X(x) can be used to model a filter on an input port
of an approximation neuron, since there is interest in preventing input signals with
zero strength from enabling an input transition. To complete the modeling of an
input port filter, a restricted Lukasiewicz guard is needed.

Def. 2 Restricted Lukasiewicz Guard. A restricted Lukasiewicz guard on
transition t with input x is a function P(4(x)) labeling the transition t with input x and
output Xýx). The guard P(X(x)) = X(x) e (0,1], where 0 < 4(x) < 1 enables t.

P(A(x)) rough rmf

filter G B (( ý[U]IB

Fig. 5. Rough Neuron Petri Net Model

3.3 Petri Net Model of a Rough Neuron

Let 1l be an approximation neuron with a single input port p, and single output port p0.

Let X be a set of inputs for TI, B a set of attributes, and k a filter on p, of 1]. Let p be

a procedure which constructs BX, BX and let u' ' (x) compute the output of 11 (see

Fig. 5). The notation ?p indicates a receptor place which is always input ready. The

filter X(x) returns x in cases where ?(x) > 0, X(x) E [a, b] c (0, 1]. The transition
labeled "rough" in Fig. 5 is enabled by the input of signal x and set of attributes B.

When this transition fires, p(x) constructs BX, BX . The availability of BX, BX
and equivalence class [u]B enables the transition labeled "rmf' in Fig. 5. Whenever

the rmf transition fires, " (x) computes the degree of overlap between [u]B and

BX . The advantage in constructing a Petri net model of a rough neuron is facilitates
a number of tests such as reachability of each of the transitions in the model and the
action of the guard modeling a filter on a rough neuron input port.



290 J.F. Peters et al.

4. Concluding Remarks

The basic features in the design of a particular kind of rough neuron called an
approximation neuron are presented in this paper. The introduction of rough neurons
has been motivated by the search for improved means of identifying and classifying
features in a feature space. The output of an approximation neuron is a rough

membership function value, which indicates the degree of overlap between an
approximation region and some other set of interest in a classification effort. A Petri

net model of an approximation neuron has also been given. The guarded transitions
in a rough Petri net make it possible to model a filter on an input port of a rough
neuron. A sample application of these neurons in a power system fault classification
system has been given. Future work will entail a study of a more complete
classification and design of rough neurons.

References

1. Z. Pawlak, Rough sets, Int. J. of Computer and Information Sciences, Vol. 11, 1982, 341-
356.

2. Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning About Data, Boston, MA,
Kluwer Academic Publishers.

3. Z. Pawlak. Reasoning about data--A rough set persepective. Lecture Notes in Artificial
Intelligence 1424, L. Polkowski and A. Skowron (Eds.). Berlin, Springer-Verlag, 1998,
25-34.

4. M. Banerjee, S. Mitra, S.K. Pal, Rough fuzzy MLP: Knowledge encoding and
classification, IEEE Trans. Neural Networks, vol. 9, 1998, 1203-1216.

5. 5 L. Han, J.F. Peters, S. Ramanna, R. Zhai, Classifying faults in high voltage power
systems: A rough-fuzzy neural computational approach. In: N. Zhong, A. Skowron, S.
Ohsuga (Eds.), New Directions in Rough Sets, Data Mining, and Granular-Soft
Computing, Lecture Notes in Artificial Intelligence 1711. Berlin: Springer, 1999, 47-54.

6. L. Han, R. Menzies, J.F. Peters, L. Crowe, High voltage power fault-detection and analysis
system: Design and implementation. Proc. CCECE99, 1253-1258.

7. J.F. Peters, A. Skowron, L. Han, S. Ramanna, Towards rough neural computing based on
rough membership functions: Theory and Application, Rough Sets and Current Trends in
Computing (RSCTC'2000) [submitted].

8. Z. Pawlak, A. Skowron, Rough membership functions. In: R. Yager, M. Fedrizzi, J.
Kacprzyk (Eds.), Advances in the Dempster-Shafer Theory of Evidence, NY, John Wiley
& Sons, 1994, 251-271.

9. A. J. Rosa, Filters (Passive). In: R.C. Dorf (Ed.), The Engineering Handbook. Boca
Raton, FL: CRC Press, Inc., 1996, 1155-1166.

10. P. Bowron, F.W. Stephenson, Active Filters for Communication and Instrumentation.
London: McGraw-Hill Book Co., 1979.

11. W. Pedrycz, J.F. Peters, Learning in fuzzy Petri nets, in Fuzziness in Petri Nets edited by J.
Cardoso and H. Scarpelli. Physica Verlag, a division of Springer Verlag, 1998.



Design of Rough Neurons: Rough Set Foundation and Petri Net Model 291

12 A. Skowron, J. Stepaniuk. Constructive information granules. In: Proc. of the 15th IMACS
World Congress on Scientific Computation, Modelling and Applied Mathematics, Berlin,
Germany, 24-29 August 1997. Artificial Intelligence and Computer Science 4, 1997, 625-
630.

13 A. Skowron, C. Rauszer. The discemability matrices and functions in information systems.
In: Intelligent Decision Support, Handbook of Applications and Advances of the Rough Sets
Theory, Slowinski, R. (Ed.), Dordrecht, Kluwer Academic Publishers, 1992, 331-362.

14 A. Skowron, J. Stepaniuk, Information granules in distributed environment. In: N. Zhong,
A. Skowron, S. Ohsuga (Eds.), New Directions in Rough Sets, Data Mining, and Granular-
Soft Computing, Lecture Notes in Artificial Intelligence 1711. Berlin: Springer, 1999, 357-
365.

15 A. Skowron, J. Stepaniuk. Constructive information granules. In: Proc. of the 15th IMACS
World Congress on Scientific Computation, Modelling and Applied Mathematics, Berlin,
Germany, 24-29 August 1997. Artificial Intelligence and Computer Science 4, 1997, 625-
630.

16 J. Komorowski, Z. Pawlak, L. Polkowski, A. Skowron, Rough sets: A tutorial. In: S.K. Pal,
A. Skowron (Eds.), Rough Fuzzy Hybridization: A New Trend in Decision-Making.
Singapore: Springer-Verlag, 1999, 3-98.

17 Rosetta software system, http://www.idi.ntnu.no/-aleks/rosetta/
18 W. Pedrycz, Computational Intelligence: An Introduction, Boca Raton, CRC Press, 1998.
19 Petri, C.A., 1962, "Kommunikation mit Automaten", Schriften des IIM Nr. 3, Institut ftur

Instrumentelle Mathematik, Bonn, West Germany.
20 Jensen, K., 1992, "Coloured Petri Nets--Basic Concepts, Analysis Methods and Practical

Use 1", Berlin, Springer-Verlag.
21 J.F. Peters, A. Skowron, Z. Surai, S. Ramanna, Guarded transitions in rough Petri nets. In:

Proc. of 7h European Congress on Intelligent Systems & Soft Computing (EUFIT'99), Sept.
1999, Aachen, Germany.

22 J. Lukasiewicz, 0 logice trojwartosciowej, Ruch Filozoficzny 5, 1920, 170-171. See "On
three-valued logic", English translation in L. Borkowski (Ed.), Jan Lukasiewicz: Selected
Works, Amsterdam, North-Holland, 1970, pp. 87-88.



Towards Musical Data Classification
via Wavelet Analysis

Alicja Wieczorkowska

Polish - Japanese Institute of Information Technologies
ul. Koszykowa 86, 02-008 Warsaw, Poland

alicja@pjwstk.waw.pl

Abstract: In order to search through a sound database, information about the
musical contents has to be attached to the file, otherwise the user has to look for
the specific musical information by himself. Wavelet analysis is one of possible
tools that can be used as a basis for automatic classification of musical data. In
this paper, the author presents wavelet-based parameters extracted from sounds
of musical instruments. These parameters have been used as a basis of automatic
classification of musical instrument sounds. Tests evaluating the efficiency of
such parameterization were performed by means of rough set based algorithms
and decision trees. Results of these tests are presented in this paper.

Keywords: Knowledge Discovery and Data Mining, Soft Computing, Sound
Analysis, Musical Sound Classification

1 Introduction

One of the main problems concerning sound databases is how to classify
automatically the musical material, contained in a recording. For instance, if the
information what musical instruments are playing in the piece is not attached to a file,
it is not possible to extract such information automatically. Automatic classification
makes possible automatic labeling of the content of the multimedia data, which is the
aim of ISO/IEC standard MPEG-7 that is under development by MPEG (Moving
Picture Experts Group).

Sounds (even singular sounds) that are to be processed by a classification
algorithm cannot be represented as raw data, i.e. as a set of samples. Objects
processed by a classifier should be described by a set of attributes (the less the better),
so sound data need parameterization before classification. Additionally, since the
same sound may be changed dramatically by musical interpretation and recording
conditions, the appropriate parameterization is necessary as a preprocessing before
classification.

Such a parameterization is based on sound analysis. Sounds can be analyzed both
in temporal and spectral domain, using many methods, such as Fourier transform,
wavelet transform, correlation, cepstral analysis, filtering, statistical methods and so
on [1], [2], [3], [4]. Wavelet transform is especially useful for musical applications,
because this time-frequency analysis divides the spectrum into frequency bands that
are of equal width in a logarithmic scale, what is similar to the human hearing.
Therefore, wavelet analysis can be used as a tool for the classification of musical
instrument sounds and for labeling of the recordings.

Z.W. Ra9 and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 292-300, 2000.
© Springer-Verlag Berlin Heidelberg 2000



Towards Musical Data Classification via Wavelet Analysis 293

The sound parameterization that is appropriate for instrument classification is a
difficult task and usually requires very careful choice of attributes [6], [12]. The
parameterization presented here is quite simple and the set of attributes contains 162
parameters. Many attributes are redundant and soft computing methods have
been used to find the most useful attributes among them. In this paper, presented
results were obtained using decision trees and rough set based methods, but other
classifiers (such as neural networks, k-nearest neighbor etc.) can also be used [5], [9],
[10], [12], [13].

2 Wavelet Analysis and Parameterization of Musical Data

Wavelet analysis applied in the presented work is based on the division of the
spectrum into octave bands, using filter of the second order, proposed by Daubechies
and Coifman (see Fig. 1). The wavelet transform of the function f is performed as a
decomposition of f using a mother wavelet V and a scaling function QO in the
following way [ 11]:

where: <> - inner product,.
j - resolution level,
k - time instant,
{J/jk(t) 2 j2 V2(2j t - k),

qv(t) = g k p( 2 t - k) ,

{Jjk (t) = 2"/2( t - k) I,
qp(t) = -F2 Y hk q(2t - k) ,

gk,, hk - coefficients of highpass and lowpass filters,
gk = (-1)kh,-,

The above analysis gives good frequency resolution and poor time resolution for
low frequency bands, and good time resolution and poor frequency resolution for high
frequency bands.

Singular sound of any instrument can be quite long: it may last for some
seconds, and its timbre may change with time. Since the most important parts of
sound for the recognition by human is the beginning (starting transient, i.e. the attack)
and the middle part of the sound (quasi-steady state), these parts have been taken into
account during parameterization. Sounds from CDs [7], digitally recorded stereo with
sampling frequency 44. 1kHz and 16 bit resolution, have been analyzed (each channel
separately) using wavelet transform with analyzing frame 4096 samples, taken from
the attack and from the quasi-steady state of the sound. The calculated parameters are
based on a part of each frame, containing the coefficient of the greatest energy.
Exemplary result of wavelet analysis of a sound, with the area selected for
parameterization marked by a black frame, is presented in Fig. 2.



294 A. Wieczorkowska

a) c)

S9

b) (ft d)

Fig. 1. Scaling functions (p and mother wavelets V/ for filters of order 2:

(a, b) proposed by Coifman
(c, d) proposed by Daubechies

frequency

to kllt

Time

Fig. 2. Wavelet analysis (Daubechies qo and Iv) of the clarinet sound a3 (1760

Hz),for sampling frequency 44.1 kHz and analyzing frame 4096 Sa;
the darker the area, the grater the magnitude



Towards Musical Data Classification via Wavelet Analysis 295

The parameters calculated on the wavelet analysis are as follows [ 12]:
"* W, ... , W38 - energy of the parameterized spectrum bands for the Daubechies

wavelet of order 2, in the middle of the attack;
W,=E/E, where:

E - overall energy of the parameterized part of the frame; E, - partial energy:
i=23,...,38 - spectral components in the frequency band 11.025-22.05kHz,
i=15, ... ,22 - spectral components in the frequency band 5.5125-11.025kHz,
i= 11....14 - spectral components in the frequency band 5.5125-11.025kHz,
i=9,10 - spectral components in the frequency band 2.75626-5.5125kHz,
i=l....8 - spectral components for lower frequency bands;

"* W 39 ..... W 76 - energy for Daubechies wavelet of order 2, in the middle of the
steady state;

* W77 - position of the middle of the attack, W77 e (0, 1);

* W78 - position of the middle of the steady state, W78 E (0, 1);

SW 79 ..... W,,5 - energy of the parameterized spectrum bands for the Coifman
wavelet of order 2, in the middle of the attack;

Wi=Ei/E, where:
i=100 .... 115 - spectral components in the frequency band 11.025-22.05kHz,
i=929 .... 99 - spectral components in the frequency band 5.5125-11.025kHz,
i=88, ... ,91 - spectral components in the frequency band 5.5125-11.025kHz,
i=86,87 - spectral components in the frequency band 2.75626-5.5125kHz,
i=79,...,85 - spectral component in lower frequency bands;

0 W 116. .... W152 - energy for Coifman wavelet of order 2, in the middle of the steady
state.

The set of parameters presented here is used to describe singular sound of a
musical instrument. The data represent all available sounds of musical scale of the
following instruments:
* bowed string instruments: violin, viola, cello and double bass;
* woodwinds: flute, oboe and clarinet;
* brass: trumpet, trombone, French horn and tuba.

Sounds of these instruments were recorded using various playing techniques,
namely vibrato, pizzicato (when strings are plucked with fingers), with and without
muting.

The investigated data have been grouped into classes in the following ways:
* 18 classes - each class contains objects representing sounds of one instrument,

played using one technique: flute - vibrato, oboe - vibrato, B flat clarinet, C
trumpet, C trumpet - muted, French horn, French horn - muted, tenor trombone,
tenor trombone - muted, tuba, violin - vibrato, violin - pizzicato, viola - vibrato,
viola - pizzicato, cello - vibrato, cello - pizzicato, double bass - vibrato, double
bass - pizzicato;

* 11 classes, containing objects representing sounds of one instruments, played
using various techniques: flute, oboe, B flat clarinet, C trumpet, French horn,
tenor trombone, tuba, violin, viola, cello, double bass;

* 5 classes, containing objects representing sounds of family of instruments, played
with the same technique: woodwinds, brass without muting, brass with muting,
strings vibrato, strings pizzicato;



296 A. Wieczorkowska

* 3 classes, containing objects representing sounds of family of instruments, played
with various techniques: woodwinds, brass, strings;

* 4 classes, representing sounds of instruments played with the same technique:
vibrato (strings, flute, oboe), pizzicato (strings), muting (trumpet, French horn,
trombone), without vibrato or muting (clarinet, brass)

* 3 classes, representing sounds of instruments played with the same technique, but
muting is not extracted into separate class: vibrato (strings, flute, oboe), without
vibrato (clarinet, brass), pizzicato (strings).

The data set contains 1358 objects. The proposed set of parameters is probably
superfluous, but classification algorithms can be applied as a tool of filtration of these
attributes.

3 Classification Algorithms

As it was mentioned in the first section, automatic classification of data can be
performed in many ways. In the described research, classification algorithms have
been used not only to learn classification rules, but also to test the proposed set of
parameters. The author decided to choose decision trees and rough set based
algorithms, because they are quite fast and present the results in a way that is visually
easy to interpret for a user.

Decision trees we use here are all binary, constructed from a root to leaves.
Nodes are labeled with attributes (parameters), chosen by maximal gain ratio criterion
[9]:

Gr = I ,a d where
H(a)

I (a --- d) = H (d) - H (d I a) - information gain for the attribute a and the class d
k

H (d) = ~p(d1 ) -log p(di) - entropy of the class d

I k

H(djIa) =-1p(a1 ) -Ip(di aja) log p(di 1aj)- conditional entropy for dand a
j=i i=i

p(v) - probability of the value v.
Edges are labeled with values of the attribute labeling the parent node. Real value

data are quantized, and optimal cut point c is found on the basis of the entropy
criterion. Attribute values x are divided into 2 sets: x>c and x! c c, and these sets are
used to label the edges. The leaves of the tree represent classes with probability
controlled by a user.

Since objects representing the investigated classes are mixed and some attributes
in the data set are redundant, the created trees have been pruned, which results in the
reduction of their number of attributes, their depth and the number of branches.
Generally speaking, the pruning is driven by the admissible probability of incorrect
classification of new coming objects.



Towards Musical Data Classification via Wavelet Analysis 297

Rough set [8] theory is based on a specific concept of membership function,
describing elements x of a set X. In classical Cantor theory, the membership function

,ux (x) is defined as

XW :0 for xe X
Px(X {for x cX

In rough set theory, we assume preliminary information I(x) about elements

x (= U of the set X c:U . On the basis of the information function I: U -ý 2U such

that (Vx E U) [x E I(x) ], the membership function UXs (X) E [0, 1] is defined as

I card(X r)I(x))
PX W = card I(x)

Rough set based systems allow processing of imprecise or inconsistent data. The
system used in the described research [10] includes quantization of real-value
attributes. The domain of each attribute is divided into intervals of equal width;
number of intervals (10 by default) can be selected by the user.

4 The Experiments

Both decision trees and rough set based systems have been used to extract rules
describing musical instrument data. Exemplary decision tree describing the
investigated data for 18 classes (a part only) is presented below:

W78 <=O0.5661 :
IW132 <= 0.00012145:
IIW88 <= 0.0053521 :
IIIW51 > 0.0047161 : violin pizzicato
IIIW51 <= 0.0047161:
IIIIW10O> 0.00305402 : viola pizzicato
II I O f 1<= 0.00305402:
IIIIIW43 <= 0.00090222:

I II II IW47 <= 0.00113098 : double bass pizzicato
I II II IW47 > 0.00113098 : viola pizzicato

jI W88 > 0.0053521 :
IIIW3 <= 0.000378 1 : viola pizzicato
IIIW3 > 0.000378 1 : violin pizzicato

IW132 >0.00012145:
IIW43 > 0. 117745 : cello pizzicato
I W43 <=0. 117745:
IIIW39 > 0.00088248: trumpet muted

W78 >0.5661
IW78 <= 0.9079:
IIW122 <= 0.388391:
IIIW45 <= 0.594423:



298 A. Wieczorkowska

The attributes in the tree describe both the attack and the steady state of the
sound, using both Daubechies and Coifman wavelet. The root of the tree is labeled by
one of temporal attributes, since this attribute allows easy discernment between
sounds played pizzicato and vibrato. The same attribute labels the trees for each
division of the data into classes.

Apart from decision trees, classification rules in a classical form have also been
extracted for these data, using both C4.5 and DataLogic/R+. The obtained rules are of
various length and accuracy. For example, some rules are based only on singular or
very few attributes:
"* W,, 2 > 0.0008401 => trumpet muted (accuracy 96.7%),
"* W, > 0.9087 A W84 > 0.858949 => flute (accuracy 79.4%),

W W8 •0.5661 A W,1 > 0.400169 => double bass pizzicato (accuracy 85.7%),
* W 43 > 0.117745 A WT8 < 0.5661 A W., > 0.0127438 => cello pizzicato

(accuracy 85.5%).
Some of the obtained rules are longer, for example:

* W1 < 0.0001733AW, < 0.5661^AW, > 0.00026218AW, 2 > 0.00012145 =>
violin pizzicato (accuracy 96.6%),

* W6 < 0.782861AW 3 > 0.00019162AW 4 > 2.133e-05AW2, < 0.00513477 A

W45 > 0.00027319 A 0.00041218 < W4, < 0.678519 A W 77 •- 0.0258 A 0.9079
< W7, < 0.949^AW 85 > 5.832e-05AW 93 > 2.819e-05 => clarinet (accuracy
93.4%),

* WI3 > 5.94e-06 A W 34 < 7.555e-05 A W,1 > 0.00057545 A W59 < 0.00097323
AW_7 < 0.0583A0.5661<W,, < 0.8519^W... >0.56432AW,,, < 0.0369227

=> French horn (accuracy 97.9%),
* W73>5.054e-05AW 74 •<3.476e-05A0.5661<W7 0 •<0.7812AW^W 03 0.00116903

A W2 > 0.380377 => oboe (accuracy 82.0%),
* W2<0.00010887AW5 9 <0.00124617A0.5661< W7 8<0.9087AW.21 > 0.56432

A W,27 > 0.0369227 => trombone (accuracy 96.7%),
* W, < 0.00370801 A W2, < 0.00088872 A W77 > 0.04505 A W, > 0.8276 A W...

< 0.56432 A W,,, < 0.380377 A W,4, < 5.086e-05 => tuba (accuracy
89.9%),

* W,4 < 0.00288078 A W77 > 0.0457 A W7ý > 0.5661 A W,03 > 0.00010219 A W1 2 >
0.56432 A W127 <= 0.0369227 => viola vibrato (accuracy 80.9%),

and so on.
Rules extracted both using DataLogic/R+ and C4.5 contain attributes calculated

by means of both filters, from the attack and steady state of the sound. The
constructed classifiers are based on about 60 attributes.

The obtained trees and rules have been tested, using 70% of the data as a training
set and the remaining 30% as a test set. Rough sets based experiments have been
performed for various settings of DataLogic/R+ [10] and the best results have been
obtained for the following settings: roughness value 0.01, rule precision threshold
0.90, i.e. for quite precise rules. Decision trees have also been created for various
settings of C4.5 [9], with quite good results for standard settings, i.e. with pruning
confidence level 25% (and even better accuracy for the settings adjusted individually
to each data set). The results are presented in Tab. 1.



Towards Musical Data Classification via Wavelet Analysis 299

Tab. 1. Percentage of correct classification for the musical instrument sound data

Data Rough sets Decision trees

18 classes 42.75% 57.9%

11 classes 46.68% 56.8%

5 classes 63.14% 75.8%

3 classes (woodwinds, brass, strings) 69.53% 80.1%

4 classes 70.27% 78.6%

3 classes (vibrato non-vibrato, pizzicato) ,71.01% 79.5%

As we see, the results for decision trees are about 10% better on average, and
obviously all results for 3-5 classes are better than for 11 or 18 classes. These results
are worse than 70% of accuracy obtained for different methods of parameterization,
i.e. not based on wavelet analysis, obtained by the author and another researchers [6],
[12]. But this wavelet-based parameterization is very simple (and can be improved),
whereas other parameterization methods require precise calculation of pitch and very
careful analysis of spectrum of sounds. Additionally, in real recordings we usually
have a sequence of sounds, i.e. a musical phrase, instead of singular sounds.
Therefore, classification of such a phrase can be of higher accuracy. Of course,
additional preprocessing is necessary in real recordings so as to extract singular
sounds of instruments, namely separation of solo instrument from the musical
background, and separation of consequent sounds in a phrase.

5 Conclusions

The contents-based search of audio and video data is one of main goals of multimedia
research nowadays. Therefore, automatic classification of musical sounds is necessary
as a tool of labeling of sound data. Parameterization of sounds that allows efficacious
classification of musical instruments is quite difficult, because the timbre of sound
depends on many circumstances. Additionally, the timbre changes within musical
scale of an instrument, that makes classification (that should be correct independent
on the pitch) even more difficult. That is why such a parameterization has to be done
very carefully, involving quite sophisticated recipes of parameterization.

The next stage of this process is classification of the calculated data. The author
decided to use rough set based algorithms and decision trees, since their outcomes are
easy to interpret and they identify the most useful attributes in the proposed
parameterization. These methods show the number of necessary attributes and allow
evaluation of their importance.



300 A. Wieczorkowska

Wavelet based parameterization described here is very simple, and the results are
somewhat weaker than for more sophisticated methods, based on Fourier analysis and
pitch calculation. Unfortunately, precise pitch extraction is usually elaborated for each
instrument independently, and may introduce octave errors. Wavelet based
parameterization does not require pitch calculation, and after some improvement, can
be quite helpful in classifying musical instrument sounds.

Acknowledgements

This research has been partially performed at the Sound Engineering Department,
Faculty of Electronics, Telecommunications and Informatics at the Technical
University of Gdafisk, and also at the Computer Science Department, School of
Information Technology at University of North Carolina, Charlotte.

References

[1] Ando S., Yamaguchi K., Statistical Study of Spectral Parameters in Musical Instrument
Tones, J. Acoust. Soc. of America, 94, 1, July 1993, 37-45.

[2] Garnett G. E., Music, Signals, and Representations: A Survey, in: De Poli G., Piccialli A.,
Roads C. (ed.), Representations of Musical Signals, MIT Press, Cambridge,
Massachusetts, 1991, 325-369.

[3] Ifeachor E. C., Jervis B. W., Digital signal processing: a practical approach, Addibon-
Wesley Publishing Co., Wokingham, England, 1995.

[4] Kronland-Martinet R., Grossmann A., Application of Time-Frequency and Time-Scale
Methods (Wavelet Transforms) to the Analysis, Synthesis, and Transformation of Natural
Sounds, in: De Poli G., Piccialli A., Roads C. (ed.), Representations of Musical Signals,
MIT Press, Cambridge, Massachusetts, 1991, 45-85.

[5] Kubat M., Bratko I., Michalski R. S., A Review of Machine Learning Methods, in:
Michalski R., Bratko I., Kubat M. (ed.), Machine Learning and Data Mining: Methods
and Applications, John Wiley & Sons Ltd., Chichester 1998.

[6] Martin K. D., Kim Y. E., 2pMU9. Musical instrument identification: A pattern-
recognition approach, Internet: ftp://sound.media.mit.edu/pub/Papers/kdm-asa98.pdf,
presented at the 136th meeting of the Acoustical Society of America, October 13, 1998.

[7] Opolko F., Wapnick J., MUMS - McGill University Master Samples, compact discs,
McGill University, Montreal, Canada, 1987.

[8] Pawlak Z., Hard and Soft Sets, ICS Research Report 10/94, Warsaw University of
Technology, February 1994.

[9] Quinlan J. R., C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers, San
Mateo, California, 1993.

[10] Reduct Systems, Datalogic/R, 1990-95 Reduct Systems Inc., Regina, Saskatchewan,
Canada.

[11] Wolfram Research, Mathematica, Wavelet Explorer, Champaign, Illinois, 1996.
[12] Wieczorkowska A., The recognition efficiency of musical instrument sounds depending

on parameterization and type of a classifier (in Polish), Ph.D. Dissertation, Technical
University of Gdwsk, Gdask, 1999.

[13] Zurada J., "Introduction to Artificial Neural Systems", West Publishing Company, St.
Paul New York - Los Angeles - San Francisco, 1992.



Annotated Hyperresolution for Non-horn
Regular Multiple-Valued Logics*

James J. Lu1 , Neil V. Murray2 , and Erik Rosenthal3

1 Department of Computer Science, Bucknell University, Lewisburg, PA 17837.

U.S.A., jameslu~bucknell. edu
2 Department of Computer Science, State University of New York, Albany, NY

12222, nvmlcs. albany. edu
3 Department of Mathematics, University of New Haven, West Haven, CT 06516,

brodskytcharger .newhaven. edu

Abstract. This paper focuses on non-Horn formulas for the class of
regular signed logics, also known as annotated logics. Resolution-based
inference systems for these logics are not new, but most earlier work has
concentrated on Horn formulas, to which the logic programming para-
digm applies. Here a restriction of annotated resolution and reduction
called annotated hyperresolution is introduced. The new rule is developed
for arbitrary CNF formulas of regular signed logics and is shown to be
complete.
Keywords: Logic for AI, Z3-resolution, hyperresolution, inference,
multiple-valued logic, signed and annotated logic

1 Introduction

Hyperresolution is an example of a theorem proving technique that employs
macro steps. Such inference rules usually impose significant restrictions on what
choices are admissible in the search for a proof. Another important feature is
that only the conclusions of the macro steps are retained, not the conclusions
of the constituent steps. In this paper hyperresolution is extended to a class of
multiple valued logics (MVL's).

Signed logics [13,4] provide a general1 framework for reasoning about MVL's.
They evolved from a variety of work on non-standard computational logics, in-
cluding [2,4,9,11,15,20]. The key is the attachment of signs-subsets of the set
of truth values-to formulas in the MVL. This approach is appealing because it
facilitates the utilization of classical techniques for the analysis of non-standard
logics, reflecting the classical nature of human reasoning. That is, regardless of
the domain of truth values associated with a logic, at the meta-level, humans
interpret statements about the logic to be either true or false.

This paper focuses on the class of regular signed logics. These logics are of
interest in the knowledge representation and logic programming communities
* This research was supported in part by the National Science Foundation under grant

CCR-9731893.
1 Hlhnle, R. and Escalada-Imaz, G. [7] have an excellent survey encompassing deduc-

tive techniques for a wide class of MVL's, including (properly) signed logics.

Z.W. Ra" and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 301-310, 2000.
g Springer-Verlag Berlin Heidelberg 2000



302 J.J. Lu, N.V. Murray, and E. Rosenthal

because they correspond to the class of paraconsistent logics known as annota-
ted logics, introduced by Subrahmanian [19], Blair and Subrahmanian [2], and
Kifer et al. [10,21]. In [13], they were also shown to capture fuzzy logics, but
in this paper, regular signed logics will refer to annotated logics. In most of
the work on annotated logics, the focus has been on Horn sets, widely applied
within logic programming. The inference rule annotated hyperresolution is deve-

loped in this paper for arbitrary regular signed formulas in conjunctive normal
form (CNF). Establishing completeness involves substantive reformulations of
techniques developed for the classical counterparts (see [1,8]).

There has been related work by Sofronie-Stokkermans on adapting hyperre-
solution to logics with truth value sets based on finite distributive lattices [17,
18]. Under these assumptions, signs can be restricted to prime filters and their
complements. This eliminates the need to resolve more than one positive literal
against one negative literal. A similar situation occurs with regular signs when
the truth value set is linearly ordered. Hhhnle has exploited this to obtain re-
solution refinements in [5] and to introduce a version of hyperresolution under
these conditions [6].

The next section is a summary of the basic ideas of signed formulas and
annotated logics. Theorems 1-4 in Section 2.3 were proved in [12]. The main
results are found in Section 3: The pure rule is adapted to signed and annotated
logics in Section 3.1; annotated hyperresolution is developed in Section 3.2.

2 Signed Logics

Detailed descriptions of the basics of signed logics can be found in [15] and
in [13]; the presentation in this section is brief.

Given a language A, let A be a complete lattice of truth values under some
ordering - 2.

A sign is a subset of A, and a signed formula is an expression of the form
S:.F, where S is a sign and F is a formula in A.

To answer arbitrary queries, we represent queries about formulas in A by
formulas in a classical logic As, the language of signed formulas; it is defined
as follows: The literals are signed formulas and the connectives are (classical)
conjunction and disjunction. It should be emphasized that a signed formula
S:7- is a literal in As regardless of the size or complexity of F and thus has no
component parts in the language As. The set of truth values is {true, falsel.
A formula in As is defined to be A-atomic if whenever S: A is a literal in the
formula, then A is an atom in A.

An arbitrary interpretation for As may make an assignment of true or false
to any signed formula (i.e., to any literal) in the usual way. To focus attention
only on those interpretations that relate to the sign in a signed formula, restrict
attention to A-consistent interpretations. An interpretation I over A assigns to

2 As usual, the greatest and least elements of A are denoted T and 1, respectively, and

Sup and Inf denote, respectively, the supremum (least upper bound) and infimum
(greatest lower bound) of a subset of A.



Annotated Hyperresolution 303

each literal, and therefore to each formula YF, a truth value in A, and the corre-
sponding A-consistent interpretation I, is defined by I,(S:.F) = true if I(.F) E S;
Ic(S:.F) = false if I(Y) 0 S.

The annotated hyperresolution rule developed in this paper lifts in the usual
way; attention is mostly restricted to the ground case in this paper.

2.1 Signed Resolution

In this section, we review a method for adapting resolution to signed formulas.
The inference rules 63-resolution, introduced in [13], and annotated hyperresolu-
tion, defined later, are based on a generalized notion of complementary literals,
which is characterized in the next lemma.

Lemma 1. (The Reduction Lemma) Let S1 :A and S 2 :A be A-atomic atoms in
As;thenSl:AAS 2 :A-=A(SInS 2):AandSl:AVS 2 :A=A(S1US 2 ):A. El

Consider a A-atomic formula Y in As in conjunctive normal form (CNF).
Let Cj, 1 < j < r, be clauses in Y" that contain, respectively, A-atomic literals
{Sj:A}. Thus we may write Cj = Kj V {Sj:A}. Then the resolvent R of the Cj's
is defined to be the clause

The rightmost disjunct is called the residue of the resolution; observe that it is
unsatisfiable if its sign is empty and satisfiable if it is not. In the former case, it
may simply be deleted from R.

In clausal resolution systems, merging is crucial. (Consider unsatisfiable clau-
se sets for which the minimal clause size is two.) In this paper, we treat clauses
as sets, and merging is assumed.

Observe that if S C S', and if two clauses are resolved on the literals S: A
and S':A, then the residue will be S:A (after all, S n S' = S), so the clause
containing S: A must entail the resolvent. This proves

Lemma 2. The resolvent produced by resolving on two literals in which the
sign of one contains the sign of the other is entailed by one of its parents. El

2.2 Regular Signed Formulas and Annotated Logics

Let (P; •) be any partially ordered set, and let Q c P. Then TQ = {y c
PJ(]x G Q) x -- y}. Note that TQ is the smallest upset containing Q (see [3]). If
Q is a singleton set {x}, then we simply write Tx. We say that a subset Q of P
is regular if for some x C P, Q = Tx or Q = (Tx)' (the set complement of Tx).
We call x the defining element of the set. In the former case, we call Q positive,
and in the latter negative. Observe that both A and 0 are regular since A = T-'
and 0 = A'. Observe also that if z = Sup{x, y}, then fx n Ty = Tz. A signed



304 J.J. Lu, N.y. Murray, and E. Rosenthal

formula is regular if every sign that occurs in it is regular. Note that we may
assume that no regular signed formulas have any signs of the form (TII)'.

An annotated logic is a signed logic in which only regular signs are allowed.
A regular sign is completely characterized by its defining element, say x, and

its polarity (whether it is positive or negative). A regular signed atom may be
written tx A, while the complement is the set (fx)' :A. Observe that (tx)':
A = "- (Tx : A); that is, the signed atoms are complementary with respect to
A-consistent interpretations. With annotated logics, the most common notation
is Y: x and -~ %7: x. There is no particular advantage of one or the other, and it
is perhaps unfortunate that both have arisen. We will follow the xr: Y convention
when dealing with signed logics and use .F:x for annotated logics.

2.3 Signed Resolution for Annotated Logics

A sound and complete resolution proof procedure was defined for clausal annot-
ated logics in [9]. The procedure contains two inference rules that we will refer
to as annotated resolution and reduction.' These two inference rules correspond
to disjoint instances of signed resolution. Two annotated literals L, and L 2 are
said to be complementary if they have the respective forms A :ii and ~-' (A: p),
where pL > p, and annotated resolution is defined as follows: Given the annotated
clauses (L1 V D1 ) and (L2 V D 2 ), where L, and L 2 are complementary, then
the annotated resolvent of the two clauses on the annotated literals L, and L 2

is D, v D2.
Two clauses can be so resolved only if the annotation of the positive annot-

ated literal that is resolved upon is greater than or equal to the annotation of
the negative literal resolved upon. In that case the two clauses are said to be
resolvable on the annotated literals L, and L2 .

The reduction rule is defined when two occurrences of an atom have positive
signs. Suppose (A:1 LrVE1) and (A: P 2 VE 2 ) are two annotated clauses in which pi
and P~2 are incomparable. Then the annotated clause (A: Supf ps, Pi2 }) VEVE2 is

called a reductant of the two clauses, and we say that the two clauses are reducible
on the annotated literals A: p, and A: P 2 . A reduction step may be required to
produce a positive sign that in turn enables an annotated resolution step.

It is straightforward to see that the two inference rules are both captured
by signed resolution. In particular, annotated resolution corresponds to an ap-
plication of signed resolution (to regular signed clauses) in which the signs of
the selected literals are disjoint. Reduction on the other hand, corresponds to
an application of signed resolution in which the signs of the selected literals are
both positive and thus have a non-empty regular intersection.

Theorem 1. Suppose that YF is a set of annotated clauses and that D is a
deduction of Y using annotated resolution and reduction. Then D is a signed

3 Kifer and Lozinskii refer to their first inference rule simply as resolution. Howe-
ver, since we are working with several resolution rules in this paper, appropriate
adjectives will be used to avoid ambiguity.



Annotated Hyperresolution 305

deduction of F. In particular, if YT is an unsatisfiable set of first order annotated
clauses, then there is a signed refutation of Y. F.

The viewpoint of signed logics provides insight into annotated logics. At the

same time, the restriction to regular signs has practical advantages. The next
theorem, which will be quite useful in Section 3, is an example.

Theorem 2. Suppose Si, ... , S, are regular signs whose intersection is empty,
and suppose that no proper subset of {S,,..., Sn} has an empty intersection.
Then exactly one sign is negative; i.e., for some j, 1 < i S n, Sj = (Txj)', and
for i = j, Si = Txi, where x 1 ,... I A. G1

The intersection of a positive regular sign and a negative regular sign is
regular if and only if it is empty, and two negative signs can have a regular
intersection if and only if one is a subset of the other. In view of Lemma 2, the
latter situation need never be considered, so a signed deduction is defined to be
regular if every sign that appears in the deduction is regular and if no residue
sign is produced by the intersection of two negative signs. The next two theorems
are immediate. Theorem 4 states that the class of regular signed deductions is
precisely the class of deductions using annotated resolution and reduction. As
a result, restricting signed resolution to regular clauses captures annotated re-
solution and reduction without increasing the search space. Deductions obeying
this restriction are called regular.

Theorem 3. A signed deduction of a regular formula is regular if and only if
the sign of every satisfiable residue is produced by the intersection of two positive
regular signs. 11

Theorem 4. Let ED be a sequence of annotated clauses. Then D is an annotated
deduction if and only if E) is a regular signed deduction.

It follows from the theorem that regular signed resolution is complete.
Corollary. Suppose Y is an unsatisfiable set of regular signed clauses. Then
there is a regular signed deduction of the empty clause from Y.

3 Regular Signed Deduction with Non-horn Sets

The ideas described in Section 2.3 were employed in [12] to develop li-resolution
for annotated logic programs. One nice feature of li-resolution is that it allows
simple SLD-style proof procedures for annotated logic programs over a large
class of lattices. It does so eliminating the expensive reduction rule, yet it does
not require irregular deductions. Moreover, for any deduction using annotated
resolution and reduction, there is a corresponding deduction using li-resolution
that is at least as short.

These advantages apply to the logic programming paradigm. In this paper,
the more general non-Horn setting is addressed. Every deduced clause is cached,
subject perhaps to certain deletion strategies. We begin by adapting the notion
of purity from classical logic to signed and annotated logics.



306 J.J. Lu, N.V. Murray, and E. Rosenthal

3.1 Purity

Adapting the notion of purity to signed and annotated logics is not completely
straightforward. In classical logic, a literal in a set of clauses is said to be pure
if its complement does not occur in any other clause. In that case, the clause
containing the pure literal is also said to be pure.4

The literal set (conjunction) L = {S : A, S2: A,..., Sm A} is unsatisfiable
if (nf I So) = 0; L is minimally unsatisfiable if the removal of any literal from
L produces a satisfiable set. A literal in a set S of clauses is pure if it does
not belong to any minimally unsatisfiable set of literals in which distinct literals
occur in distinct clauses. In that case, the clause containing the pure literal is
also said to be pure.

Observe that it is necessary to include minimally unsatisfiable in the defini-
tion: It is possible for {l} U L to be unsatisfiable but for 1 not to be in any
minimally unsatisfiable subset. A trivial example is for L to be any unsatisfiable
literal set and for 1 to be A :A. (In essence, I is the constant true.) Looked at
another way, the definition assures that if 1 is not pure, its removal makes some
unsatisfiable literal set in which it resides satisfiable.

Lemma 3 (Signed Pure Rule). Let S be a set of signed clauses in which
the clause C contains pure literal S : A. Then S is unsatisfiable if and only if
S' = S - {C} is unsatisfiable. Li

For annotated logics, the literal set L = {A : x1 ,A : x 2 ,. .. ,A : x,

"A : -m+l,...," A : Xm+r} is unsatisfiable if m, r > 0 and, for some j,

m + 1 •< < rn + r, Sup{xi,.. . , x,} 2> xj. Then L is minimally unsatisfiable
if the removal of any member of L results in a satisfiable literal set. In light of
Theorem 2, r = 1 for any minimally unsatisfiable annotated literal set.

A literal in a set S of annotated clauses is said to be pure if it does not belong
to any minimally unsatisfiable set of literals in which distinct literals occur in
distinct clauses. In that case, the clause containing the pure literal is also said
to be pure.

Lemma 4 (Annotated Pure Rule). Let S be a set of annotated clauses in
which the clause C contains the pure literal 1. Then S is unsatisfiable if and only
if S' = S - {C} is unsatisfiable. EL

The next lemma is useful in proving the completeness of annotated hyperre-
solution (Section 3.2).

Lemma 5. Let S = {Co, C1, C2, . . ., Ck be a minimally unsatisfiable set of
annotated clauses (i.e., no proper subset of S is unsatisfiable), and suppose
Co = {l} U {ll, 12,..., 1,J, n > 0. Obtain S' from S by deleting every occurrence
of I in S. Then S' is unsatisfiable, and every minimally unsatisfiable subset of
S' contains C06 {l=,... , 1,}. El

4 The pure rule states that a set of clauses is unsatisfiable iff the set with all pure
clauses removed is unsatisfiable. This rule does extend to signed logics, but the
definition of purity must be properly formulated: A literal in a clause might not be
pure even though no other clause contains a complementary literal.



Annotated Hyperresolution 307

3.2 Annotated Hyperresolution

Recall that annotated resolution consists of two inference rules, annotated reso-
lution and reduction. Both of these are special cases of signed resolution restric-
ted to regular signs. The annotated hyperresolution rule defined below can be
thought of as a single rule that executes several regular signed resolution steps
at once.

Let S be a set of annotated clauses. Clauses are defined to be positive or
negative as they are for hyperresolution in classical logic 5: A clause is positive
if it does not contain any negative literals, and it is negative if it contains at
least one negative literal. Note that if S is unsatisfiable, it must contain at least
one clause with only negative literals and at least one clause with only positive
literals.

Nucleus and satellite clauses are required to define annotated hyperresolu-
tion, as they are in the classical case. However, the definitions are a bit more
complicated for the annotated case. Let

N = (uk=1  -bk: Pk) U C

be a negative clause in S, where C is positive, and select sets of positive clauses
31,132, ..., Bn as follows.

For 1 < k < n, Bk = {Bkl,Bk2,...,Bknk}, where bk : /kt E Bkt, and

P'k 5 Sup{/3kl,... , 3 knk}; let k = Sup{13kl,... ,3k-k}. Intuitively, for each
Sbk : tk E N, Bk consists of nk positive clauses, and each clause contains
an annotated atom of the form bk :/3kt. Furthermore, the members of Bk can be
used to form a reductant BRf containing the annotated atom bk :/3k, and this
reductant resolves against the literal -- bk:/k in the nucleus clause.

It turns out that the following additional condition, which further restricts
the search, is useful: For any bV 3' G Bkt - {bk : /kt}, bV /3' z,4 bj : f3j, 1 <
j < n, 1 < I < nj; b': •' is not one of the atoms contributing to the residue of
some B•. (Intuitively, all such atoms are ideally resolved away by , bk :/lk, and
we prohibit them from being reintroduced by other satellites.) This condition is
referred to as the satellite redundancy condition in the proof of Theorem 6.

Then the clause

((U' l(B' -{bk:3k})) UC

is the annotated hyperresolvent of the nucleus clause N and the satellite clauses
Bll, B1,21,...,7Bnn, .

Obviously, R is a positive clause. That R can be soundly inferred from N
and the Bk's can easily be seen by noting that a sequence of binary annotated
resolutions between N and the B's produces R (and the BR's are the result of
a sequence of reductions). Semantically, any interpretation I that satisfies the
parent clauses either satisfies one literal in C (and thus R) or satisfies some
Sbk : Pk. But then I falsifies bk : Pk and thus falsifies bk : /k as well. Hence,
some bk : /3kj is falsified in Bkj. Since Bkj is satisfied by I, so is some literal in
Bkj {bk :/Okj}, i.e., some literal in R. This proves
5 This is Robinson's original terminology [16]; others have used mixed and negative

to describe non-positive clauses



308 J.J. Lu, N.V. Murray, and E. Rosenthal

Theorem 5. Annotated Hyperresolution is a sound rule of inference for annot-
ated logic. El

Consider an example over the lattice SIX, which is a six element lattice
containing two chains: 1 < It < t < T and 1 < If < f < T.

Suppose we have the following unsatisfiable set of annotated clauses: (1) {p:
t, -q q:T, - r r:t, - ss:f}, (2) {q:It, p:f}, (3) {q:If}, (4) {r:t},
(5) {s:t, p:t}, (6) {s:lf}, (7) {1-p:It}, and (8) {1-p:1f}.

An annotated hyperresolution proof is obtained by using clause (1) as nucleus
for satellites (2) through (6) to produce p: t V p: f. It then serves as the only
required satellite in the remainder of the deduction, in which clauses (7) and (8)
serve as nuclei.

Annotated hyperresolution is complete; the proof is not trivial.

Theorem 6. Annotated hyperresolution is refutation complete for propositio-
nal annotated logic.

Proof. Let S = {C1, C2,. .. , Cm} be an unsatisfiable set of annotated clauses.
Assume that S is minimally unsatisfiable; otherwise, restrict attention to a mi-
nimally unsatisfiable subset. We must show that there is a refutation of S using
annotated hyperresolution.

Proceed by induction on the number n of literal occurrences in S. If there
are none, then S is {0}, and we are done. Note that S cannot contain exactly
one literal occurrence.

So suppose that all minimally unsatisfiable annotated clause sets with at
most n literal occurrences can be refuted with annotated hyperresolution, and
assume that S has size n + 1. Let q be a predicate occurring in S. Note that
since S is minimal, the Pure Rule implies that q cannot be pure, so there are
minimally unsatisfiable literal sets, whose members have q as the predicate and
are taken from distinct clauses.

Consider the set {q: xi, q: x2,..., q : x,+} of all positive q-literals in S. We
shall first show that for each i, 1 < i < r+, the unit clause {q: xiI} can be derived
by annotated hyperresolution. To do so, remove all occurrences of q : xi from S
to produce S•. This formula is unsatisfiable by Lemma 5. Consider a minimally
unsatisfiable subset; by the same lemma, every clause that came from a clause
in S containing q : xi is in this set. Since the number of literals in St is at most
n, the induction hypothesis applies, and there is a refutation 7zqi by annotated
hyperresolution.

Now apply that refutation to S; that is, construct a deduction in S by doing
the identical annotated hyperresolution steps with the exception that each dele-
ted q:xi is included. Observe that the effect is that whenever a clause, whether
nucleus or a satellite, contains q: xi, that literal is added to the resolvent. Note
also that the satellite redundancy condition is obeyed: Satellites do not reintro-
duce any of the positive literals that, collectively, resolve against the negative
nucleus literal. The deduction in S' has this property by the induction hypothe-
sis, and q:xi does not occur in S'.

Call the resulting deduction (it may no longer be a refutation) 7zq/ which,
with merging, may produce the unit clause {q: xi} rather than the empty clause.



Annotated Hyperresolution 309

Nevertheless, each step is an annotated hyperresolution step. The reason is that
by reintroducing positive occurrences of q: xi, the status of all clauses as nucleus
or as satellite in an inference step is unchanged. Thus each of the r+ unit clauses
{q:xj}, 1 < i < r+ may be derived with annotated hyperresolution.

Consider the negative occurrences - q: yj, 1 < j < r- of q in S. Note that,
since none is pure, Sup{xi,...,x'+} I> yj,1 < j < r-. (Otherwise, - q:yj
would not be in an unsatisfiable literal set.) Thus some subset of the positive
units {q : X, ... ,q : xr+} will suffice to resolve away any particular negative
literal containing q.

Now delete from S all occurrences of - q : yj for some j. The resulting
formula is unsatisfiable, and a refutation IZ-qj by annotated hyperresolution
can be found. Let the proof that results from applying IZ-q, to S be denoted by
l'Zqj. This proof yields either the empty clause or the unit {f q :yj }. However,
it may fail to be an annotated hyperresolution proof in two ways. Reintroducing
S qj :yj into a clause may add to the negative literals in a nucleus clause or
may convert a positive (satellite) clause into a negative cause. In the first case,
the nucleus would have a negative literal not resolved away, and in the second
case, a clause that cannot act as a satellite would be produced. In either case, an
annotated hyperresolution proof can be constructed from lT-q. using the units
{q:xi} produced by the deductions IZ',, as we show below.

Suppose first that a step in R-~qj with nucleus N = {f bi : Yl,..., - bn
Yn, cl, ... , Cm} adds q :yj to N. As noted earlier, some subset of the derived
unit clauses {q: xi} resolve away - q: yj. Employing these units as additional
satellites results in an annotated hyperresolution step in which the deduced
(positive) clause is exactly the same as in 7IZq,.

Suppose now that - qj : yj is added to a satellite clause B, producing a
negative clause B' with one negative literal. If B' is used as a nucleus clause,
and if the derived unit clauses that resolve away - qj : yj are used as satellite
clauses, then B is the annotated hyperresolvent. Note that this construction
assures that the last step that produced - q : yj in RZqj now produces the
empty clause.

Again the satellite redundancy condition is obeyed; in 7
Z-qj by the induction

hypothesis, and in 7Vtq. since the only changes introduced involve additional
collections of unit satellites.

Finally, combining the deductions 7Z'. and the modified deduction 7Z-q. pro-
duces -the required annotated hyperresolution refutation. 0

References

1. Anderson, R. and Bledsoe, W. A linear format for resolution with merging and a
new technique for establishing completeness, J. ACM 17(3) (1970), 525-534.

2. Blair, H.A. and Subrahmanian, V.S., Paraconsistent logic programming, Theoreti-
cal Computer Science, 68:135-154, 1989.

3. Davey, B.A., and Priestley, H.A., Introduction to Lattices and Order, Cambridge
Mathematical Textbooks, (1990)

4. Hihnle, R., Automated Deduction in Multiple-Valued Logics, International Series
of Monographs on Computer Science, vol. 10. Oxford University Press, 1993.



310 J.J. Lu, N.V. Murray, and E. Rosenthal

5. H~hnle, R., Exploiting data dependencies in many-valued logics, Journal of Applied

Non-Classical Logics 6(1): 49-69, 1996.
6. H~hnle, R., Transformation between signed and classical clause logic, Proceedings

of ISMVL-g9, 248-255, 1999.
7. H~hnle, R. and Escalada-Imaz, C., Deduction in many-valued logics: a survey,

Mathware •d Soft Computing, IV(2), 69-97, 1997.

8. H~hnle, R., Murray, N.V. and Rosenthal E., Some Remarks on Completeness,
Connection Graph Resolution and Link Deletion, In Proceedings of the Internatio-

nal Conference TABLEA UX'98 - Analytic Tableaux and Related Methods, Oister-
wijk, The Netherlands, May 1998. In Lecture Notes in Artificial Intelligence (H. de

Swart, Ed.), Springer-Verlag, Vol. 1397, 172-186.

S9. Kifer, M., and Lozinskii, E., A logic for reasoning with inconsistency, J. of Auto-

mated Reasoning 9, 179-215, 1992.
10. Kifer, M., and Lozinskii, E.L., RI: A Logic for Reasoning in Inconsistency, Procee-

dings of the Fourth Symposium of Logic in Computer Science, Asilomar, 253-262,

1989.
11. Kifer, M., and Subrahmanian, V.S., Theory of generalized annotated logic pro-

gramming and its applications, the J. of Logic Programming 12, 335-367, 1992.
12. Leach, S.M., Lu, J.J., Murray, N.V., and Rosenthal, E., LI-resolution: an inference

for regular multiple-valued logics. Proceedings of JELIA '98. IBFI Schloss Dagstuhl
(International Conference and Research Center for Computer Science), October

1998. In Lecture Notes in Artificial Intelligence, Springer-Verlag, Vol. 1489, 154-

168.
13. Lu, J.J., Murray, N.V., and Rosenthal, E., A Framework for Automated Reasoning

in Multiple-Valued Logics, J. of Automated Reasoning 21,1 39-67, 1998.
14. Murray, N.V., and Rosenthal, E., Improving tableaux deductions in multiple-valued

logic, Proceedings of the 2 1 st International Symposium on Multiple- Valued Logic,

Victoria, B.C., Canada, May 26-29, 1991, 230-237.
15. Murray, N.V., and Rosenthal, E., Adapting classical inference techniques to

multiple-valued logics using signed formulas, Fundamenta Informaticae 21:237-

253, 1994.
16. Robinson, J.A., Automatic deduction with hyper-resolution, International Journal

of Computer Mathematics, 1 (1965), 227-234.

17. Sofronie-Stokkermans, V., On translation of finitely-valued logics to classical first-
order logic, Proceedings of the 13th ECAI, 1998.

18. Sofronie-Stokkermans, V., Automated theorem proving by resolution for finitely-
valued logics based on distributive lattices with operators, Multiple Valued Logic

Journal, to appear.
19. Subrahmanian, V.S., On the Semantics of Quantitative Logic Programs, in: Pro-

ceedings of the •th IEEE Symposium on Logic Programming, Computer Society
Press, 1987.

20. Subrahmanian, V.S., Paraconsistent Disjunctive Databases, Theoretical Computer
Science, 93, 115-141, 1992.

21. Thirunarayan, K., and Kifer, M., A Theory of Nonmonotonic Inheritance Based
on Annotated Logic, Artificial Intelligence, 60(1):23-50, 1993.



Fundamental Properties on Axioms of Kleene Algebra

Tomoko Ninomiyal and Masao Mukaidono 2

1 Tamagawa University, Dept. of English and American
6-1-1 Tamagawagakuen, Machida-Shi, Japan

ninomiya@ lit.tamaeawa.acJp
2 Meiji University, Dept. of Computer Science
1-1-1 Higashimita, Tama-Ku, Kawasaki-Shi, Japan

masao@cs.meiji.ac.jp

Abstract. The research works on axioms of Kleene algebra are surveyed and
the fundamental properties of axioms of Kleene algebra are clarified through
the method of indeterminate coefficients.. Especially the algorithm for checking
a given axiom of Kleene algebra is independent or not from the other axioms is
shown. Finally, all finite models of Kleene algebra of 8 elements are derived as
an example.

1 Introduction

Kleene algebra was firstly proposed and investigated by J. A. Kalmann(1 ) under the
name of "a normal i-lattice", and in the book of R. Balbes and P. Dwinger(2) it was
described that the name "Kleene algebra" was found in the paper of D. Brignole and
A. Monteiro(3 ).

On the other hand, after fuzzy logic was proposed by L. A. Zadeh(4) to treat
ambiguous states or phenomena exist in the real world, many researchers investigated
the algebraic structures of fuzzy logic. Almost all of them characterized the fuzzy
logic as De Morgan algebra. Among them, only F. P. Preparata and R. T. Yeh(5) and
M. Mukaidono(6) pointed out that Kleene's law (- a v a) > (- b e b) holds in fuzzy
logic. In such situations, M. Mukaidono(7) declared firstly that fuzzy logic is a model
of "Kleene algebra" and found out the independent and complete axioms for Kleene
algebra, and after that he clarified the canonical forms of free Kleene algebra under
the name of fuzzy switching functions")-("°0 (some times in the literatures this algebra
was called also as "fuzzy algebra" or "soft algebra"). Kleene algebra is a weaker
algebra than Boolean algebra and a stronger algebra than De Morgan algebra because
Kleene algebra is De Morgan algebra satisfying Kleene's laws and Kleene's laws are
weaker version of the law of excluded middle that is the essential law in Boolean
algebra. It was already shown that Kleene algebra is essentially 3-valued(2),'(0).

Recently, Kleene algebra appears in many fields and plays essential roles to
represent ambiguous or uncertainty states especially in the field of intelligent systems.
In this paper the research works on axioms of Kleene algebra are surveyed and the
fundamental properties of axioms of Kleene algebra are clarified through the method

Z.W. Ra8 and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 311-320, 2000.
© Springer-Verlag Berlin Heidelberg 2000



312 T. Ninomiya and M. Mukaidono

of indeterminate coefficients 11 ), where the method of indeterminate coefficients is a
strong tool to derive all finite models satisfying the given a set of all axioms.
Especially we show a given axiom of Kleene algebra is independent or not from the
other axioms, and through these investigations we can clarify the properties of each
axiom of Kleene algebra and a set of independent and complete axioms of Kleene
algebra is shown. Finally, all finite models of Kleene algebra, for the number of
elements being 8 are derived as an example.

2 Axioms of Kleene Algebra

In the fuzzy theory•4 ) , at first, three kinds of set operations A U B,A r) B and Ac are
defined as follows:

/AuB (a) = P
1 A (a) V JUB (a)

/-PArB (a) = P
1 A (a) - /1 B (a)

'"AC ka) :- P
11A (a),

where ,PA (a) and /tB (a) are membership values for an element a to belong to
the fuzzy set A and B, respectively, and take any values of the unit interval [0,1], and
v, * and - are logic operations and defined as

[Definition 1]
a v b=max(a, b)
a 9 b=min(a, b)
-a= 1-a
where a, b are elements of [0,1].

The logic operations v and e in Definition 1 are afterward generalized into t-
conorm and t-norm, respectively, but the above definitions of logic operations
OR( v), AND( *) and NOT(-)are always fundamental and essential in fuzzy logic.

It is easily shown that the above definitions of a set of logic operations '{ v, 9, -1
satisfy the following equalities listed in Table 1 in the closed interval [0,1].

If an algebraic system satisfies the equations [1]-[4] then it is a lattice, if the
equations [1]-[7] then it is a bounded distributed lattice, and if the equations [1] -[9]
then it is De Morgan algebra.

[Definition 2] The bounded distributive lattice satisfying [8], [9] and [10] is called
Kleene algebra.

That is, Kleene algebra is De Morgan algebra satisfying [10]Kleene's laws, where
Kleene's laws are weaker conditions of

[10]' The Complementary laws: -a 9 a=0, -a v a=l.
The above complementary laws correspond to the law of excluded middle and the

law of contradiction, which are essential parts of Boolean algebra or two-valued logic.



Fundamental Properties on Axioms of Kleene Algebra 313

Table 1. Axioms of Kleene Algebra

[1]Commutative laws: a V b=b v a ---- [1-1], a 9 b=b e a ----------- [1-2]
[2]Idempotent laws: a V a=a ----------- [2-1], a* a=a ------------- [2-2]
[3]Absorption laws: a V (a 0 b)=a ----- [3-11, a 0 (a v b)=a ---------- [3-2]
[4]Associative laws: a V (b V c)=(a v b) v c-[4-1], a* (b * c)=(a * b)o c ---- [4-2]
[5]Distributive laws: a 0 (b V c)=(a 0 b) V (a a c)-[5-1], a V (b * c)=(a V b) 0 (a v c)- [5-2]
[6]The least element: 0 V a=a ------- [6-1], 0 0 a0 -------------- [6-2]
[7]The greatest element:l V a-- .I----- [7-1], 1 * a=a--------------- [7-2]
[8]Double negations law: -(-a)=a ----- [8]
[9]De Morgan's laws: -(av b)= -ae--b- [9-1], -(as b)= -aV -b ------- [9-2]
[10] Kleene's laws 1 (-a v a) v (-b * b)=-a v a -[10-1],

(-a V a) o (-b 9 b)=-b o b-- [10-2]

where a, be [0,1].
[Theorem 1] An algebra of fuzzy logic <[0,1], v, e, ->is Kleene algebra.

3 A Finite Model Showing an Axiom Being Independent from
Others

One of the interesting problems concerning the above axioms of Kleene algebra is
whether each axiom is independent or not from the others in the set of axioms. This
problem was considered firstly by M. Mukaidono(7) and he showed a set of axioms of
Kleene algebra in which each axiom is independent from the others. Recently, this
problem was investigated again in more thoroughly by the authors( 12) by using the
method of indeterminate coefficients("). Here in this paper we will explain this topic
in more detail. Before that, we have to explain what is the method of indeterminate
coefficients. The method of indeterminate coefficients was developed firstly by M.
Goto (11) to find out many-valued truth tables for undefined operators in axioms by a
computer. In axioms of an algebra described by equations, in general, there are some
operators in the equations such as v, *, -. In the method of indeterminate
coefficients, these operators are regarded as undefined and the axioms are regarded as
constrained conditions that these operators should be satisfied. As an output, the
algorithm based on the method of indeterminate coefficients gives truth tables of
operators, that is, finite models of the algebra that satisfy all given axioms. In finding
finite models, at first, we have to designate the number N of elements (corresponds to
the number of truth values in N valued logic) in the model.

[The algorithm based on the method of indeterminate coefficients]
Input:
(1) N: number of elements
(2) A set of axioms
Output:
Truth tables of undefined operators satisfying all given axioms



314 T. Ninomiya and M. Mukaidono

The method of indeterminate coefficients is described briefly in appendix. If you
are interested in the algorithm in more detail, please see the reference (11) or (12).

[Example]
Input:
(1) N=3
(2)[2-1]Idempotent law: a v a=a
Output:
Table 2:

Table 2. avb
a 1 2 0

b I
1 i 1 * *

2 * 2
0 I * , 0

In the above example, we designate the number of truth values as 3, that is,
{0,1,2}, and a set of axioms as only one equation of the idempotent law: a v a=a. We
obtain one solution as shown in Table 2. Here please notice that in the table there are
symbols * which means don't care, that is, any element of {0,1,2} is admissible in *.
In this sense, the number of solution is only one but the number of truth tables (finite
models) satisfying the idempotent law is 3x3x3x3x3x3=729 in three-valued because
the number of * is 6 in Table 2.

By using the method of indeterminate coefficients we can clarify the properties and
the power of each axiom to determine the solutions. Especially, we can examine
whether an axiom is independent or not from the other axioms. That is, at first we
obtain the truth tables satisfying the other axioms and finally we add the given axiom
and obtain the truth tables again satisfying all axioms. If the number of truth tables is
reduced, it is proofed that the given axiom is independent from the other axioms and
one of the disappeared truth tables is an example (a finite model) that shows the given
axiom is independent from the others. Every one of the disappeared truth tables is a
counter example showing the axiom is independent.

3-1 Double Negations Law Is Independent

At first we show that
[8]Double negations law: -(-a)=a ----- [8]
is independent from the others. In Table 3, the number of solutions satisfying all
axioms before the axiom including it self is listed in turn when N=3. The upper line
shows the axiom number and the lower line shows the number of solutions that satisfy
the axiom with all axioms before that. Although the order of axioms to be examined is
appropriate in principle, it is selected such that the number of solutions does not
become so huge on the way in practice. Please notice again the numbers in the lower
line are of solutions and not of truth tables. The final solution is obtained as only one
solution which is a truth table described in Table 4, which is only one three valued



Fundamental Properties on Axioms of Kleene Algebra 315

model of Kleene algebra. In Table 3 until the axiom [10-2] there exist 10 solutions,
but at the axiom[8], 9 solutions have disappeared, all of which are models showing
[8] Double negations law is independent from the others. Table 5 is one example of
them, that is, this truth table satisfies all axioms of a set axioms of Kleene algebra
except [8] Double negations law.

Table 3. Solutions of [8]Double negations law in three valued
Axiom # [6-11 [7-1] [9-1] [3-1] [2-1] [4-1] [5-11 [10-1] [1-1] [1-2]

N.ofsolut. 1 1 316 435034532033 287 173 107 25
[4-2] [3-2] [5-2] [2-2] [9-2] [6-2] [7-2] [10-21 [8]
24 10 10 10 10 10 10 10 1

Table 4. A model of Kleene algebra in Table 5. A model showing [8] double
three valued negations law is independent

a120 a120 a120 a 120
b I --------- b I --------- al b I -------- b I -------- al
1 11 1 1 1 11 2 0 110 1 11 1 1 1 11 2 0 Ill
2 1122 2 1220 212 2 1122 2 1220 211
0 1120 0 1000 Ol 0 1120 0 1000 Ol

avb aeb -a avb aeb -a

3-2 De Morgan's Laws Are Independent

To show one of
[9]De Morgan's laws: -(a v b)= -a *-b---[9-1]

-(a • b)= -a v -b---[9-2]
is independent from others, we will choose [9-1] as the last axiom and apply the
algorithm of the method of indeterminate coefficients. If let N=3,that is three valued,
then we can get the result shown in Table 6. In this case the truth table is decided
uniquely at the axiom [1-2], which means that we cannot decide [9-1]De Morgan's
laws is independent or not from the other axioms in the scope of three valued. In
general, even if the number of solution is not decreased at the final stage in N valued,
it is not proof that the last axiom is not independent from the set of former axioms
because we have a possibility to find out a counter example in the N+ 1 valued. Indeed
in this case letting N=4, we can show that [9-1]De Morgan's law -(a v b)= -a •-b is
independent as shown in Table 7. An example of truth tables disappeared lastly in
Table 7 is shown in Table 8, which is a model showing that [9-1]De Morgan's laws is
independent. The situation is same if [9-2]De Morgan's law: -(ao b)= -a v -b is
located lastly instead of [9-1]De Morgan's law -(a v b)= -as -b.

Table 6. Solution of [9-1]De Morgan's law in three valued
Axiom# [8] [6-1] [7-11 [1-1] [10-1] [3-2] [5-1] [1-2] [4-1] [3-1]
N.of solut. 4 4 4 12 52 5 10 1 1 1

[2-1] [4-2] [5-2] [2-2] [10-2] [6-2] [7-2] [9-1]
1 1 1 1 1 1 1 1



316 T. Ninomiya and M. Mukaidono

Table 7. Solution of [9-1]De Morgan's law in four valued
Axiom # [8] [6-1] [7-1] [1-1] [10-1] [3-2] [5-1] [1-2] [4-1] [3-1]
N.ofsolut. 0 10 10 640 9490 985 984 5 5 5

[2-1] [4-2] [5-2] [2-2] [10-2] [6-2] [7-2] [9-1]
5 5 5 5 5 5 5 3

Table 8. A model showing [9-1]De Morgan's law is independent
a 1 2 3 0 al 2 3 0

b --------------------- b ------------ a
1 1 1 1 1 1 1 2 3 0 112
2 1 2 3 2 2 12 2 2 0 211
3 1 3 33 3 13 2 3 0 310
0 1 2 3 0 0 10 0 0 0 013
avb aeb -a

3-3 Commutative, Distributive and Kleenes, Laws Are Independent

In the similar manner we can show that each one of
Commutative laws: a v b=bva -------- [1-1]

aeb=bea --------- [1-2]
Distributive laws: a * (b v c)=(a * b) v (a 9 c)---[5- 1]

a v (b o c)=(a v b) * (a v c)---[5-2], and
Kleene's laws: (-a v a) v (-b o b)=-a v a---[10-1]

(-av a)o (-B ob)= -bo b---[10-2]
is independent from others, respectively. In fact, Table 9 is a model showing that [1-
1]Commutative law is, Table 10 is a model showing that [5-1]Distributive law is and
Table 11 is a model showing that [10-1]Kleene's law is independent, respectively.
The situations are same for [1-2]Commutative law:a *b=b *a, [5-2]Distributive law:
av (be c)=(av b) * (a v c) and [10-2]Kleene's law (-av a) o (-b * b)=-b & b,
respectively.

Table 9. A model showing [1-1]Commutative law is independent
a 1 2 3 0 a 1 2 3 0

b I ----------- b ------------- a
1 1 1 1 1 1 1 2 3 0 110
2 1 2 2 2 2 1 2 3 0 213
3I 1 2 3 0 3 13 3 3 3 312
0 1 2 3 0 01 0 0 0 01

avb aeb -a



Fundamental Properties on Axioms of Kleene Algebra 317

Table 10 A model showing [5- 1]Distributive law is independent
a 1 2 3 4 0 al 2 3 4 0

b --------------------- b -------------------- al
1 1 1 1 1 1 1 1 2 3 4 0 110
2 1 2 1 1 2 2 2 2 0 0 0 214
3 1 1 3 1 3 3 13 0 3 0 0 313
4 1 1 1 4 4 4 14 0 0 4 0 412
0 1 2 3 4 0 0 10 0 0 0 0 011

avb aeb -a

Table 11 A model showing [10-1] Kleene's law is independent
a 1 2 3 0 al 2 3 0

b - ----------- -b I------------ al
1 1 1 1 1 1 11 2 3 0 110
2 1 2 1 2 2 12 2 0 0 213
3 1 1 3 3 3 13 0 3 0 312
0 1 2 3 0 0 10 0 0 0 011

avb aeb -a

4 Independent and Complete Axioms of Kleene Algebra

From the above considerations, we can see that in the set of axioms of Kleene algebra,
at least, the following axioms have to be included:
(1)[8]Double negations law: -(-a)=a ----- [8]
(2)One of [9]De Morgan's laws: -(a v b)= -a * -b---[9- 1]

-(a 9 b)= -a v -b--- [9-2]
(3)One of [1]Commutative laws: a v b=b v a -------- [1-1]

aob=b o a --------- [1-2]
(4)One of [5]Distributive laws: a o (b v c)=(a o b) v (a s c)---[5-1]

a v (b o c)=(a v b) o (a v c)---[5-2]
(5)One of [10] Kleene's laws E (-a v a) v (-b * b)=-a v a---[10-1]

(-av a)e(-B ob)= -bob ---[10-2]
Similarly it is easily shown that
(6)One of [6]The least element: 0 v a=a---[6-1] 0 o a=0 ---- [6-2]

[7]The greatest element: 1 v a=1---[7-1] 1 o a=a---[7-2]
is independent from the others by defining 1=-0

It was shown that the each of the above axioms is independent each other in the set
of axioms of Kleene algebra. Next question is what is the complete set of Kleene
algebra. For obtaining such complete set of axioms, we have to show that every
axioms of Kleene algebra ([1-1] -[10-2]) is derived from the complete set of axioms.
To show that an axiom is derived from the other axioms (that is, the axiom is not
independent from the other axioms), we cannot use the method of indeterminate
coefficients, because even if the number of solutions is not decreased when it was
located as last axiom, it is not proof the axiom is not independent from the others as
described in Section 3-2. The method of indeterminate coefficients only finds the
candidates for the complete set of axioms. So, we have to show formally that every



318 T. Ninomiya and M. Mukaidono

axioms of Kleene algebra can be derived from the complete set of axioms, where the
above six axioms are candidates for the element of the complete set of axioms. In
deed, by M. Mukaidono"7 ' it has been shown the following six axioms listed in Table
12, which are all selected among the above six candidates, are the complete axioms,
which are, of course, also independent each other, of Kleeen algebra.

Table 12 An independent and complete axioms of Kleene algebra(7)

[I1]Commutative laws: a v b=b v a -------- [1-1]
[5]Distributive laws: a 9 (b v c)=(a * b) v (a * c)---[5-1]
[6]The least element: 0 v a=a---[6-1]
[8]Double negations law: -(-a)=a ----- [81
[9]De Morgan's laws: -(a v b)= -a o -b---[9-1]
[10] Kleene's laws:(-a v a) v (-b * b)=-a v a---[10-1]

By using the above facts, another sets of independent and complete axioms of
Kleene algebra were reported recently ' 2 ), and this technique is applied to axioms of
Boolean algebra and 64 deferent kind sets of the independent and complete axioms of
Booean algebra are discovered( 1 3).

5 Finite Models of Kleene Algebra

As obtained a three-valued mode of
Kleene algebra in Table 4, we can

derive all finite models satisfying the n 1 1 1
given set of axioms by using the b
method of indeterminate coefficients C
in any N values in the scope of hb _ b

C --c
permitted time. In figure 1, are C - b ,b_-
illustrated Hasse diagrams of all finite -- a 0
models of Kleene algebra in N=8 for 0-h
an example. For obtaining these
models based on the method of a b
indeterminate coefficients we used the C
set of axioms of Kleene algebra listed 1-b
in Table 12, which are independent a 0
and complete axioms, because it is b < -b
easer to derive all models if the C
number of axioms is smaller. o0

0
Fig. 1. All models of 8-valued Kleene Algebra

6 Conclusions

The properties and roles of each axioms of Kleene algebra are clarified and the
independence of each axiom is examined through the method of indeterminate
coefficients. As sub-products we can show that a set of independent and complete
axioms of Kleene algebra and all finite models of Kleene algebra in some finite cases.



Fundamental Properties on Axioms of Kleene Algebra 319

Reference

1. J. A. Kalman, Lattice with involution, Trans. Amer. Math. Soc. 87, pp.485-491,
1958

2. R. Balbes and P. Dwinger, Distributive Lattices, University of Missouri Press,
pp.215, 1974

3. D. Brignole and A. Monteiro, Caracterisation des algebras de Nelson par des
egalites, Notas de Logica Matematica, Instituto de Matematica Universidad del
sur Bahia Blanca, 20, 1964

4. L. A. Zadeh, Fuzzy sets, Information Control, 8, pp.338, 1965
5. F. P. Preparata and R. T. Yeh, Continuously valued logic, J. of Computer and

Systems Science, 6. pp.397, 1972
6. M. Mukaidono, On some properties of fuzzy logic, Systems *Computers

-Controls, Vol.6, No.2, 1975
7. M. Mukaidono, A set of independent and complete axioms for a fuzzy algebra

(Kleene algebra), Proceedings of The 8th International Symposium on Multiple-
Valued Logic, IEEE, 1981

8. M. Mukaidono, New canonical forms and their applications to enumerating fuzzy
switching functions, Proceedings of the 12th International Symposium on
Multiple-Valued Logic,IEEE,pp.275-279,1982

9. J.Bermann and M.Mukaidono, Enumerating Fuzzy Switching Functions and Free
Kleene Algebras, International Journal of Computer and Mathematics with
Applications, Pergamon Press, Vol. 10, No. 1, pp.25-35, 1984

10. Masao Mukaidono, The representation and minimization of fuzzy switching
functions, The Analysis of Fuzzy Information,Vol.1, edited by J. C. Bezdek,
CRC Press, pp.213 -229, 1987

11. M. Goto, S. Kao and T. Ninomiya, Determination of many-valued truth tables for
undefined operators in axioms by a computer and their applications, Proceedings
of the 7 th International Symposium on Multiple-Valued Logic, IEEE, 1977

12. T. Ninomiya and M. Mukaidonbo, Clarifying the axioms of Kleene algebra based
on the method of indeterminate coefficients, Proceedings of the 29th International
Symposium on Multiple-Valued Logic, IEEE, 1999

13. T. Ninomiya and M. Mukaidonbo, Independence of the axioms of Boolean
algebra in multiple-valued logic, Proceedings of the 30e International
Symposium on Multiple-Valued Logic, IEEE, 2000

Appendix

A Brief Description of the Method of Indeterminate Coefficients
Let f(x,y) be an undefined operator appeared in a set of axioms { S ,--,Sk,---,Sn}.

N-I
Then we can write f(x, y)= v Xixi O yj ,

i,j=O



320 T. Ninomiya and M. Mukaidono

where x'=1 if x=i and xi=O if x:Ai and Xij is an indeterminate coefficient and will takes
a value of {0,1,---.N-1} if the undefined operator is defined uniquely, but in the
sequel Xij(k,m) (m=l,--,mk) (i, j=0,1,---,N-1) will takes a subset of {0,1,---.N-1}
where Xij(k,m) means a m-th partial solution in k-th step.
(1) Xij(0,1)=* ={O,---,N-1}(i, j=0,1,---,N-1) for a starting partial solution. Let mo=1
and k= 1.
(2) Drive all partial solutions Xij(k,m)(m=l,--,mk) satisfying the axiom Sk from the
initial conditions Xi,j(k-l,m)(m=l,--,mkD0
(3) Repeat the above step (k=l,---,n) until Sn.
(4) The final partial solutions are the general solutions satisfying all given axioms
{SI,--,Sk,---,Sf}.and if m,=l and Xij(n,l) takes an element of {0,---,N-1I for all i and
j, then the truth table of f(x,y) is determined uniquely.



Extending Entity-Relationship Models with
Higher-Order Operators

Antonio Badia

University of Arkansas
abadiaiggodel .uark. edu

Abstract. The concept of Generalized Quantifier (GQ) was introduced
to query languages in [9] and, independently, in [10]. The present pa-
per shows how GQs can be used in Conceptual Modeling, specifically
how they can be incorporated into Entity-Relationship diagrams ([4])
to increase their expressive power. A language to express E-R models is
defined and given formal semantics. It is them shown how GQs can be
easily added to this framework. Several GQs that have natural, intuitive
interpretations in the context of conceptual modeling are defined; their
use is shown through examples.

1 Introduction

Conceptual modeling is one of the most important steps in the creation of an
Information System. Modeling is a notoriously difficult activity; it cannot be
treated algorithmically, and it requires ingenuity and experience. One of the
main tools for the task is the use of conceptual models, semiformal specifications
of how to structure and express information. The Entity-Relationship (E-R) mo-
del is one of the most successful models ([4]); it is simple, intuitive, yet relatively
powerful. However, its limitations are well-known. Many developments in con-
ceptual modeling assume that logic methods are too inflexible, too limited and
too unintuitive to be useful for modeling. This paper is a starting point for work
that counters this assumptions and gives logic a place in conceptual models. In
particular, it shows how to overcome many of the limitations of the E-R model by
using higher-order operators (intuitively, relations on relations). Reasoning with
higher-order concepts may be complex from both a computational complexity
point of view and a conceptual point of view. We propose to use the framework
of Generalized Quantifiers (GQs) to attack the problem. GQs are declarative,
powerful, high-order operators that have a natural graphical representation.

In the next section, we review the basics of Entity-Relationship models, give
a formal description for them, and introduce the concept of GQ. In section 3 we
show some of the problems that this approach is trying to solve by giving some
examples of situations in which information is hard or impossible to capture in
a traditional E-R model. In section 4 we formalize E-R models and extend the
formalization with a selected set of GQs; we give examples of how the extension
solves the problems of section 3. Finally, we mention some related work and close
with some conclusions and comments on further work.

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 321-330, 2000.
© Springer-Verlag Berlin Heidelberg 2000



322 A. Badia

2 Background

In this section we give some preliminary definitions for the rest of the paper. For
completeness, the next subsection briefly introduces the basic ideas of Entity-
Relationship models, while subsection 2.2 introduces the concept of Generalized
Quantifier, together with some examples.

2.1 Entity-Relationship Models

An F-fl model is a data model with three basic concepts: entities, attributes and
relationships. Entities represent things either real or conceptual. They denote
sets of objects, not particular objects; in this respect they are close to classes
in object-oriented models. The set of objects modeled by an entity are called its
extension.

Relationships are connections among entities. The arity of a relationship is
the number of entities involved: unary, binary, ternary, and so on. Binary rela-
tionships are the most common. Two kinds of constraints are associated with
relationships. The participation constraint tells us whether all objects in the ex-
tension of an entity are involved in the relationship, or whether some may not be.
For example, entities Of fice and Employee may have a relationship works-on
between them. If all offices have employees, then participation of Off ice in
works-on is total (otherwise is partial). If all employees are based in an office,
then participation of Employee is also total. The cardinality constraint tells us
how many times an object in the entity's extension may be involved in a relati-
onship, and allows us to classify the relationship as one-to-one, one-to-many
and many-to-many. We note that recursive relationships are allowed: they re-
late one entity to itself. For example, the relationship Child-of relates the entity
Person to itself. To distinguish the ways in which Person participates in this
relationship, roles are added to the entity (father and son, in this example).

Entities and relationships have attributes, which are properties with a value.
Attributes convey characteristics or descriptive information about the entity to
which they belong. Attributes may be simple or composite, single or multivalued,
primitive or derived.

2.2 Generalized Quantifiers

Generalized Quantifiers were first introduced in logical studies ([13], [12]). The
concept has attracted attention lately for its uses, among others, in query lan-
guages ([9],[10]) and other languages like description logics ([3]).

Given a set M, a Generalized Quantifier (GQ) on M is a relation among
subsets of relations on M.

Definition 1. Let a type be a finite sequence of positive numbers, which will
be written [ki, .. . , k,,j. Then a generalized quantifier of type [k1 , . . . , kn] on M
is an n-ary relation between subsets of Mkl, . . . , M'- (i. e. between elements of
p(Mkl) X ... x p(Mk-)).



Extending Entity-Relationship Models with Higher-Order Operators 323

Not every relation between subsets of the domain is considered a GQ. In-
tuitively, we would like a GQ to behave as a logical operator, in the sense that
it should not distinguish between elements in the domain. Thus, many authors
pose the following constraint on the definition:

Definition 2. (PERM) A quantifier Q follows PERM if, whenever f is a per-
mutation on M, then QM(A1,..., An) iff QM(f [A1],..., f[An]).

In the context of database query languages, this constraint ensures that quanti-
fiers are generic operations ([1]).

The following are examples of GQs. A universe M is fixed. We use Q as

a variable over GQs, and write Q(A 1 ,.. ., An) to indicate that sets A 1,... ,An
belong to the extension of Q, i.e. that they are in the relation denoted by Q.
all = {X,Y C MIX C Y}
some = {X,Y C MIX n Y #' }
no={X,YCMIXfnY= 0}
at least n={X,Y CMIIXnYI >n}
at most n= {X,Y C MIIXfnYI • n}
I = {X, Y C M I X I= I Y I} (Hartig's quantifier)

QR = {X c MI I X I>I M - X I} (Rescher's quantifier)
H={RCM 4 ]f:M--+M~g:M--÷MVa,bEM <af(a),b,g(b)>cR}
WR = {X C M, R C M2 I R well-orders X}

All the above quantifiers are of type [1, 1], except QR (type [1]), H (type [4])

and WR (type [1, 2]). Note that the first five quantifiers are first-order definable;
the last four are not.

3 Limitations of the E-R Model

E-R models have a layered approach to organizing information, in the sense
that only entities and relationships can have attributes and only entities can be
involved in relationships. Thus, it is not possible for attributes to have attributes,
or to be involved in relationships; and it is not possible for relationships to
be involved in other relationships. This results in limitations on what can be
expressed in the model. We call limitations due to the first rule constraints: they
usually express some condition on the values that some attribute(s) can take.
We will not deal with them in this paper. Here we concentrate on overcoming
the second class of limitations by proposing higher-order operators (intuitively,
relations on relations). To give an idea of the problems that E-R models face,

we give several examples of situations in which the model is not able to capture
necessary information.

One such situation is the connection traps: let El, E 2 , E 3 be entities and
R, C E1 x E 2 , R 2 C R 2 x R 3 be relationships. The connection trap problem is
that of inferring properties of a possible connection between E 1 and E 3 based
on R 1 and R 2 . Sometimes the relationship may not exist at all, sometimes the
relationship may exist but it is not determined by composing R 1 and R 2 . The
following examples are taken from [5].



324 A. Badia

Example 1. Let entities Division, Staff and Branch be related through rela-
tionships IsAllocated, between Division and Staff, and Operates, between
Division and Branch. Participation in IsAllocated is total, 1 on the Division
side and many on the Staff side (i.e. all staff members are allocated to one and
only one division, and each division is allocated one or more staff members). Par-
ticipation in Operates is total, 1 on the Division side and many on the branch
side (i.e. all divisions are assigned one or more branches, and all branches are
assigned to one and only one division). One could assume that staff members
work at particular branches, and that such a relationship between elements of
Staff and Branch can be inferred from the two explicit relationships. However,
we note that both relationships are 1-M, with the 1 on their common domain
(Division). Therefore some element in Staff may be related to more than one
branch, even if one one would expect that each staff member works in only one
branch. This is called the fan trap in [5]. Another, different problem is called
the chasm trap. The chasm trap would come up if any of the two relationships
were partial instead of total. Assume the situation this time involved entities
Branch, Staff and PropertyForRent, related as follows: Branch and Staff are
related by IsAllocated, as before, and Staff and PropertyForRent are related
through relationship Oversees. Participation in Oversees is partial (i.e. not all
people in the staff oversees a property for rent, and not all property for rent
has someone from Staff assigned to oversee it). It would seem that one could
connect each branch with the property or properties that someone at that branch
oversees. However, there is no guarantee that all branches can be related to at
least some property for rent (since participation in Oversees is partial).

Example 2. Assume an E-R model for a university. The model contains enti-
ties Teacher, Class and Department. There are relationships Teaches between
Teacher and Class, Off eredBy, between classes and departments, and Faculty,
between teachers and departments, with the obvious interpretation. A university
rule is that teachers can only teach classes offered by the department in which
they are faculty. This rule cannot be enforced in the E-R model.

Example 3. Assume an E-R model for a company, which contains entities Client
and Representative. The representatives are employees whose mission is to
interact with and attend to clients; a business rule is that every client must have
a representative, and that every representative must attend to several clients.
Note that this relationship, which is one-to-many and total, induces a partition
on the set of clients. Many properties of such partitions cannot be expressed in
the E-R model; for instance, a rule stipulating that all representatives must have
the same number of clients (i.e. all sets in the partition have the same size).

Example 4. An example of a recursive relationship is the relationship ManagerOf
on the entity Employee. Two roles are associated with Employee through this
relationship: manager and managee. Such relationship is partial on the manager



Extending Entity-Relationship Models with Higher-Order Operators 325

role (not all employees are managers) and total on the managee role (all em-
ployees have a manager). This relationship has several properties which cannot
be expressed in the model: it is an irreflexible relationship (no one can be his or
her own manager). In most situations, it will also be asymmetric (if employee a
is the manager of employee b, it cannot be that employee b is, in turn, a mana-
ger of a) and transitive (managers have higher-level managers, and so on). Such
information can be used by a system to check insertions in the relationship for
correctness, but cannot be represented in a E-R model.

4 Extending the E-R Model

We formalize E-R models in a general framework that will allow the integration
of GQs. First we define signatures and give a formal semantics to E-R models.
We then show how to extend the model with GQs and define several GQs which
are useful in extending the semantic expressivity of E-R models in the context
of conceptual modeling. Finally, we give several examples of how our extension
deals with the problems introduced in the previous section.

4.1 Formalization of E-R Models

Usually an E-R model is displayed graphically by an E-R diagram. An E-R dia-
gram is a graph where entities are represented by nodes, relationships (including
IS-A relationships) are represented by edges; attributes are depicted next to the
entity or relationship they belong to. There are variations between authors in
the way the information is represented graphically. In order to be able to define
our extensions of E-R models without depending on a particular graphical re-
presentation, and to develop a rigorous framework, we define a formal language
in which to express the model. We use a lisp-like syntax, with expressions always
in balanced parenthesis. In the following, + means one or more, and [A] means
A is optional. Thus, (<attr-name>) + means a list of one or more of the objects
of type <attr-name>.

Definition 3. A signature S is a triple < 6, 7?, A >, where S (denoted by
ent(S)) is a set of entity names; R? (denoted by rel(S)) is a set of relations-
hip names; and A (denoted by att(S)) is a set of attribute names. Each set is
disjoint from the other two.

Definition 4. An E-R model D for a signature S is a set of sentences, where
each sentence is either

- of the form (E <entity-name> (<attr-name>+)), with each<entity-
name> E ent(S) and each <attr-name> E attr(S); or

- of the form (R <relationship-name> (<entity-name>:<role><part-
constraint> <card-constraint>)+ (<attr-name>)+), where <part-
constraint> is one of total or partial, <card-constraint> is one of 1
or M, each<relationship-name> C rel(S), each <entity-name> E ent(S),
and each <attr-name> c attr(S); or



326 A. Badia

- of the form (A <attr-name> <attr-type> [(<attr-name>)+]), where
each <attr-name> E attr(S), <attr-type> is one of simple or complex
plus one of single or multivalued, and the optional list of attribute names
is used if the attribute is complex1 .

Definition 5. Given signature 8, diagram D, for each r C rel(S), comp(r) C
ent(S) is the set of entities involved in the relationship denoted by r, that is

.el,..., en I (R r (el: ri pi cl) ... (en: rn Pn pc) (attri)) C D}, where each
ri is a role, each pi a participation constraint, each ci a cardinality constraint
and each attri a set of attributes, for 1 < i < n.

Definition 6. Given signature S, diagram D, for each a c attr(S), edom(a) =

{e C ent(S) I (E e attr) c D A a C attr}, where attr is a list of attribute
names, and rdom(a) = {r E rel(S) I (R r el attr) E D A a E attr}, where el is
a list of entity components and attr is a list of attribute names. Thus edom(a)
is the list of entities e such that a is an attribute of e, and rdom(a) is the list of
relationships r such that a is an attribute of r 2 .

We give formal semantics to the language by defining a conceptual structure

as follows.

Definition 7. Given an E-R model D over signature S, a conceptual structure
is a tuple < M, V, I >, where M and V are disjoint, nonempty sets; and I is
an interpretation function from the elements of S to M U V with the following

characteristics:

- For each e c ent(S), I(e) C M.
- For each r E rel(S), such that comp(r) = {el,..., en}, I(r) C 1(ei) x ... X

I(e,•), and
- if participation constraint is total for entity ei E {el,...,en} =

comp(r), then r[ei] = I(ei)3 , and
- if cardinality constraint is I for entity ei E {ei, ... , e,} = comp(r), then

r < ei > is a function4 .
- For each a E att(S), I(attr) is either

- a function f M --+ V, such that for each e C edom(a) I(e) C dom(f),
or

- a function f Mn -+ V, such that for each r E adorn(a), then I(r) C
dorm(f).

1 For simplicity we will assume from now on that all attributes are simple and single.

This simplifies notation while not subtracting anything substantial from the model.
2 In the following, we will assume for simplicity that every attribute applies only to

entities or to relationships. Again, this simplifies notation without affecting expres-
sive power.

3 r[ei] = {xi G I(ei) IIAl<ji<, ]xj E I(ej) r(xl,..., x,..., x.)}, that is, the elements
in the extension of ei that are related to other elements by relationship r.

4 r < ei >= f< ei, < e1,...,ei-l,ei+l,...,e, >>I< el,....,ei_1,ei,ei+1,...,e. >E

I(r)}, that is, the binary function obtained from 1(r) by considering entity ei and
the combination of values that ei is related to by relation r.



Extending Entity-Relationship Models with Higher-Order Operators 327

Intuitively, M is the domain of objects which we are trying to model, while V
is a set of values5 ; each entity e is assigned by the structure a set of objects I(e)
as its extension; likewise, relationships are assigned relations over the entities
involved in the relationship, and attributes are considered functions relating
values to entities and relationships.

4.2 Extensions of the Model

It has become common to extend E-R models with ideas from object oriented
models, like IS-A (class/subclass) relationships (see [14] for a developed (and
complex!) example of an object oriented modeling framework). Our formal lan-
guage for E-R models did not have notation for IS-A relationships, or other
extensions. Our strategy is to start with a very simple E-R model, to incorpo-
rate GQs into the model and use their power to model the extensions that are
needed to increase the modeling power of the initial model.

Definition 8. Given a conceptual structure < M, V, I >, an extended conceptual
structure is a tuple < Q, M, V, I >, where M, V, I are as before and Q is a set
of GQs defined over M.

Thus, the GQs defined may have as arguments entities (which are represented
by sets in the structure) and relationships (which are represented by relations
in the structure). The obvious issue is to find a set of GQs that will be helpful
in the conceptual modeling task. We introduce several such quantifiers next. In
the following definitions, it will be assumed implicitly that all sets and relations
come from M.

First we note a form of useful quantification is in the form of structural (ty-
peless) quantifiers. Since GQs can capture relationships among sets, they can
capture the semantics of IS-A relationships, which usually correspond to sim-
ple set inclusion. We point out, however, that there is more information about
class/subclass relationships than mere inclusion. Advanced models classify IS-
A relationships at least along two dimensions; first, disjointness/ overlap of the
subclasses (i.e. whether the subclasses are allowed to have any common elements
-this corresponds to inclusive and exclusive choices), and second, coverage of the
superclass by the subclasses (i.e. whether the superclass is the union of the sub-
classes or not). These variants can all be captured by generalized quantification:
QI(A, A 1 ,. .. ,An) - 1..n A}-
Qic(A, A,,..., An)-={AiI ..... nAiC-A A Uiei l... Ai=A}

QID(A, A 1,..., An) =. ... Ai C A A .iiJE, n i Ai n A_ = 0 }
QIDC(A,Al,...,An) = . Ai.1.. ..... Ai _ A A Ai,jG1,...,n,i=j Ain Aj = A A

Uil. nAi=A}
Clearly, Q1 (A, A 1 ,...., An) indicates that A1 ,...,An are subclasses of A,

with not further restrictions; Qic further constraints the relationship so that
A 1,..., An cover A (that is, all the elements in A are in one of the subclasses);
5 Separating values for attributes from the entities makes the model simpler and agrees

with standard practice in building (semantic) data models ([11]).



328 A. Badia

QID, on the other hand, constraints the relationship so that all subclasses are
disjoint. Finally, QIDC adds both constraints 6 .

This does not give us more expressive power than we already had in some

extensions of E-R models. However, it is easy to define GQs that give well-known
properties of relations which are not expressible in E-R models, even extended
ones. A few, simple examples are:

QR(R) = {R C M 2 I R is reflexive}

QT(R) = {R C M 2 I R is transitive}
Qs(R) = {R C M 2 I R is symmetric}

and their respective negations, QNR, QNT and QNS7 .
The above GQs involve only one relation. More complex examples may in-

volve more than one relationship, and determine whether they can be composed
or not; the following is called pseudo-transitivity, for the obvious reasons:

QpT(R1,R 2,R3) = {R 1 C M 2 , R 2 C M 2 ,R 3 c M 2 I Vx, y, zRl(x,y) A R 2 (x,z)
-+ R3(y, z)}
The following is called compositionality, as it determines when it is possible in
principle to compose two relations with a common entity:

Qr(A,B,C,R1,R 2 ) = {A,B,C C M, R 1 C A x B, R 2 C B x C I RI[B] =

R 2 [B]}
The following is called functionality as it states that two relations not only can
be composed, but furthermore their composition is a function:
Qf(R!, R 2 ) = {R 1, R 2 g M 2 I Vx Vy !zRnl(x, y) A R 2 (y, z)}8

Finally, some GQs may involve relations and sets (relationships and entities)
and express some properties that the relation determines on the set. As stated
above, any time there is a one-to-many relationship R on entities El, E 2, the
relationship on the many side (say E 2 ) has a partition created on it by R (strictly
speaking, this only happens if participation of E 2 in R is total; otherwise, a set of
elements not in R[E 2] must be considered). Different properties of such partition
can be expressed by GQs9 :

Qpc(A,B,R) = {A,B C MR C A x B I Vy, z E B I({x I R(x,y)}I = I{x I
R(x, z)}I)}

We show the applicability of these GQs by using them to solve the problems

introduced before.

Example 5. Recall example 1 about connection traps. Qf(IsAllocated,
Operates) states that the relationships can be composed in a functional manner.
Thus, fan traps are avoided. Q,(Branch, Staff, PropertyForRent, IsAllocated,
Oversees) states that the extensions of the relationships coincide on their com-
mon entity. Thus, chasm traps are avoided. Note that Qc does not constraint
the relationships to be total or partial, leaving the analyst free to combine this
and other properties.

6 In the quantifier name, I stands for inheritance, C for cover and D for disjointness.
7 In the quantifier name, N stands for not, as in NR for not reflexible, and so on.
8 The notation I!z is a shortcut for there exists a unique z. Note that this condition

is less restrictive than asking that both R1 and R 2 are functional.
9 JAI denotes the cardinality of set A.



Extending Entity-Relationship Models with Higher-Order Operators 329

Example 6. Recall example 2 about teachers, classes and departments. Then

QPT(Teaches, Off eredBy, Faculty) enforces the restriction that every professor
can only teach classes offered by the department where (s)he is faculty, as desired.

Example 7. Recall example 3 about clients and representatives. Then
Qp(Client, Representative, Attends) states that all representatives attend
the same number of clients.

Example 8. Recall example 4 about the recursive relationships ManagerOf on
the entity employee. We can express the desired properties of ManagerOf now
as follows: QNR(ManagerOf), QNS(ManagerOf), QT(Manager0f).

5 Related Work

The seminal paper ([4]) introduced Entity-Relationship modeling. Although wi-
dely used because of its balance of simplicity and expressive power, the limitati-
ons of the model have been noted for quite some time and given rise to several
extensions: [2] proposed to add facilities to model the concept of transaction; [6]
proposed the addition of data types; [7] propose the addition of more functiona-
lity by describing entity behavior. The paper [8] adds several powerful concepts,
including abstract data types, arbitrarily complex structures, and defines a po-
werful query language for E-R diagrams. It must be pointed out that not all

the cited work provides a formal foundation in the form of well-defined, formal
semantics ([8] is an exception). Our work is different in that we extend E-R dia-
grams as little as possible, by introducing only one new category (that of GQ),
while at the same time capturing a rich class of semantic information which is of
interest for conceptual modeling (i.e. our goal is not to define a query language
or data types, but to assist the analyst in capturing mode domain information,
therefore helping to restrict possible interpretations of the model). By defining
a formal language and giving a formal semantics to a very basic E-R model, the
work presented here is independent of notational variations and extensions of
the model, and has a formal semantics.

6 Conclusion and Further Research

This paper is a starting point for work that uses logical methods in conceptual
modeling. It was argued that GQs are a good fit for conceptual modeling as
they are declarative and high-level. They are also an extremely rich and powerful
category; the challenge is to define relevant sets of GQs for the goal at hand.
We note that, even though we have worked with a formal language for several
reasons, to incorporate GQs into E-R diagrams is easy because GQs have an
intuitive graphic depiction, as it was shown in [15]. Therefore, modelers could
actually work with a diagrammatic representation of the ideas introduced here.



330 A. Badia

Some issues that deserve further attention include reasoning with GQs. Some
sort of limited deduction may allow analysts to check properties of the model;
introductory work has already been carried out ([16],[17]) but it does not seem
to be well known outside logical circles. We hope the present work will help
disseminate potentially helpful work from pure logic to more applied enterprises.

References

1. Abiteboul, S., Hull, R. and Vianu, V., Foundations of Databases, Addison-Wesley,
1995

2. Atzeni, P., Batini, C., Lenzerini, M., Villanelli, F. INCOD: A system for concep-
tual design of data and transactions in the entity-relationship model, in Procee-
dings of the 2nd International Conference on Entity-Relationship Approach to
Information Modeling and Analysis, 1981.

3. Badia, A. Extending Description Logics with Generalized Quantification, in Pro-
ceedings of the 11th International Symposium on Methodologies for Intelligent
Systems, LNAI, number 1609, Ras and Skowron, editors, Springer-Verlag, 1999.

4. Chen, P. The Entity-Relationship Model -Towards a Unified View of Data, ACM
Transactions on Database Systems, v. 1, n. 1, 1976.

5. Connolly, T., Begg, C. and Strachan, A. Database Systems, Addison-Wesley, 1999.
6. Dos Santos, C. S., Neuhold, E. J. and Purtado, A. L. A Data Type Approach to

the Entity-Relationship Model, in Proceedings of the 1st International Conference
on Entity-Relationship Approach to Software Engineering, 1980.

7. Eder, J., Kappel, C., Tjoa, A. and Wagner, R. BIER: The Behavior Integrated
Entity Relationship Approach, in Proceedings of the 5th International Conference
on Entity-Relationship Approach, 1986.

8. Gogolla, M. and Hohestein, U. Towards a Semantic View of en Extended Entity-
Relationship Diagram, ACM Transactions on Database Systems, v. 16, n. 3, 1991.

9. Cyssens, M., Van Gucht, D. and Badia, A., Query Languages with Generalized
Quantifiers, in Application of Logic Databases, Ramakrishnan, Ragu ed., Kluwer
Academic Publishers, 1995

10. Hsu, P. Y. and Parker, D. S., Improving SQL with Generalized Quantifiers, in
Proceedings of the Tenth International Conference on Data Engineering, 1995

11. Hull, R. and King, R. Semantic Database Modeling: Survey, Applications and
Research Issues, ACM Computing Surveys, vol. 19, n. 19, 1987.

12. Lindstrom, P., First Order Predicate Logic with Generalized Quantifiers, Theoria,
volume 32, 1966

13. Mostowski, A., On a Generalization of Quantifiers, Fundamenta Mathematica,
volume 44, 1957

14. Rumbaugh, J., Jacobson, I. and Booch, G. The Unified Modeling Language Refe-
rence Manual, Addison-Wesley, 1999.

15. Sarathy, V. and Van Gucht, D. and Badia, A., Extended query graphs for declara-
tive specification of set-oriented queries, in Workshop on Combining Declarative
and Object-Oriented Databases (in conjunction with SIGMOD 93), Washington,
D.C.

16. Van Benthem, J. Questions about Quantifiers, Journal of Symbolic Logic, v. 49,
1984.

17. Westerstahl, D., Quantifiers in Formal and Natural Languages, in Handbook of
Philosophical Logic, Reidel Publishing Company, Gabbay, D. and Guenther, F.,
editors, vol. IV, 1989.



Combining Description Logics with Stratified Logic
Programs inKowledge Representation

Jianhua Chen
Computer Science Department

Louisiana State University
Baton Rouge, LA 70803-4020

jianhua@ bit.csc.lsu.edu

Abstract. Hybrid knowledge representations that combine description logics with
logic programs are considered. Previous works combine description logics with
Horn logic programs. In this paper, the expressive power of such hybrid systems is
extended by allowing the combination of function-free, non-recursive stratified
logic programs with description logics. Two model-theoretic definitions for the
semantics of the hybrid knowledge representation are presented. It is shown that
the inference problem based on the second semantics is decidable. When the logic
program is Horn, the two semantics defined in this paper coincide with the seman-
tics in [4] with regard to the inference problem.

1. Introduction
The use of hybrid representations is an important research problem in knowl-

edge representation and reasoning. Several recent papers [2,4,5,6] addressed various
aspects of hybrid knowledge representations. In [6], a framework based on unifica-
tion of constraint logic programming, annotated logic programming, and stable
model semantics, was developed to handle the multiple modes of reasoning in hybrid
knowledge bases. The work in [2] investigated the connections between description
logics and predicate logics, and compared their relative expressiveness. Combina-
tions of description logics with Horn logic programs were investigated [3,4]. In par-
ticular, it was shown in [4] that the inference problem is decidable in a hybrid system
combining the description logic ALCNR with a non-recursive Horn logic program.

A natural extension in similar direction is to consider the integration of
description logics with stratified logic programs for knowledge representation. Strat-
ified logic programs are extensions of Horn logic programs which allow certain
restricted form of negations in the antecedent of program rules, and thus are more
expressive. The ability to combine stratified programs and description logics within
one hybrid system significantly enhances the system's expressive power.

In this paper, we present such an extension. The proposed hybrid system com-
bines the description logic ALCNR with a stratified logic program, We present two
model-theoretic semantics for the hybrid knowledge representation system: The pre-
ferred model semantics, and the preferred-canonical model semantics. We show that
the inference problem under the preferred-canonical model semantics is decidable

Z.W. Rai and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 331-339, 2000.
0 Springer-Verlag Berlin Heidelberg 2000



332 J. Chen

based on a straight forward application of the decidability result in [4].

2. Preliminaries
In the new hybrid representation, a knowledge base A = (T, ir) consists of two

components: a terminology T in the description logic ALCNR, and a logic program Yr
which is function-free, non-recursive, and stratified. The concepts and roles from the
terminology T can occur (positively) in the antecedents of rules in Ir.

2.1. The Terminological Component

A description logic language contains a set of unary relations called concepts
that represent sets of objects in the domain of discourse, and binary relations called
roles that represent relationships between these objects. Composite formulas in a
description logic are built from primitive concepts and roles by using a set of con-
structors in the logic. Here as in [4], the description logic component in a hybrid
knowledge base can be any subset of the ALCNR language. Descriptions in ALCNR
are built in the following way: Each primitive concept A is a concept description; the
special concepts T (truth) and 1 (falsity) are concept descriptions; let C and E be
concept descriptions and let R be a role description, then C r) E, C u E, -iC, 3R.C,
VR.C, (> n R) and (< n R) are concept descriptions; each role description R is of the
form R1 n ... Rm where each Rj is a primitive role.

The general terminological part of a terminology T is a set of sentences in
ALCNR, where a sentence is either a concept definition, a concept inclusion, or a role
definition. A concept definition is of the form C := E where C is a concept name and
E is a concept description. A concept inclusion is of the form C c E where both C
and E are concept descriptions. A role definition is of the form P := R where P is a
role name and R is a role description. We do allow recursive concept definitions.
The assertional part of T is a set of ground atoms of the form C(a), R(a, b).

The meaning of a terminology T is determined by a model-theoretic semantics.
We define an interpretation I to be a non-empty domain 0, a mapping from the set of
constants in T to 0 such that al ? b' if a # b, a mapping from each concept name C
to a unary relation C1 in 0, and a mapping from each role name R to a binary rela-
tion R' c OxO. The mappings of I can be naturally extended to the composite
descriptions in a straight forward way.

An interpretation I satisfies a concept instance C(a) if al c C'. I satisfies a
role instance R(a, b) if (a', b') G R'. I satisfies a concept definition C := E if C' =
E', it satisfies a concept inclusion C c E if C' c EI, and it satisfies a role definition
P := R if P1 = R'. I is a model of a terminology T if I satisfies each sentence in T.

2.2. Stratified Logic Programs

A function-free (normal) logic program is a set of program rules of the form
r: BI(X 1 ) A ... A Bm(Xm) A -ICI(Y 1 ) A ... A -Cn(Yn) -> A(X). (1)

Here each Bi, Cj and A is an atom, m, n 0 0. The conjunction on the left hand side



Combining Description Logics with Stratified Logic Programs 333

of the arrow "->" is called the antecedent (body) of the rule, and A(X) is the conse-
quent (head) of the rule. X, Xi and Yj are tuples of variables and constants. In this
study we consider only safe programs, i.e., each variable appearing in the head of r
or in a negative literal in the body of r must occur in a positive literal in the body of
r. Moreover we consider only non-recursive programs.

An interpretation I for a program )r consists of a non-empty set D (the domain
of I), a mapping from the constants in )r to D such that al # b' if a # b, and a map-
ping from each n-ary predicate P to a subset of D'. Here an n-tuple a C P' for the
n-ary predicate P means I assigns P(a) to be "true". For a fixed domain D, one can
equivalently replace a program 7r by the (possibly infinite) set of ground rules which
are obtained from zr by substituting the variables in each rule r by the objects in D.
Let us call this instantiated program 71D. An interpretation I is said to be a model of
a program 7r if I satisfies the instantiated program ;rD.

In logic programming, the class of stratified programs [1, 8] received a lot of
attention. A normal logic program 7r is said to be stratified if there is a stratification
I which partitions the predicates in ir

I,= S1 .S2U ... u Sk

such that for each rule r of the form (1) in Yr, we have stratum(Bi) < stratum(A) for 1
• i < m, and stratum(Cj) < stratum(A) for 1 < j < n. Here stratum(q) = j if q e Sp.
From a stratification I of )r, we can equivalently define a partition of the rules in )r

)/ = l U r 2 U...UIrk

such that the rules with head atom in Sj form the set )r.

Without loss of generality, we assume in this paper that the stratification con-
sidered for a program gr is the tightest stratification in the sense that for each atom A
in Sj (j > 2), there exists an atom q in Sj-1 such that -q occurs in the body of a rule
with A as the rule head. We remark that in case some concepts and roles from the
terminological part T appear in the body of rules in the stratified program ;r, these
concepts and roles will always belong to S in the tightest stratification of )r. Note
that ir1 may be empty for the tightest stratification (see Example 1).

Let ir be a stratified program with stratification YZ = S1 u S2 u ... U Sk. Let M,
N be two models of 7r based on the same domain D. We say that M is more prefer-
able to N, written as M < N, if for each ground atom P(a) e M - N (P(a) = true in
M, and P(a) = false in N), there is an atom Q(/6) e N - M such that stratum(Q) <
stratum(P). We write M < N if M < N and M # N. Clearly, for a stratified program
)r, the preference relation "<" is a partial order. A model M is said to be a most pre-
ferred model of ;r, if there is no model N of )r such that N < M. Such a most pre-
ferred model is called a perfect model by Przymusinski [7].

In this paper, we always consider perfect models of a stratified program to be
its designated models. Moreover, whenever we discuss the models of a program Yr

with respect to a fixed domain D, we will always replace 7r by its instantiated pro-
gram )rD, which is equivalent to a propositional logic program. It has been shown
that a stratified propositional program has a unique perfect model which can be
obtained iteratively using iterative Horn program consequences and program reduc-
tion.



334 J. Chen

Let 7r be a propositional program with negations allowed in the body of rules.
Let 1 be a partial interpretation of the form I = (Pos, Neg) where Pos is the set of
atoms assigned to be true in 1, Neg is the set of atoms assigned to be false in I, Pos
n Neg = 0. The atoms occurring in ,r but not in Pos u Neg are undefined in L. The
reduction of )r w.r.t. I is a program )r/l which is obtained from )r by the following
two operations:

(1) For each rule of the form
Bi A ... A Bm A -C 1 A ... A "Cn -- A,

delete the rule if some Bi E Neg or C3j e Pos.

(2) For each remaining rule, remove from the body any occurrence of literals
whose atom occur in Pos u Neg.

Example 1. Consider the hybrid knowledge base A = (T, ;r). The terminolog-
ical part T has the following sentences:

author := ] write.paper
author c student u professor
student n professor c I
author(John)

The concepts student, professor, and paper are primitive ones, whereas the concept
author is a derived concept. The first inclusion states authors are either professors or
students, and the second inclusion states that professors and students are disjoint.
The assertion "author(John)" implies that John has a filler of the role write.

The logic program )r consists of the following rules:

(1) author(x) A -iprevious-author(x) -- new-author(x)
(2) student(x) A write(x, y) A paper(y) -- eligible(x)
(3) professor(x) A write(x, y) A paper(y) A new-author(x) -- eligible(x)

Here in the tightest stratification of )r, S = { student, professor, author, paper, write,
previous-author) and S2 = {new-author, eligible}. Also note that in the partition of
the program 7r, we have g, = { I and Yr2 = Kr. Imagine that the program Yr formalizes
a professional conference organizer's rules to decide the eligibility of authors for
travel support. Intuitively, the rules say that student authors are eligible for the travel
support, and that professor authors are also eligible if they have not previously sub-
mitted papers to this conference series. ,T.

2.3 Preferred Models of A Hybrid Knowledge Base

Recall that a hybrid knowledge base A consists of two components T and 1r,
where T is a terminology and ir is a stratified logic program. The concepts and roles
in T are allowed to occur positively in the body of rules in )r. On the other hand, no
concepts or roles are allowed in the head of any rule in ;r, because the terminology T
is supposed to specify a complete definition of the concepts and roles. The predicates
in 7r but not in T are called ordinary predicates, which can be of any arity.

The meaning of a hybrid knowledge base A = (T, )r) is given by a model-theo-
retic semantics. First, an interpretation I for the hybrid knowledge base consists of a



Combining Description Logics with Stratified Logic Programs 335

nonempty domain D, a mapping from the constants in T and 71 to D, and a mapping
from each predicate P of arity n (including the concepts, roles and ordinary predi-
cates) to P1 which is a subset of D". Now, how do we define the models of a hybrid
knowledge base A? A naive way would he to define a model of A as a model of both
of its components, namely, an interpretation I is a model of A if the restriction of I
on predicates in T is a model of T and the restriction of I on the predicates in )T is a
perfect model of Yr. However, this has some undesirable consequences. Since con-
cepts and roles occur only positively in the rule antecedents, any perfect model of Yr
(with respect to all predicates in Yr) will assign "false" to each ground instance of
such concepts and roles. However, this assignment may not he consistent with any of
the models of T. Moreover, the notion of minimization and perfect models should
really be applied to ordinary predicates only. Thus the desirable definition should
keep the extension of concepts and roles fixed (as in parallel circumscription) accord-
ing to the models of T, and then based on these fixed truth assignments to concepts
and roles, define perfect models of ;t with respect to the ordinary predicates. Thus
we develop the following definition:

Definition 1 (Preferred Models).

Let A = (T, zt) be a hybrid knowledge base. Let I = IT U I,, be an interpreta-
tion of A, where IT defines the mapping for concepts and roles, I,, defines the map-
ping for ordinary predicates. Let D be the domain of I. We say that I is a preferred
model of A if it satisfied the following two conditions:

(1) IT is amodel of T.
(2) 1,, is a perfect model of YtD/IT.

The collection of preferred models of A is denoted as PreftA) = I 1: I is an interpreta-
tion and a preferred model of A)}. A ground atom P(a) is entailed by A (under this
preferred model semantics), written A I =preJ' P(a). if P(a) is true in each model in
Preff A). -1

The reasoning problem under the preferred model semantics is precisely to
determine whether we have A I =prf P(a) where P is an ordinary predicate and a is a
tuple of constants. We do not have a decision procedure for this general problem
when the program ;t is not Hobm. This is because the terminology T may have
infinitely many models, each corresponding to a preferred model of A, and finding
decision procedures for A in this case may be difficult. However, if we modify the
preferred model semantics and focus on an interesting, finite subset of models of T,
we will consider only finitely many models of A as designated ones. Hence the infer-
ence problem under the modified semantics becomes decidable.

What are the models of T that belong to the finite subset of interest in the mod-
ified semantics? In [4], it was shown that one can always find a finite subset QŽ from
the models of T such that for each ground atom P(a) (P is an ordinary predicate and
a is a tuple of constants), T u Yr 1= p(a) if and only if I u 7r 1= P(a) for each I e
Q. We will focus on precisely these models of T in defining the modified semantics.
According to [4], the set Qi can be obtained as follows: First, we build an initial con-
straint system ST from T, which is equivalent to T in the sense that it has the same
models as T. A constraint system is a non-empty set of constraints of the form s: C,



336 J. Chen

s R t, Vx. x: C and s;t, where s and t are either constants or variables, C is a con-
cept description, R is a primitive role name. Second, we expand ST by repeatedly
applying a set of propagation rules. This will produce a finite set of completions
which are constraint systems such that no propagation rule is applicable to them.
Some of the completions may contain a clash, i.e., a contradiction. For each of the
clash-free completions, a unique canonical model can be constructed. All such
canonical models of clash-free completions together form the set Q.

A naive application of the propagation rules in expansion of ST may not termi-
nate because of the generating rules which can introduce new variables to the con-
straint system. Thus the n-tree equivalence condition was developed in [4] to assure
expansion termination in finitely many steps. In [4], each completion S is obtained
from ST by application of propagation rules with the U(A)-tree equivalence termina-
tion condition. Here for a knowledge base A = (T, )r) where T is a terminology and
)r is a Horn program, U(A) is the maximal size (number of literals in the antecedent)
of a rule derivable by chaining the rules in 7r. In our case of non-Horn stratified pro-
grams, U(A) is defined to be the maximal size of a rule derivable by chaining the
rules in zr1, which is the first stratum of the program rules in )r. When )r1 is empty,
U(A) is defined to be zero.

Now we are ready to present a modified preferred model semantics as follows:
Instead of considering all models IT for a terminology T when defining models of
(T, 2r), an interpretation I is considered only when IT is the canonical model of a
clash-free completion S, which is obtained from ST based on the U(A)-tree equiv-
alence condition. The formal definition follows:

Definition 2 (Preferred-Canonical Models).

Let A = (T, 7r) be a hybrid knowledge base. Let I = IT u I,• be an interpreta-
tion of A, where IT defines the mapping for concepts and roles in T, and I,. defines
the mapping for ordinary predicates. Let D be the domain of I. We say that I is a
preferred-canonical model of A if it satisfied the following two conditions:

(1) IT is the canonical model of S, which is a clash-free completion obtained from
ST under the U(A)-tree equivalence condition.

(2) 1,• is a perfect model of rD/IT .

The collection of preferred-canonical models of A is denoted as Pref-Cano(A) = { I: I
is an interpretation and a preferred-canonical model of A}. A ground atom P(a) is
entailed by A (under this preferred-canonical model semantics), written A I =Pref-cano
P(a), if P(a) is true in each model in Pref-Cano(A). A

Note that when the program ir is a Horn program which is a special case of
stratified programs, the preferred model semantics and the preferred-canonical model
semantics coincide with respect to the entailment of ground atoms. Moreover, as far
as entailment of ground atom is concerned, these semantics also coincide with the
semantics in [4] defined for combination of an ALCNR terminology and a Horn pro-
gram. Here we use the notation A I = P(a) to denote the entailment of P(a) by A
under the semantics defined in [4].



Combining Description Logics with Stratified Logic Programs 337

Theorem 1.

Let A = (T, zr) be a hybrid knowledge base, where T is a terminology in the
ALCNR logic and 7r is a non-recursive Horn program. Let P(a) be a ground atom
where P is an ordinary predicate in zr. Then

A I =Pref P(a) '=> A I =pref-Cano P(a) <:* A I = P(a).

3. Decidable Reasoning with Description Logics and Stratified
Logic Programs

From the discussions in Section 2, we see that for a hybrid system A = (T, z),
the terminology T has only finitely many canonical models Is which are constructed
from clash-free completions S of ST. Each such canonical model Is is finite. By
Definition 2, the preferred-canonical models of the hybrid system A = (T, 1r) consider
precisely these canonical models Is as the designated models of T. Moreover, for
each such canonical model Is, there is a unique perfect model I,• for the reduced pro-
gram ZD/Is. It follows immediately that there are finitely many preferred-canonical
models of A, each is finite. Thus we get the following theorem by a straight forward
application of the decidability result from [4]:

Theorem 2.

Let A = (T, 7) be a hybrid knowledge base, where T is a terminology in the
ALCNR logic and z is a stratified logic program. Let P(a) be a ground atom where
P is an ordinary predicate in z. Then the problem of determining whether
Al =pref-cano P(a) is decidable.

The following outlines the algorithm for the reasoning problem A =Pref-Cano
P(a).

(1) Build the initial constraint system ST starting with all ground atoms in T.
Compute U(A) using the tightest stratification of zt.

(2) Apply the propagation rules to ST and obtain clash-free completions S with the
U(A)-tree equivalence condition for termination. Let W be the set of clash-free
completions obtained.

(3) For each S E W, construct the canonical model Is for S. Let -2 be the set of
such canonical models.

(4) For each Is E Qi, construct the unique perfect model I,. of the reduced program
)TD /Is using the "Construct" algorithm below. Here D is the domain of Is
extended by constants appearing in 7r but not in T.

(5). If P(a) is true in every 1, obtained in step (4), then output answer "yes", other-
wise output answer "no".

Before we present the algorithm for constructing the unique perfect model 1I
of Yr with respect to a model Is of the terminology T, we need to introduce several
notations. Recall that for a given stratified program ir, we can partition ir = )TI u 7r2

U ... U tk according to its tightest stratification. For a non-empty set D which is the
domain of an interpretation of A, we define Uj to be the set of ground atoms of the
form A(a) where A is an ordinary predicate in stratum j, and a is a tuple of objects



338 J. Chen

in D. For a given interpretation Is of the terminology T, we use )T' to denote the

reduced program 7rD/IS. Clearly, ;T' can be represented as ,r' = 7IT u '2 U ... u 4',
where each Yr' for 1 •1 j k is the reduction of (ifj)D by Is.

The "Construct" algorithm mentioned above is the following:

Algorithm Construct

Input: Is, the canonical model of a clash-free completion S and 1r, a stratified logic
program.

Output:
I,•, the unique perfect model of the reduced program IrD/IS.

(1) Let D be the domain of Is extended by adding all constants in )r but not in T.
Let the program ;f' be the reduced program roDIIS. Let Modo = ( 0, 0) = (Po,
N0).

(2) For i = I to k do

(2.1) Posi = Negi = 0.

(2.2) While there is a ground rule in )r4 of the form B1 A B 2 A ... A Bm -- A,
such that A is not in Posi and each Bj is in Posi, add A to Posi.

(2.3) Let Negi = Ui - Posi and Ti = (Posi, Negi).

(2.3) Let Pi = Pi-I u Posi, Ni = Ni_1 u Negi. Let Modi = (Pi, Ni) = Modi-I
uTi.

(2.4) If i < k, then iri+1' = 7r'i+/Modj.

(3) Output 1, = Modk as the result.

Example 2. Consider the hybrid knowledge base A in Example 1. Here U(A)
= 0. This knowledge base has two preferred-canonical models I, and 12, with the
same domain D = {John, vi}. Both I, and 12 contain the ground atoms
{author(John), write(John, vl), paper(v1 ), eligible(John), -iprevious-author(John),

new-author(John)}. I, contains student(John) and -iprofessor(John), while 12 con-
tains professor(John) and -'student(John). Since both models contain eligible(John),
it follows that A I =Prf-cano eligible(John).

To derive eligible(John), program rule (2) is used in building 1, and program
rules (1) and (3) are used in constructing 12. Note the use of negation as failure in
constructing 12. The reduced program ;f' consists of two ground rules "-'previous-
author(John) --- new-author(John)" and "new-author(John) --> eligible(John)". In
applying the "Construct" algorithm, we get -iprevious-author(John) in Mod, by
negation as failure, and thus subsequently we get new-author(John) and eligi-

ble(John) in Mod2 . We can not infer eligible(John) if we do not use the perfect
model semantics which sanctions the negation as failure inference illustrated above.



Combining Description Logics with Stratified Logic Programs 339

4. Conclusions
In this paper, we present a new hybrid knowledge representation system which

allows the combination of description logics with stratified logic programs. Two
semantics are defined for the new hybrid knowledge representation. It is shown that
under the preferred-canonical model semantics, the inference problem is decidable.
Algorithms for performing such inferences are also presented.

The work reported here is still quite preliminary, and further studies are needed
to investigate the decidability of reasoning under the preferred model semantics when
the terminological cycles are allowed.

Acknowledgment

The author thanks Kevin P. Grant for useful discussions related to this work.

References
[1] K.R. Apt, H. Blair, A. Walker, Towards a Theory of Declarative Knowledge,

In: Foundations of Deductive Databases and Logic Programming (J. Minker,
Ed.), Morgan Kaufmann Publishers, Los Altos, CA, 1988, pp. 89-148.

[2] A. Borgida, On the Relative Expressiveness of Description Logics and Predi-
cate Logics, Artificial Intelligence, 82(1996), pp. 353-367.

[3] M. Buchheit, F.M. Donini, A. Schaerf, Decidable Reasoning in Terminological
Knowledge Representation Systems, Journal of Artificial Intelligence
Research, 1 (1993), pp. 109-138.

[4] A. Y. Levy, M.-C. Rousset, Combining Horn Rules and Description Logics in
CARIN, Artificial Intelligence, 104(1998), pp. 165-209.

[5] A. Y. Levy, M.-C. Rousset, CARIN: A Representation Language Integrating
Rules and Description Logics, Proc. of European Conf. on Artificial Intelli-
gence, Budapest, Hungary, 1996.

[6] J. Lu, A. Nerode, V.S. Subramanian, Hybrid Knowledge Bases, IEEE Transac-
tions on Knowledge and Data Engineering, 85), 1996, pp. 773-785.

[7] T. Przymusinski, On the Declarative Semantics of Deductive Databases and
Logic Programs, In: Foundations of Deductive Databases and Logic Program-
ming (J. Minker, Ed.), Morgan Kaufmann Publishers, Los Altos, CA, 1988, pp.
193-216.

[8] A. Van Gelder, Negation as Failure Using Tight Derivations for General Logic
Programs, In: Foundations of Deductive Databases and Logic Programming (J.
Minker, Ed.), Morgan Kaufmann Publishers, Los Altos, CA, 1988, pp.
149-176.



Emergence Measurement and Analyzes of Conceptual
Abstractions during Evolution Simulation in OOD

Mourad OUSSALAH, Dalila TAMZALIT

IRIN, 2, rue de la Houssini~re - BP 92208 44322 Nantes cedex 03 France
{Mourad.Oussalah, Dalila Tamzalitj @irin.univ-nantes.fr

Tel: 02-51-12-58-47 Fax: 02-51-12-58-12

Abstract. When a designer has the delicate task to integrate new or badly
specified needs, it is not easy specially within engineering applications having
significant class hierarchies with bulky object bases. He is only sure about the
changes to bring punctually, more explicitly on instances. We propose to this
kind of designer a simulation tool of class evolution according to structural
evolution of instances. It has to provoke emerge of new and adapted conceptual
abstractions and to detect their position in the class hierarchy. The objective of
this article is to analyze emergent abstractions by using metrics.

1. Introduction

A designer has a great number of strategies to manage the evolution of engineering
applications [6]. A designer can use, according to his needs, one or several strategies.
However, experience gained in 00 systems and applications [10] has brought to light
that new needs appear more often during their manipulation, so during manipulating
instances.
In order to face unforeseen changes for complex and bulky engineering applications,
we propose to a designer a simulation tool of class evolution. This tool searches and
releases several possible directions of evolution of specifications thanks to dynamic
evolution of instance structure. The general principle is to provoke the emergence of
conceptual abstractions more adapted. This emergence is based on these newly
expressed requirements and one those already present in the database. Hereafter, the
simulation tool has to detect the location of these new abstractions in the hierarchy
and to determine possible impac4ts.

2. The object evolution: a state of the art

In a general way, to prepare a system or an application to evolve, it is necessary to
be able:

1. to formulate changes in order to achieve the pursued goal, namely the model after
evolution;

2. to manage the impacts generated by these changes;

Z.W. Rai and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 340-348, 2000.
© Springer-Verlag Berlin Heidelberg 2000



Emergence Measurement and Analyzes of Conceptual Abstractions 341

3. to define the link between the starting model and the arrival one (it's the same but
in two different stages).

00 defined systems and programming languages propose strategies and mechanisms
to manage evolution. Experience gained in 00 design and development outlines, as
well at design level as implementation one, lacks of actual evolutionary approaches.
Existing strategies are varied and meet partially requirements. We propose to examine
these strategies according to different viewpoints or facets of evolution:

2.1 The three Facets of Evolution

Rather than classifying some evolutionary strategies according to some common
but not exhaustive criteria, we propose a classification resting on own evolution's
criteria. We consider that evolution of any 00 system presents three facets:

0 Type of evolution: when needs are taken into account during the analysis and
design phases, the evolutionary strategy is preventive or anticipated. When an
evolutionary strategy can face new or badly specified needs, the evolution is said
curative or unanticipated.

0 Object of Evolution: the evolution can concern be the product (code, class,
schema ... ) or the process (a part of reasoning, a development process of an
application ... ).

0 Process of Evolution: we distinguish two kinds of evolutionary processes:
development and emergence. The development concerns classes and their impacts
on corresponding sub-classes and instances. The emergence concerns instance
evolution and their impacts on corresponding classes.

Each facet is represented by an axis. The combination of the three axis gives a three-
dimension representation of the object evolution.

Mos

PrQpLGed

EodoModel

Fig. 1. Thrice facets of the evolution object

In order to classify a strategy, we have just to answer these three questions:



342 M. Oussalah and D. Tamzalit

1. What kind of evolution this strategy propose (curative or preventive)?
2. What does it process on (product or process)?
3. What kind of evolutionary process does it allow (development or emergence)?

By responding to these questions for each studied strategy [9], we notice that most of
them propose a curative evolution, that they principally work on the product by
considering essentially development process. Our research work aims to complete
these preventive strategies. For that, our model responds to the three aforesaid
questions as follows: 1: curative - 2: product - 3: principally emergence.

2.2 Object Evolution problematic under the product viewpoint

We restrict Fig. 1 to a two-dimension figure because we only consider the product. For
space restriction reason, we only situate evolutionary strategies on the Fig. 2 in order
to position them according to the object evolution problematic. Fig.2 shows that most
of 00 evolutionary strategies are preventives and allow development processes. Only
categorization [7] allows emergence but in a preventive way with a break in the life
cycle. We note that the principal lack of the existing evolutionary strategies are their
inability to cope with unexpected or poorly specified needs and incomplete data.
Moreover, instance evolution is always limited by class' one. This situation constitute
a restrictive and unnatural aspect of their evolution. Our model leads with this aspect,
principally with the emergence.

Evolutionary ngetrateg
Process

a.... '" i(Algoithmic approaches
E

.......... t e n........ . . . .

Serioversioning approrh io

Characteristic migration

F Re-.a tm-ent
CI [ ass a Rorganizatin

Continuous with Break
Curative I Preventive Evolution Type

Fig. 2. Principal strategies according to the process and the type of evolution

3. The proposed model

Because instances are the object representatives of real entities, we consider them
as full individuals. This leads de facto to make an analogy with leaving individuals,
principally in their evolving and adapting feature according to their environment.
Since we use some principles and concepts of Artificial Evolution, we give a brief
presentation of Artificial Life and Genetic Algorithms. For more details, see [9].



Emergence Measurement and Analyzes of Conceptual Abstractions 343

3.1 Artificial Evolution: our inspiration source

Even if they have been defined and are used in different scientific areas, Artificial
Life [4] and Genetic Algorithms [3] toke their inspiration from biology in order to
simulate evolutionary biological mechanisms. From evolutions and mutations, newly
well adapted parts of information arise. We have been attracted by this principle.
Artificial Life uses concepts of GTYPE and PTYPE (by analogy to genotype and
phenotype of biology). They evolve by unceasingly interacting through development
and emergence processes. Genetic Algorithms [3][5] inspire us in their mechanical
operating and used operators.

3.2 Concepts

1. Basic concepts: population, Instance-PTYPE and Class-GTYPE:

L Population and Genetic patrimony: a group of classes representing various
abstractions of one and the same entity forms a population (like the population of
members of a university). All the attributes constitute its Genetic Patrimony.

DI Instance-PTYPE: instances are the phenotype and represent entities called upon to
evolve.

D Class-GTYPEI: classes define instances features, their genetic code.

We present an example which will be taken again and unrolled all along the article:

SurameInhe~ritance, Link

Nbr-Publications __

TEMPORARY Beginning-date

-ATER: is a person SN R oSA Ewh oistmorar
attachd -otahia, RESEARCHSTUENT r...h.aand research sc ar Research-Paaject

Fig. 3. Members of a university described at the class level

2. Advanced concepts: Fundamental, Inherited and Specific Genotypes: In a
class, not every gene plays the same role or has the same prevalence. We consider
that any class is entirely specified through three types of genotypes:

0 Fundamental Genotype or FG: any object presents fundamental features,
represented by particular genes representing the minimal semantics inherent to all
classes of a same population.

1 In order to simplify, we will use the classical term of class (respectively, instance) in place of

Class-GTYPE (respectively, Instance-PTYPE).



344 M. Oussalah and D. Tanizalit

E Inherited Genotype or IG: properties inherited by a class from its super-class
constitute the Inherited Genotype.

E Specific Genotype or SG: it consists of properties locally defined within a class,
specific to it.

3. The scheme: the scheme expresses in a simple and concise way, genes in the
attributes and methods form. It has the same genetic structure as the represented
entity. Each gene is represented by 0, 1 or #: 0 for absence of the gene, 1 for its
presence and # for its indifference. The scheme is a simple and powerful means to
model groups of individuals. We consider two kinds of schemes: the permanent
scheme, associated with each specified class and having the same structure, and the
temporary scheme, which is a selection unit of one or a group of entities (instances
or classes).

The example's model presented in Fig.3 is described in Fig. 4 taking into account the
aforesaid concepts.

IUNIVERSITY-MEMBERI
• sa •,x•t-u•University-Member

v1ass-GTYPE, deiaioa- - suhetmie

/ ic.IIdemon-Nan, j
NSrame Idrical ! a

IG sarName l Id Nnti n1

___ 1EERHStD ENO.~SA~l

RResehTh- Th e seSG b tot ratoLa

Nbr-Pub-catPons

DuratioBninnig-dae inn-dt

RESERCH-STUENA
i'i'-'~ ~ [: d Idenrtifatn- N= Id-l-• Ir 1 -

IG SG i Z Iear S R... .I.od,. R ýh-`11 R.... h-,-

Fig. 4. the same example in our model

3.3 Evolutionary Processes

An evolutionary process is triggered when a change, envisaged or not, appears in
the model. The process must be able to detect this change, find entities implicated in
the evolution and reflect this change adequately:

1. Phases: we consider that an instance's evolutionary process is carried out in three
phases: an extraction phase, an exploration phase, and finally an exploitation
phase:



Emergence Measurement and Analyzes of Conceptual Abstractions 345

11 Extraction Phase: extracts the object's genetic code within a temporary scheme.

Li Exploration phase: explores all classes to locate adapted, even partially, ones. First
it selects set of concerned populations, then it carries out the search in that set.
Selection is the operator used thanks to the calculation of the adaptation values
Avs (section 2).

Li Exploitation phase: manages the impacts by development or emergence way. The
development process represents the impact of class evolution on instances, while
the emergence processes concern any emergence of new conceptual information,
by way of impacts on classes. There are two possible outcomes: local emergence is
related to the emergence of new information within existing class(es). The genetic
code of the object has mutated and this can force mutation in its class; and the
global emergence related to the emergence of a new conceptual entity.

2. Object operators: it is necessary to define basic operators to handle instances and
classes. The two most important are those of selection and crossing-over:

0i Selection: is defined to determine, after structural evolution of an instance, which
class holds part or all of its specification.

Li Crossing-over: works on two entities via their scheme to interchange their genes to
define a new group of genes. It constitutes the core of the emergence process (took
from [8]). It amounts to granting a weight relating to parents for genes transmission
to children. We add to that a significant constraint: a permanent scheme presents at
most two significant blocks (after FG): IG's genes and SG'genes. When processing
the crossing-over, these blocks must be respected. It is the constraint of bocks of
genes. The crossing-over is guided by the block constraints in order to ensure a
minimal coherence for emergent schemes.

Di Adaptation value Av: calculate the semantic distance between the evolved object
and classes. Denoting the evolved object's scheme by SchbJ and the close class's
scheme by Sch p~a., the adaptive function is defined, using the operator A
(andi- ogic): Av (Sch P_) = Y_ ( =,4 .) Sch.,[i]ASchP_[i] }/n, where n is number of genes
specified in the evolved object; i is the variable index from 1 to n, defining, at each
stage, the position of two respective genes of the analyzed schemes.

Li Semantic Distance sd: is the value which expresses the semantic proximity
between an emergent scheme and one of its ancestor. It helps to choose the
super-class of the new abstraction. We use the same adaptive function defined for
the calculation of Avs.

3. Examples: we consider following instances which not only evolve in their first
structure, but they also introduce new attributes to become:



346 M. Oussalali and D. Tanizahit

IGenetic Patrimony _______ Instances become

rIdentification-Num 1) #3 #8 #4 #7 #1
PG Name (2) Ni N2 N3 N4 N5

L Surname (3) P1 P2 P3 P4 P5
Research-theme (4) Automatic -'Ma~bomatios Object Constraints Object

Laborator (5) Li -1L2 L3 Li L5
Nbr-Publications (6)

Specialt (7)
Modules (8) + Segmentation S
duration (9) 1_______I_

Beginning-date (10) 01-10-2000 0-020 10-O-
Nbr-hours (11) .____96_

Tutor (13) - Dupos~nt Duransi[ - un _________

Research-Team (14) + Vision +_____________ __________

hank ++ - - ______F

Position ++Engineer !______ _____

Responsibilii ______________ ++ Supervisor I__________

Responsible I______ ____________ ++ Mr. X_____

attribute existing attribute I-sttdhutcý Lost attribute I+attribute gained attrib-ut-e (++atiribuie new trbs1

0 Exploration phase: we calculate the Adaptation Value Av for each temporary
scheme with each existing class:

COnlsosfrecobject : 01 : patal adpe clsss Techr Atr Research-Student and SeirRserhr The ar caddae fo crsig-vr 0 no0
adapedclas 03: on copetl adpe #ls:Sno-eerhr 4 he

S0.cosn-vroTeceAeanSeirResearcher' scems Av is an /5 0 35 / /
Tadatto au hch ispnere wit th ote Avs.65 15 04 /



Emergence Measurement and Analyzes of Conceptual Abstractions 347

N°Population Crossing-over

_ 1 I # # 1 0L_ i o" ' W I #
1: Random bonds i 0.34 - -.59 - 0.42 -0.70-0.15 0.60 0.50 0.43 ' 0.10 0.90 -A

Teacher Teac er 0 0 -0 i1 i1 -0 0 0 '- 0 0 1/4
Ater Ater I1 1 # 0 1 i1 0 1 1, 0 0 3/4
Sr-Researcher l................... E.1 .................... 1 1 1 # I . .1......... 0 , 0 00 3/4

S................E • ............... I =0 0 j 0 ....... .. ............... ... • . .... ........ ......... .. • • ...o ........_.. ....... ....... ..._
E2 # 0 # 1.. 0 0 1 0 # 0 0 1/4

2:.1 J:zz z 0.20. ~
Random bonds 0.05 0 0.20 0.10.0.49 79 3 ...7 0.25 .... 0. 0. ....

ElI E2 0 iji!01 0 0 0 10 5/21.
E2 S"Researcher 1 1 1 0 I0 0 1 0 1 1 # 16/21

I O OUercer E 0 1 0 .1 0 .S -e e r h r ................ E 3.................. 0 0 : 0 ................ O .......0 1 ..... • ......•:. L : '....[ ... . _ ........ ....• ...

E4 1I 1 1 1 0 1 0 1•'i 1 # 5/5

0 1 1 # # T1 0 1 0 -7~o_1 m__
3: Random bonds 0.34 0.19 0.02 0.70 015 0.60 0.50 0.33 ZL' . 0.80 0.90 Avp
El El 1 1 1 # i1 1 0 0 0 ''/ 0 0 8/23

E l_ _ _ _ ....... .... ... .... '... ......... ........ ...
E3 E3 O0 0 1_ 1 0 0 1 0 1 0 15/23

....................... ............. 1 1 i# I 1 J1 0 1 0 0 Z 5
......... . ... .. . . _....................

1Scheme Selected scheme
Absent gene from all schemes are ignored in the crossing-over since it has no significance

Crossing-over ends because we have two emergent schemes: E4 and E5.

D1 0,: global emergence by direct creation of the abstraction - place of insertion? As
a sub-class of University-Member because 0 , has only the FG which is common
with all other classes.

D 03: local emergence of the new attribute 'Responsibility' in Senior-researcher
class because it is the unique completely adapted class.

LI 04: global emergence by direct creation of the abstraction - place of insertion?
Three Avs are equal to 1. Among the three well-adapted classes, Temporary is
the most eligible because it's the representative abstraction of the temporary
subpopulation. But as it's an abstract class, 04 represents another abstraction of
temporary researchers. So, it provokes emergence of a new sub-class of
temporary.

D 0: crossing-over on the same population as O, Crossing-over steps are the
same. The final step stops with the emergent scheme E5.

3.4 Discussion on emergence

After the structural evolution of 0 ... , 0, the emergent processes permit to detect
the kind of emergence, the abstractions concerned and also the location of changes
and insertion of new classes (there are more details in [9]). But sometimes, we can just
conclude that the emergent scheme is an abstraction of the permanent sub-population,
but not it's precise location in this sub-population. We propose to enrich the
emergence process in order to control it and to choose in a better way by using
metrics.



348 M. Oussalah and D. Tamzalit

4. Model of metrics

We apply the GQM technique [1] in order to determine where metrics are useful in
the emergence process. We take our inspiration from class context metrics [2]. As we
want to analyze any emergent abstraction in an internal and external way, we identify
two contexts for metrics:

Question ( Sub- uestions Metric Comments

the most significant S=difference between scheme and instance nearest scheme to instance

Intra- the less C,= number of contradictions between attributes and weaker =less
Abstraction contraldictory_ ?................... attribute blocs .............. contradictions

Context the most coherent? C, =1simple attributes +Y attribute contradictions + I weaker =less incoherence
blocs + 7 blocs contradiction

..... .parents ? -P, = detection of sulpe-r-class-(s) Sd
Inter- Contradiction with C,=Ycontradictory attributes+Y-contradictory blocs weakernless contradiction

Abstraction parents?
Context Coupling-- ---- C = references towards and from other classes weaker=minimal coupling

Depth in hierarchy? P osition inside the hierarchy weakernlessreorganization

Since we apply these metrics, we could better choose and apply emergence results.

5. Conclusion

The first objective of our research work is to allow a designer to attempt to
apprehend and to anticipate the future changes and requirements of complex and
bulky 00 applications. This is possible by simulating several evolution ways by
expressing new requirements on instances. We have seen in fact that several ways of
class evolution can emerge from structural instance evolution. In this paper, we
propose metrics in order to analyze and control what emerge, how it can change class
specifications and the possible impacts. We propose two kinds of metrics:
intra-abstraction context metrics and inter-abstraction context metrics. Metrics are
not systematically applied if the designer precise invariants to respect during
evolution and emergence. All this is done in order to offer a simulation tool of
application evolution to help the designer for evolution and maintenance of complex
applications.

Bibliography

[1]Basili, V.R., Weiss, D.,"A methodology for collecting valid software engineering data",
IEEE TSE, Nov. 1984 p728-738.

[2]Chidamber S.R Kemerer C.F"A Metrics Suite for OOD"IEEE TSE vol.20(6) 94, p.4 76 -49 3 .
[3] Goldberg D.E. "Algorithmes G6n6tiques", Edition Addison-Wesley, 1994
[4] Heudin J.C. "La Vie Artificielle", Edition Hermes, 1994.
[5] Holland J "Adaptation in Natural and Artificial Systems", University of Michigan Press, 75.
[6] Kim W. "Introduction to 00DB", MIT Press, Cambridge Massachussetts, 1990.
[7]Napoli A. "Repr6sentation h objets et raisonnement par classification en IA", Th~se 1992.
[8] Syswerda G. "Uniform Crossover in Genetic Algorithms", ICGA, 1989, p.2 -9 .
[9] Tamzalit Oussalah"From Object Evolution to Object Emergence ACM CIKM'99 p.514-521
[10] Wei Li, J. Talburt "Empirically Analyzing OOSoftware Evolution" JOOP Sept 98, p. 15-19



Using Intelligent Systems in Predictions of the Bacterial
Causative Agent of an Infection

Diana R. Cundell t , Randy S. Silibovsky2, Robyn Sanders2 , and Les M. Sztandera'

'School of Science and Health, Philadelphia University, Philadelphia, PA 19144, USA
2 Department of Infectious Diseases, Albert Einstein Medical Center, Philadelphia, PA

19104, USA

Abstract. In this study, we designed a fuzzy logic system to examine the influ-
ence of the demographic variables of age, blood type, gender and race on bacte-
rial infection rates using a medical database assembled over 17 months from
patients presenting to Albert Einstein Medical Center. The intelligent system
was created using 155 patients, randomly selected from the database, and con-
sisted of four input categories of demographic variables and four output catego-
ries of bacterial infection ("streptococci", "staphylococci", "Escherichia COWi'
and "non-E. coli gram negative rods"). The remaining 32 patients were used to
assess the program's ability to correctly determine bacterial infection when pro-
vided only with demographic data. Our intelligent system correctly assigned the
bacterial output group in 27 of these 32 patients, giving an overall correlation of
84.4%. These studies suggest that demographic variables are major factors in-
fluencing bacterial infection. Such a system may, therefore, hold promise as a
diagnostic tool.

1 Introduction

The ability of physicians to diagnose bacterial infections is currently dependent on the
use of a series of developed algorithms in which the most likely etiological agent is
determined based on the patient's symptoms, previous history and predisposing
physiological factors. Improvement of this diagnostic tool would involve identifying
additional variables, which might serve as risk factors for infection by a particular
bacterial species or genus.

Previous studies have indicated that the demographic variables of age and blood
type might act as predisposing agents in bacterial infection [1-3]. Indeed, advanced
age has been shown to be a risk factor for pneumococcal infection [1] and expression
of blood types A or AB appears to predispose individuals to tuberculosis [2] or cholera
[3] infection. In the case of tuberculosis infection blood type expression may even be a
major risk factor; a study of the Innuit showed that the infection was three times more
common in individuals of blood types A and AB than any other group [2]. Using tra-
ditional statistical methods, these studies have been able to show a putative role for
individual demographic variables, as risk factors in bacterial infections but shed no
further light as to how these variables might be involved in the course of bacterial

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 349-357, 2000.
0 Springer-Verlag Berlin Heidelberg 2000



350 D.R. Cundell et al.

disease. The development of the fields of artificial intelligence (fuzzy logic) and ge-
netic algorithms now allow the creation of computer programs in which complex
associations between several variables can be "learned" and used predict the outcome
of given situations [4,5]. Fuzzy logic programming has proven to be of particular use
for the development of models of biological and medical systems since these fre-
quently include "shades of gray or maybe" interactions between several variables
which can not be efficiently analyzed using traditional computerized statistical meth-
ods [4,5].

The association between demographic factors and bacterial infections repre-
sents a highly suitable system to model using fuzzy logic, as all variables are definable
using well-established parameters. A prospective investigation was therefore under-
taken to examine the association between blood type, age, gender and race and bacte-
rial infection rates, using a medical database obtained over a 17-month period from
187 patients presenting to the wards of Albert Einstein Medical Center. To investigate
how closely the variables of blood type, age, gender and race were associated with
bacterial infection, the fuzzy logic program generated from these patients' data was
tested for the ability to correctly ascribe bacterial infection when given only the demo-
graphic data of 32 randomly selected patients.

2 Methods

2.1 Data Collection

Collection of data was governed under the rules of a collaborative, expedited IRB
agreement (HN-2092) made between Philadelphia University and Albert Einstein
Medical Center. Each patient provided written consent, permitting confidential use of
their data, and was admitted into the study if their infection resulted from a single,
identifiable pathogen. All bacteriology data was obtained courtesy of the Clinical
Laboratories of Albert Einstein Medical Center. Patients not included in the study
included those with underlying disease predisposing to infection, pregnancy, mental
disability or minor patients.

2.2 Medical Database and Fuzzy System

The data set investigated consisted of a real medical database comprising 187 patients.
Patient data was randomly assigned into two categories; training data (155 patients)
and test data (32 patients; 8 patients within each of the four bacterial output groups).
The intelligent system was modeled using the 155 patient training data using four
input classes (demographic variables of age, blood type, gender and race) and four



Using Intelligent Systems in Predictions of the Bacterial Causative Agent 351

output classes (bacterial infections with the species "staphylococci" (S. aureus and S.
epidermidis), "streptococci" (S. pneumoniae, and groups B and D streptococci), "Es-
cherichia coli" and "non-E. coli gram negative rods" (species of Klebsiella, Serratia,

Bacteroides, Morganella, Prevotella, Pseudomonas and Proteus). The four output and
input spaces were divided into several fuzzy subsets and assigned linguistic terms.
Decision surfaces for two inputs; age and blood type and the output bacterial classes
are shown in Figure 1. Each region was then assigned a fuzzy membership function. A
triangular shape was selected with height 1 at the center of the region and 50% overlap
between neighboring sets (for the input parameters). Fuzzy sets for the output pa-
rameters are shown in Figure 2. Fuzzy rules were generated, using "IF...
AND .... THEN", where "IF.. .AND" were generated from the input parameters and
"THEN" from the output parameters. The system generated 173 rules, 159 of which

received the highest count and were retained. A fuzzy interference engine was exe-
cuted and mapping made based on the 159 remaining rules using correlation product
interference. Defuzzification of the data was based on the center of gravity method,
which was sensitive to all remaining rules. The 32 patients constituting the "test" set,
in that they had been previously unseen by the system, consisted of 8 patients clini-
cally defined as belonging to each of the four created output groups.

•/ organisrm

1.0

L I 
blood

Fig. 1 - Decision surfaces for two inputs (age and blood type) and the output (bacteria) demon-
strating correlation between blood type/ patient's age and the type of bacteria



352 D.R. Cundell et al.

~x 8(9 .G1,00

1.0-

0.8-

0.6-?

0.4-

0.2-

0.00 N
0.7 1.42 2.14 2.86 35.8 4.3

Fig. 2 Fuzzy sets representing output bacterial classes. The four output bacterial classes of
staphylococci, streptococci, E. coli and non-E. coli gram negative rods were each described, in
the order shown, using a triangular shape with height 1 at the center of the region and no over-
lap between classes

3 Results

3.1 Age, Blood Type, Gender and Race Distribution for the Four Output Classes

of Bacterial Infection within the Patient Database

The demographic and bacterial infection variables of the patients in the medical data-
base generated for this study are shown in Table 1. Of the 187 patients, 64 were in-
fected by staphylococcal species (34% of total infections). Patients infected with
staphylococcal species per se demonstrated more than a two-fold increase in the fre-
quency of blood type B (22%) in comparison with that normally observed in the gen-
eral population (10%) with a decrease in the frequency of type A (31% compared



Using Intelligent Systems in Predictions of the Bacterial Causative Agent 353

Table 1. Age, blood type, gender and race distribution for the four output classes of bacterial
infection Frequency in each output class (%)

Input Staphylococci Streptococci E-coli Non-E. Total
(n = 64) (n = 40) (n= 28) coli (n = 187)

GNR
(n= 55)

Age
20-40 6(9%) 5 (12%) 3 (11%) 8 (14%) 22(12%)
41-60 15 (23%) 18 (45%) 4 (14%) 13 (24%) 50 (27%)
61-80 33 (52%) 10 (25%) 16 (57%) 23 (42%) 82 (44%)
81-100 10(16%) 7 (18%) 5 (18%) 11(20%) 33 (17%)

Blood
type
A 20 (3 1%) 15 (38%) 9 (32%) 17 (31%) 61(33%)
AB 2 (3%) 4 (10%) 1(4%) 3 (5%) 10 (5%)
B 14 (22%) 9 (22%) 2 (8%) 5 (9%) 30 (16%)
0 28 (44%) 12 (30%) 16 (56%) 30 (55%) 86 (46%)
Gender
Male 38 (59%) 27 (68%) 12 (43%) 31(56%) 108 (58%)
Female 26 (41%) 13 (37%) 16 (57%) 24 (44%) 79 (42%)
Race
African- 34 (53%) 23 (58%) 14 (50%) 35 (64%) 106 (57%)
American
Asian 2 (3%) 1 (2%) 2 (7%) 0 5 (3%)
Caucasian 26(41%) 13 (33%) 11(39%) 17 (31%) 67 (36%)
Hispanic 2 (3%) 3 (7%) 1 (4%) 3 (5%) 9 (4%)

Groups of bacterial species defining output classes used in the Table were defined according
to standardized microbiological classifications [6-8]
to a normal frequency of 40%). Frequencies of types AB and 0 were similar to the
general population.

The 40 patients who were infected by streptococcal species demonstrated
more than a two-fold increase in the frequency of both blood types AB (10%) and B
(22%) in comparison with the general healthy population (5% and 10%, respectively)
with a decrease in the frequency of type 0 (30% compared with 45%). The frequency
of type A was similar to that expected in the general population at large.

E. coli infections accounted for 28 of the 187 patients in the study (15% of
total infections). There was an increase in the frequency of type 0 in these patients of
10% compared with the expected frequency from the general population and a com-
mensurate decrease in frequency of type A.



354 D.R. Cundell et al.

Infections with non-E. coli GNR constituted 55 of the 187 patient admissions
(29%) and involved several species of bacteria: Klebsiella pneumoniae (n=14), Pro-
teus mirabilis (n=1 I), Bacteroides species (n=10), Serratia species (n=7), Enterobac-
ter cloacae (n=4), Pseudomonas species (n=4), Morganella morgani (n=3) and
Prevotella species (n=2). Interestingly, the blood group distribution for this broad-
spectrum category was similar as that for E. coli.

In all output groups except one, the gender distribution was similar to that of
the general patient population with slightly more males than females (58% compared
with 42% in each group). Interestingly, in the E. coli output group, the reverse was
true with only one-third of those infected being male and two-thirds female. Three
groups also showed a similar age distribution (staphylococci, E. coli and non-E. coli
GNR), with the majority of patients being over 60 (68, 75 and 62%, respectively). In
contrast, the streptococcal group was somewhat younger with 57% of patients being
60 or less. Race distribution was found to be fairly homogeneous across the four out-
put groups.

3.2 Intelligent System as a Predictor of Bacterial Output Class

The novel fuzzy logic system generated from 155 of the 187 patient database was also
tested for its ability to correctly determine the bacterial infectious agent of the re-
maining 32 patients when provided solely with demographic data. The program was
able to correctly assign all patients with streptococcal infections (8/8), 7 out of 8 pa-
tients with E. coli infections and 6 out of 8 patients with either staphylococcal or non-
E. coli gram negative rod infections (non-E. coli GNR) to their output groups. This
gave an overall prediction rate for the patient sample of 27/32 or 84.38%.

The 5 patients who were incorrectly classified by the program were placed
into the following output groups: 2 patients with non-E. coli GNR were assigned to the
E. coli category , 2 patients with staphylococcal infections and 1 patient with E. coli
infection were assigned to the streptococcal category. This system is currently under
development and, as such, no clinical evaluation of its efficacy at diagnosing bacterial
infection in the absence of standard clinical algorithms has yet been performed.

4 Discussion

These data suggest that, with training, bacterial infection may be predicted with rela-
tive efficiency by inputting a patient's data for blood type, gender, age and race into a
fuzzy logic program. There have been previous studies in the literature, which have
suggested a putative correlation between demographic variables and bacterial infection
[1-3], but it is not until now, with the advent of this powerful analytical tool that the
dynamics between these factors can be interpreted.

By designing a fuzzy logic system, using a real medical database, we were
able to correctly diagnose 27 patients from the 32 patient test group using only the
demographic variables of age, blood type, gender and race, for four separate groups of



Using Intelligent Systems in Predictions of the Bacterial Causative Agent 355

infectious agents, namely staphylococci, streptococci, Escherichia coli and non-E. coli

gram negative rods. Of these four output groups, the program was able to correctly
assign all patients with streptococcal infections (8/8), 7 out of 8 patients with E. coli
infections and 6 out of 8 patients with either staphylococcal or non-E. coli gram nega-

tive rod infections (non-E. coli GNR) to their output groups. This gave an overall
prediction rate for the patient sample of 27/32 or 84.38%. The 5 patients who were
incorrectly classified by the program were placed into the following output groups: 2
patients with non-E. coli GNR were assigned to the E. coli category , 2 patients with
staphylococcal infections and I patient with E. coli infection was assigned to the

streptococcal category.
This finding is particularly impressive since staphylococci and streptococci

(output groups 1 and 2) have a number of features in common [9,10]. Both organisms
inhabit the same microbial niches, being chiefly residents of the skin and mucous
membranes, have a similar structure to their outer cell wall (gram-positive), produce
closely similar virulence factors for invasion and produce similar spectra of disease
[9,10]. As a result, they are often difficult for clinicians to distinguish based on clinical
algorithms alone and in the absence of microbiological laboratory data. Interestingly
the remaining two output groups, namely the E. coli and the non-E. coli GNR catego-
ries, also share a number of features. Both E. coli and non-E. coli GNR bacteria in-
habit similar microbial niches, being chiefly residents of the gastrointestinal tracts of
humans and animals, are gram negative organisms and produce similar spectra of
disease[ 11]. The finding that E. coli was incorrectly assigned in two individuals is
therefore not a surprising one since as well as sharing the habitats of these opportun-
ists, E. coli frequently behaves as one in individuals whose immune systems are com-
promised due to surgery, tracheostomy, catheterization or renal dialysis [11].

Examination of the distribution of the demographic variables across the four
output groups (Table 1) demonstrated that there were subtle differences in age, blood
type and gender between the four output groups, which had clearly allowed the intelli-
gent system to differentiate between them. Of these variables, blood type distribution
was the most significantly different within the patient population and between the four
output groups (Table 1). In the general, healthy human population, regardless of racial
origin, approximately 40% of individuals will be of blood type A, 5% of type AB,
10% of type B and 45% of type 0 [12]. In contrast, the hospitalized population dem-
onstrated a decrease in expected frequency of blood type A (40% to 33%) and an
increase in frequency of blood type B (10 to 16%), with types AB and 0 having values
as expected (Table 1).

Differential distributions of blood type frequency were also observed when

the output classes of staphylococcal and streptococcal infection were compared (Table
1). These infections constituted the majority of cases in the medical database
(104/187; 56%) and thus would be expected to provide the most permutations in terms
of demographic variable combinations. In addition, the groups were both microbio-
logically similar, since both are gram-positive organisms, with similar demographic
variable distributions of gender and race. Only one variable, apart from blood type,
was different between the two classes; the streptococcal-infected patients represented
a somewhat younger group being mostly below the age of 60 (Table 1). Both groups



356 DR. Cundell et a].

demonstrated an increased frequency of blood type B (22%) above that expected for
both the patient population (16%) and the general healthy population (10%) and a
decrease in frequency of blood type A commensurate with the general population
(33%; Table 1). Staphylococci-infected patients had similar frequencies of blood types
AB (3%) and 0 (44%) as both the general patient and normal healthy populations. In
contrast, patients with streptococcal infections demonstrated an increased frequency of
individuals with type AB (10%) and a decrease in the frequency of type 0 (30%; Ta-
ble 1)

Patients with E. coli and non-E. coli GNR infections were also found to have
a differential blood type distribution from the general patient population (Table 1).
The organisms from these two output groups shared microbiological features in com-
mon but differed demographically since the E. coli group were significantly older than
the general patient population distribution (71% over 60 years) and were predomi-
nantly female (67%) (Table 1). In spite of differences in other demographic variables,
both groups showed a similar blood type distribution with an increased frequency of
blood type 0, when compared with both the general healthy population and the patient
population as a whole (53-55% compared with 45%; Table 1).

Bacterial infection is a highly selective and dynamic process in which the
host is targeted based on a complex interplay of many factors, which are only now
gradually beginning to be understood. The results of this study suggest that the demo-
graphic variables of blood type, gender, age and race may be involved in bacterial host
selection, and that such differential targeting may allow us to use these variables as a
predictor of disease. In this study, the size of our population did not allow us to estab-
lish which variables were the most strongly associated with the bacterial infectious
agent. An increased patient bank of data, which is currently being generated courtesy
of an Einstein Society Award from Albert Einstein Medical Center, would allow fur-
ther tuning and development of the program to eliminate any variables, which prove to
be redundant. More patient data will also allow the subdivision of the current bacterial
infection categories to single species, making the program more specific. Indeed, it is
anticipated that the combination of currently used clinical algorithms with a user-
friendly, simplified version of the current program might allow its eventual use by all
physicians to make more accurate initial predictions of the bacterial causative agent of
an infection.

References

1. Nester, E.W., Roberts C.E., Nester M.T.: Interactions between humans and microorganisms.
In: Nester, E.W., Roberts C.E., Nester M.T (eds.): Microbiology, A human perspective. First
edn. Win. C. Brown Publishers, Dubuque (1995) 353-354.

2. Overfield T., Klauber M.: Prevention of tuberculosis in Eskimos. Human Biology, 52 (1980)
87-9 1.

3. Minkoff C., Baker P.J.: Variation among human populations. In: Schank D, Connell T.
(eds.): Biology Today an Issues Approach. First edn. McGraw-Hill Publishers, New York
(1996) 146-158.



Using Intelligent Systems in Predictions of the Bacterial Causative Agent 357

4. Sztandera L.M., Goodenday L.S., Cios K.J.: A Neuro-Fuzzy Algorithm for Diagnosis of
Coronary Artery Stenosis. Computers in Biology and Medicine Journal, 26 (1996) 97-107.

5. Kosko, B.: Fuzzy logic and engineering. In: Kosko, B. (ed.) Fuzzy Engineering. First edn.
Prentice Hall, Upper Saddle River (1997) 3-37.

6. Holt, J.G. Krieg, N.R., Sneath, P.H.A., Staley, J.T.,Williams, S.T.: Group 17: Gram Positive
Cocci. In: Holt, J.G., Krieg N.R., Sneath P.H.A., Staley, J.T., Williams, S.T. (eds.): Ninth
edn. Bergey's Manual of Determinative Bacteriology, Williams and Wilkins, Baltimore
(1994) 528.

7. Gilchrist, M.J.: Enterobacteriacae: Opportunistic pathogens and other genera. In: Murray,
P.R., Baron, E.J., Pfaller, M.A., Tenover, F.C., Yolken R.H. (eds.): Sixth edn. Manual of
Clinical Microbiology, ASM Press, Washington, (1995) 457-464.

8. Jousirnies-Somer, H.R., Summanen, P.H., Finegold S.M.: Bacteroides, Porphyromonas,
Prevotella, Fusobacterium and other anaerobic gram-negative bacteria. In: P.R. Murray, E.J.
Baron, M.A. Pfaller, F.C. Tenover, R.H. Yolken (eds.): Sixth edn. Manual of Clinical Mi-
crobiology, ASM Press, Washington (1995) 603-620.

9. Kloos, W.E., Bannerman, T.L.: Staphylococcus and Micrococcus. In: Murray, P.R., Baron,
E.J., Pfaller, M.A., Tenover, F.C., Yolken R.H. (eds.): Sixth edn. Manual of Clinical Micro-
biology, ASM Press, Washington, (1995) 284-291.

10. Ruoff, K.L.: Streptococcus. In: Murray, P.R., Baron, E.J., Pfaller, M.A., Tenover, F.C.,
Yolken R.H. (eds.): Sixth edn. Manual of Clinical Microbiology, ASM Press, Washington,
(1995) 299-302.

11. Talaro, K., Talaro, A.: The Gram-Negative Bacilli of Medical Importance. In: Talaro, K,
Talaro, A. (eds.): Fourth Edn. Foundations of Microbiology, W.C. Brown Publishers, Boston
(1999) 630-640.

12. Audesirk T., Audesirk G.: Patterns of Inheritance. In: Minkoff E.C., Baker P.J. (eds): First
edn. Biology, Life on Earth, Prentice Hall Publishers, Upper Saddle River (1999) 213.



An Intelligent Lessons Learned Process

Rosina Weber', David W. Aha , Hector Mufioz-Avila 3, and Leonard A. Breslow2

1Department of Computer Science, University of Wyoming, Laramie, WY 82071-3682
2Navy Center for Applied Research in Artificial Intelligence,

Naval Research Laboratory (Code 5515), Washington, DC 20375
surname@aic.nrl.navy.mil

SDepartment of Computer Science, University of Maryland, College Park, MD 20742-3255
surname@cs.umd.edu

Abstract. A learned lesson, in the context of a pre-defined organizational
process, summarizes an experience that should be used to modify that process,
under the conditions for which that lesson applies. To promote lesson reuse,
many organizations employ lessons learned processes, which define how to
collect, validate, store, and disseminate lessons among their personnel, typically
by using a standalone retrieval tool. However, these processes are problematic:
they do not address lesson reuse effectively. We demonstrate how reuse can be
facilitated through a representation that highlights reuse conditions (and other
features) in the context of lessons learned systems embedded in targeted
decision-making processes. We describe a case-based reasoning
implementation of this concept for a decision support tool and detail an
example.

1 Lessons Learned Process

Lessons learned (LL) processes (Weber et al., 2000b) are knowledge management
(KM) solutions for sharing and reusing knowledge gained through experience (i.e.,
lessons) among an organization's members. LL systems are motivated by the need to
preserve an organization's knowledge and convert individual knowledge into
organizational knowledge so that, when experts become unavailable; other employees
who encounter conditions that closely match some lesson's context may benefit from
applying it. Therefore, a lesson learned is a validated working experience that, when
applied, can positively impact an organization's processes. While some organizations
can quickly update the processes targeted by lessons, thus eliminating the need for a
repository of lessons, other organizations (e.g., the US military, the Department of
Energy) do not have this luxury (i.e., they cannot easily update their processes), which
necessitates using LL systems to explicitly store and retrieve lessons.

LL systems are ubiquitous; we easily located1 over 40 of them on the WWW, are
aware that many others are used in private industry, and discovered that they rarely
succeed in promoting knowledge reuse/sharing for two reasons (Weber et al., 2000b).
First, the selected representations of lessons typically are not designed to facilitate
reuse, either because they do not clearly identify the process to which the lesson
applies, its contribution to that process, or its pre-conditions for application. Second,

'Our compiled findings are posted at www.aic.nrl.navy.mil/-aha/lessons.

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 358-367, 2000.
© Springer-Verlag Berlin Heidelberg 2000



An Intelligent Lessons Learned Process 359

these systems are usually not integrated into an organization's decision-making
process, which is the primary requirement for any solution to successfully contribute
to KM activities (Reimer, 1998; Leake et al., 1999; Aha, 1999).

KM solutions usually involve both organizational dynamics and technological
components. We propose a technological solution to designing LL systems that
includes a lesson representation chosen to potentiate knowledge sharing in an
embedded system in which lessons are proactively brought to the attention of users. In
the remainder of this paper we summarize research on LL systems, introduce a
representation for lessons that promotes knowledge sharing, discuss the lessons
learned process, describe the design of an active lessons delivery system, and detail an
example of its use as a module in HICAP2 (Mufioz-Avila et al., 1999), a decision
support tool for interactive plan authoring.

2 Related Work

Although dozens of lessons learned centers and their respective systems exist, few
researchers have addressed LL systems, and almost none in artificial intelligence.3

This is somewhat surprising, given that their developers and users overwhelmingly
agree that current LL systems are insufficient. That is, there are several unanswered
research issues regarding intelligent LL systems that need to be addressed.

Several KM publications have reported on issues related to lessons learned
systems (van Heijst et al., 1996; O'Leary, 1998; Secchi, 1999; Habbel et al. 1999,
SELLS, 1999). However, few of these discussed topics related to intelligent systems
(e.g., van Heijst et al. (1997) stress the relationship between case-based reasoning
(CBR) and LL systems). The only deployed application that uses CBR technology is
NASA's RECALL system (Sary & Mackey, 1995), although three research groups
have recently proposed CBR approaches that promote knowledge sharing.

First, the Air Campaign Planning Advisor (ACPA) (Johnson et al., 2000)
disseminates videotaped stories (e.g., best practices) in a planning environment.
However, ACPA does not reason on the stories, nor highlight reuse components or
conditions. Thus, the user must decide whether or not to apply the memory captured
in the story according to their interpretation of it.

Second, CALVIN (Leake et al., 2000) captures lessons concerning which online
information resources should be searched for a given research topic. The subject and
research results are used to index lessons so that when a user starts a search,
previously stored results are proactively brought to the user's attention. Unlike most
LL systems, CALVIN is task-specific rather than organization-specific.

Finally, we propose the Active Lessons Delivery System (ALDS), whose
implementation in HICAP is discussed and exemplified in this paper. Users can
interact with HICAP to author plans by iteratively decomposing complex tasks into
primitive actions. ALDS monitors changes in the plan and plan state (i.e., described
by a set of <question, answer> pairs), and triggers a lesson when its applicable task

2 For more information and demonstrations of HICAP and ALDS, both developed in Java 1.2,

please see http://www.aic.nrl.navy.mil/hicap.
This motivated us to organize the AAAI'OO Intelligent Lessons Learned Workshop, whose
homepage is www.aic.nrl.navy.mil/AAAIOO-ILLS-Workshop.



360 R. Weber et al.

matches a task in the (evolving) plan and its conditions closely match the plan state.
ALDS differs from the previous two embedded architectures in that (1) it focuses
specifically on organizational lessons in the context of planning tasks, (2) it
automatically determines a triggered lesson's interpretation for the evolving plan, and
(3) it allows users to automatically implement a lesson by pressing a button.

3 Lessons Learned Knowledge Representation

In our survey of LL systems (Weber et al., 2000b), we found that lessons are often
represented inadequately, preventing them from being easily reused or understood.
For example, recorded lessons often do not highlight the task for which they apply, or
precisely specify their triggering conditions. Also, free text representations, which are
used in all the deployed LL systems we have found, complicate reuse because this
text has to be correctly interpreted to ensure proper lesson reuse.

A lesson is derived from an experience in which the result derived from applying
an originating action yields significant new knowledge (i.e., a contribution), due to a
success or failure, that can, and should, be taught to others. A lesson's conditions for
reuse are the relevant state variables that existed when the originating action occurred.
An ideal, validated lesson facilitates its dissemination by clearly stating its
contribution and the decision, task, or process4 for which, by applying its
recommended response action (i.e., a suggestion), a user can reduce or eliminate the
potential for failures or mishaps, or reinforce a positive result. In more detail, the
features of a lesson that target improvements to planning tasks are:

Originating action: The action taken in the lesson's initiating experience.

Result: This indicates whether the experience was positive or negative, and helps to
determine whether to recommend repeating or avoiding the same experience.

Lesson contribution: This is the crucial feature (e.g., a set of constraints) that
characterizes the originating action and is responsible for the result of the original
experience. The lesson's contribution is the element that should be repeated, in
conjunction with the originating action, when the experience has a positive result, and
it should be avoided when the result is negative.

Applicable task: This is a pre-defined task in an organization's targeted planning
process. The lesson author must identify the task to which the lesson is applicable.

Conditions for reuse: These are the values of the state that, when matched closely,
will cause a lesson to be reused. Knowledge for identifying and assessing similarity
between conditions and state variables must be elicited from domain experts.

Suggestion: This is the recommended response action. It is entailed by a lesson's
other features (i.e., a negative experience should be avoided) and provided by the
lesson author.

'~In decision-making systems, lessons are applicable to decisions. In planning, lessons are
applicable to tasks.



An Intelligent Lessons Learned Process 361

We illustrate this representation with a lesson from the Joint Unified Lessons Learned
System' concerning non-combatant evacuation operations (Section 5.2). This lesson
refers to the step in which non-combatants had to be registered prior to evacuation in
a disaster relief operation after the April 1991 eruption of Mt. Pinatubo in the
Philippines. The lesson's summary is: The evacuee registration process was very time
consuming and contributed significantly to delays in throughput and to evacuee
discomfort under tropical conditions. Our representation for this lesson is as follows:

Originating action 4 Evacuee registration
Action result 4 Delays, time consuming, and evacuee discomfort -4 negative
Contribution 4 Triple registration process is problematic
Applicable task 4 Evacuee registration
Conditions 4 Under tropical conditions
Suggestion 4 Locate an INS (Immigration and Naturalization Service)

screening station at the initial evacuation processing site.
Evacuees are required to clear INS procedures prior to
reporting to the evacuation processing center.

This lesson refers to a negative outcome (e.g., evacuee discomfort). The
expression "under tropical conditions" is a condition for reuse. In this lesson, the
applicable task is the same as the originating action, although this is not true for all
lessons. The lesson recommends an alternative method of registration that is not time
consuming, which defines its suggestion.

Because a lesson may still be applicable even when its conditions are not perfectly
matched by the state, reusing lessons using a CBR approach is appropriate. The
similarity assessment between conditions and state variables is modeled using elicited
expert knowledge. Adaptation (e.g., replacing tropical conditions with winter
conditions) is not supported because the user must decide whether to apply the
recommended suggestion. The only feature that can be inferred is the suggestion,
from information embedded in the originating action, lesson contribution, and result.

In the implementation of ALDS in HICAP, the applicable planning task and
conditions are used for indexing a lesson.. To improve retrieval and consequently
improve reuse, an effective indexing should anticipate the end users' needs and
indexing style (Kolodner, 1993). Therefore, a different indexing strategy is required
to facilitate retrieval of lessons that target technical decision making. This indexing
strategy should use an expert's model so that technicians can identify the model
component targeted by the lesson (instead of identifying an applicable task) and other
features (e.g., the problem, its causes, and the symptoms associated with that
component).

4 Lessons Learned Process

In Section 1 we identified two problems with traditional lessons dissemination
approaches: lesson representations that do not promote reuse and standalone retrieval
tools. In Section 3 we proposed a representation that facilitates lesson reuse. This
section focuses on embedding LL systems in their targeted processes.

An organization's lesson learned process typically involves the following tasks:
collecting, validating, storing, disseminating, and reuse. For example, military

Shttps ://www-secure.jwfc.acom.niil/protected/jcll.



362 R. Weber et a].

organizations request their members, after completing a mission, to submit lessons to
a LL center, where they are analyzed, indexed according to a task list specific to that
branch of the armed services, validated, and stored in a repository. Lesson repositories
are provided to military personnel, and are accessible on the secure military network
SIPRNET and also on CD-ROMs. An accompanying search engine is used to submit
queries in the hope of retrieving relevant lessons. Thus, LL centers are responsible for
collecting, validating, storing, and disseminating lessons so potential users can reuse
them. These five steps summarize the standard LL process, which varies slightly
among LL centers.

Most systems for lesson retrieval are standalone and passive, and thus ill suited for
promoting lesson dissemination and reuse because they require users to master a new
process (i.e., search for relevant lessons in a separate standalone LL retrieval tool)
that is independent of their problem-solving task. In fact, this process makes several
unrealistic assumptions: it assumes that a user is reminded of the potential utility of a
LL system whenever it may be useful, knows that the system exists, knows where to
find it, has the time and the skills to use it, and can corr ectly interpret and reuse
retrieved lessons.

We identified two desired characteristics of a LL process for facilitating
knowledge sharing. First, it must deliver lesson knowledge during process execution
(e.g., business, planning) to support decision-making. Second, it must be embedded in
the process targeted by a lesson. An embedded LL system should monitor this
process, identify changes in the plan state, recognize when a lesson is applicable to the
current decision or task (i.e., when the conditions of the lesson and plan state match),
and proactively highlight relevant lessons to the user (Figure 1). This process will
allow a user to incorporate a relevant lesson's suggestion, which can potentially
modify the user's decision-making. Thus, this active delivery process promotes
embedding knowledge reuse into the decision-making process.

Pre-defined process
,,Job Wol tt

Fig.~~~~~~~ 1Srpoetlsosaeteeroes
Ths obevtosmtvaeost ei ndaiativelesos deieyapoachio to
beebeddinausrs Decision suprttolnyiuomtcalorin ingrlvn

use. N epriclrti process ca caifyho aLlesonni rlevantoteue'
current ecision-aigts k byrdcnZ relmntn(rblm flso

iTherpetatonserandoselectione dos not require the ustier tosconsudltiaveraparateh Lsytem

should increase the precision and recall of lesson retrieval, and should allow users to
automatically incorporate a triggered lesson's suggestion into the evolving plan.



An Intelligent Lessons Learned Process 363

5 An Active Lessons Delivery System

An embedded active lessons delivery module monitors a decision-making process,
bringing lessons to the user's attention when they become relevant. The primary
constraint on the embedding decision support tool is that it represents and maintains
information on this process that can be used to index appropriate lessons (e.g.,
lesson's task and triggering conditions). We illustrate this active lessons delivery
approach for a military planning process in the context of HICAP. The following
subsections introduce HICAP and detail an example that illustrates the use of ALDS.

5.1 The Decision Support Tool: HICAP

HICAP (_Hierarchical Interactive Case-based Architecture for Planning) (Breslow et
al., 2000) helps users to formulate a hierarchical plan, which is represented as a tuple
P = {T,R,A }. T={T,<,AI is a hierarchical task network (HTN), where each task ta T is
defined by its name t and duration t•, the relation < defines a (partial) temporal
ordering on tasks, and tAt means that t is a parent of t in T. The leaves of T comprise
the primitive actions to be included in the plan. R, which is also represented using an
HTN, is the plan's set of resources. Finally, A is a set of assignments between the
plan's tasks and resources. Also of interest is S={<q,a>÷}, which denotes state
information in the form of a set of <question,answer> pairs.

HICAP's modules include, among others, a Hierarchical Task Editor (HTE) that
allows users to edit a plan, a conversational case retriever (NaCoDAE/HTN) that
allows users to interactively select a stored decomposition to apply to a task in T, and
a generative planner (JSHOP) that can be selected to automatically decompose tasks
in T into subtasks. The plan state S is updated by direct user input, through user
interactions with NaCoDAE/HTN, or by JSHOP.

5.2 The Task Domain: Noncombatant Evacuation Operations (NEOs)

We initially designed HICAP for deliberative NEO planning; no Al system has been
deployed to assist military experts to plan NEOs. NEOs (DoD, 1994) are performed
by the US military to assist in the evacuation of non-combatants, non-essential
military personnel, and others (e.g., host nation citizens) whose lives are in danger
(e.g., due to political insurgencies, volcanic eruptions) from an endangered location
(e.g., a beleaguered US embassy) to an appropriate safe haven.

Each lesson in HICAP is indexed by its applicable task and conditions. For
example, one such lesson for the NEO planning domain is:

Originating action 4 Assign conventional use of air wing
Action result 4 Increases the risk to detection of clandestine SOF -negative
Contribution 4 Conventional (low visibility) air wing increases SOF risk
Applicable task 4 Assign air wing
Conditions 4 Q: Is it necessary to use covert SOF helicopters? A: Yes
Suggestion 4 Assign high visibility to conventional air wing



364 R. Weber et al.

A lesson's conditions are represented as <question,answer> pairs so their
similarity with state variables can be easily assessed. The user decides whether and
how the lesson's suggestion will be implemented, as illustrated below.

5.3 Active Lessons Delivery Module: An Example

For this example, we use the fictitious Terror in the Jungle NEO scenario, obtained
from the DISA Adaptive Courses of Action ACTD. 6 Some tasks in its task hierarchy
can be further decomposed using interactive case retrieval. After the user selects a
task to expand, NaCoDAEIHTN displays alternative expansions that could apply,
along with questions that, if answered by the user, could help determine which case's
conditions best matches S. The task being expanded here is Rescue mission, which
concerns how to safely evacuate the evacuees.

After answering some questions and thus updating the state, the case retriever then
displays the question Is it necessary to use covert SOF helicopters? The user answers
Yes, yielding a perfect match with a task decomposition case that expands to the
subtasks Use ground support and Assign conventional use of air wing.

.......... 11-- ................. .. .
NA ESOF and Coetionai IF-re

T A -ig - -o Ssetisai mseof air wing

Docrn - Joint Publication Report

•r3-"
0 7

.
5 1 

chapter V letter a. pp. 1 OP

}co~ertSOFIisecss-rYto use oe rt SOF heio Yes

NEW TASKS
Assion hltgh-V•ibilty to air wing

TASK ORDERINGS: None

NEQUiRED RESOURCES: None

Qudit QaiAll

Fig. 2. A lesson pertaining to camouflaging special operations forces.

When expanding these tasks, ALDS recognizes that a lesson applies (i.e., the user
had indicated the need to use Special Operations Forces (SOF) helicopters for the
evacuation) and displays it (Figure 2). This lesson, which is applicable to the task
Assign conventional use of air wing, suggests replacing this task with Assign high
visibility to air wing. Figure 3 displays the resulting task hierarchy. The meaning of
this lesson is that military protocol dictates that SOF forces should be made less
conspicuous whenever they are deployed. In this example, a high-visibility air wing,
composed of conventional forces, will more easily hide the SOF forces.

6 http://www.les.disa.mil/insert/acoa/index.htm



An Intelligent Lessons Learned Process 365

S Filei Lessons/S Task Hierarchy Resource Hiera

9 I Rescue mission
I •Send aerial reconnaissance between ISB and ev

@ ]JDetermine if hostiles present
9 .Air wing neutralizes danger

i Use Ground Support
Ato air wing

f Move helicopter(s) in evacuation zone

From: "Use Ground Support"; To: "Assign conventional use of a..

Fig. 3. A subset of the task hierarchy after applying the lesson shown in Figure 2.

6 Concluding Remarks and Future Work

In this paper we focused on the reuse of lessons learned. We identified two problems
that interfere with lesson reuse: inadequate lesson representations (e.g., how different
features should be highlighted to enable interpretation) and system architecture (i.e.,
how lessons learned systems should be embedded into the decision-making process).
We then proposed an active lessons delivery approach (ALDS) to address these
problems and exemplified its use in HICAP, a plan authoring tool.

We have not yet evaluated the utility of ALDS in NEO exercises, and instead
developed a simple travel planning domain for evaluating the impact of ALDS
(Weber et al., 2000a). In future work, we will examine how to use HICAP to guide
interactive lesson elicitation, demonstrate the utility of active lessons delivery for
other decision support tasks, and transition HICAP to the ACOA ACTD project.

Acknowledgements

This research was supported by grants from the Office of Naval Research, the Naval
Research Laboratory, and the University of Wyoming.

References

1. Aha, D.W. (1999). The AAAI-99 KMICBR workshop: Summary of
contributions. In C. Gresse von Wagenheim & C. Tautz (Eds.) Proceedings of
the ICCBR-99 Workshop on Practical Case-Based Reasoning Strategies for
Building and Maintaining Corporate Memories. Munich: Unpublished.



366 R. Weber et al.

2. Breslow, L.A., Mufioz-Avila, H., Aha, D.W., Weber, R., & Nau, D. (2000).
HICAP: Hierarchical interactive case-based architecture for planning
(Technical Report AIC-00-006). Washington, DC: NRL, NCARAI.

3. DoD (1994). Joint tactics, techniques and procedures for noncombatant
evacuation operations (Joint Report 3-07.51). Washington, DC: Department of
Defense.

4. Habbel, R., Harter, G., & Stech, M. (1999). Knowledge management:
knowledge-critical capital of modern organizations. Booz Allen & Hamilton
Insights. [www.bah.com/viewpoints/insights/cmt-knowmanage_2.html]

5. Johnson, C., Birnbaum, L., Bareiss, R., & Hinrichs, T. (2000). War Stories:
Harnessing Organizational Memories to Support Task Performance. Intelligence:
New Visions of Al in Practice, 11(1), 17-3 1.

6. Kolodner, J. (1993). Case-based reasoning. San Mateo, CA: Morgan Kaufmann.
7. Leake, D.B., Bauer, T., Maguitman, A., & Wilson, D.C. (2000). Capture, storage,

and reuse of lessons about information resources: Supporting task-based
information search. In D.W. Aha & R. Weber (Eds.) Intelligent Lessons Learned
Systems: Proceedings of the AAAI Workshop (Technical Report WS-00-08).
Menlo Park, CA: AAAI Press.

8. Leake, D., Birnbaum, L, Hammond, K., Marlow, C., & Yang, H. (1999). Task-
based knowledge management. In D.W. Aha, I. Becerra-Fernandez, F. Maurer,
& H. Mufioz-Avila (Eds.) Exploring Synergies of Knowledge Management and
Case-Based Reasoning: Proceedings of the AAAI-99 Workshop (Technical
Report WS-99-10). Orlando, FL: AAAI Press.

9. Mufioz-Avila, H., McFarlane, D., Aha, D.W., Ballas, J., Breslow, L.A., & Nau,
D. (1999). Using guidelines to constrain interactive case-based HTN planning.
Proceedings of the Third International Conference on Case-Based Reasoning
(pp. 288-302). Munich: Springer.

10. O'Leary, D.E. (1998). Enterprise Knowledge Management. Computer, 31(3), 54-
61.

11. Reimer, U. (1998). Knowledge integration for building organisational memories.
Proceedings of the Eleventh Banff Workshop on Knowledge Acquisition..
[http://ksi.cpsc.ucalgary.ca/KAW/KAW98/KAW98Proc.html]

12. Sampson, M. (1999). NASA parts advisories - nine years of experience, and
counting. In (Secchi, 1999).

13. Sary, C., & Mackey, W. (1995). A case-based reasoning approach for the access
and reuse of lessons learned. Proceedings of the Fifth Annual International
Symposium of the National Council on Systems Engineering (pp. 249-256). St.
Louis, Missouri: NCOSE.

14. Secchi, P. (Ed.) (1999). Proceedings of Alerts and Lessons Learned: An Effective
way to prevent failures and problems (Technical Report WPP- 167). Noordwijk,
The Netherlands: ESTEC.

15. SELLS (1999). Proceedings of the Society for Effective Lessons Learned Sharing
Spring Meeting. Las Vegas, NV: Unpublished. [www.tis.eh.doe.gov/ll/sells]

16. van Heijst, G., Hofman, M., Kruizinga, E., & van der Spek, R. (1997). Al-
techniques and the knowledge pump. In B. Gaines & R. Uthursamy (Eds.)
Artificial Intelligence in Knowledge Management: Proceedings of the 1997
Spring Symposium (Technical Report SS-97-01). Menlo Park, CA: AAAI Press.



An Intelligent Lessons Learned Process 367

17. van Heijst, G., van der Spek, R., & Kruizinga, E. (1996). Organizing corporate
memories. Proceedings of the Tenth Banff Workshop on Knowledge Acquisition.
Banff, Canada. [ksi.cpsc.ucalgary.ca/KAW/KAW96/KAW96Proc.html]

18. Weber, R., Aha, D.W., Mufioz-Avila, H., & Breslow, L.A. (2000a). Active
delivery for lessons learned systems. To appear in Proceedings of the Fifth
European Workshop on Case-Based Reasoning. Trento, Italy: Springer.

19. Weber, R., Aha, D.W., & Becerra-Fernandez, I. (2000b). Intelligent lessons
learned systems. To appear in International Journal of Expert Systems Research
& Applications.



What the Logs Can Tell You: Mediation to
Implement Feedback in Training

David A. Maluf*, Gio Wiederhold**

* Research Institute for Advanced Computer Science, Computational Science

Division, NASA Ames. maluf ptolemy. arc. nasa. gov
"**Department of Computer Science Stanford University, Stanford.

Abstract. The problem addressed by Mediation to Implement Feed-
back in Training (MIFT) is to customize the feedback from training
exercises by exploiting knowledge about the training scenario, training
objectives, and specific student/teacher needs. We achieve this by insert-
ing an intelligent mediation layer into the information flow from observa-
tions collected during training exercises to the display and user interface.
Knowledge about training objectives, scenarios, and tasks is maintained
in the mediating layer. A designer constraint is that domain experts must
be able to extend mediators by adding domain-specific knowledge that
supports additional aggregations, abstractions, and views of the results
of training exercises.
The MIFT mediation concept is intended to be integrated with exist-
ing military training exercise management tools and reduce the cost of
developing and maintaining separate feedback and evaluation tools for
every training simulator and every set of customer needs. The MIFT
Architecture is designed as a set of independently reusable components
which interact with each other through standardized formalisms such
as the Knowledge Interchange Format (KIF) and Knowledge Query and
Manipulation Language (KQML).

1 Mediation applied to military exercise management

The initial application of MIFT is the Exercise Analysis and Feedback
phase of military exercise management as schematically shown in Figure
1. More precisely, the focus is on simulation-based army training exercises
[1]. MIFT handles some of the information flows involved in training
exercise management. The intent of MIFT is to supplement the flow of
information from simulations to evaluation and review and complete a
feedback loop by supplying information to plan and tailor future training
exercises.

MIFT processes the data that is logged during training exercises and
uses scenario information and domain knowledge to organize the data
from the exercises in ways that are meaningful and useful for the Ob-
server/Controllers (O/Cs) managing the exercises, trainees, commanders,

Z.W. Rai and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 368-376, 2000.
© Springer-Verlag Berlin Heidelberg 2000



What the Logs Can Tell You 369

exercise evaluators, and others interested in the results of training exer-
cises. MIFT is designed to feed information to other software systems
that generate training scenarios and help commanders plan future train-
ing exercises tailored to the needs of their trainees. The MIFT design is
intended to integrate with other exercise management applications (see
Figure 3) and achieve two key application goals for exercise feedback:

1. The software is easy to use by using domain-specific exercise concepts
and terminology.

2. Domain experts are able to extend feedback software and tailor it to
domain-specific and local needs.

Exercise PManning Simulations
Scenario Generation M d a o

Exercise Evaluation
and AAR Feedback during

Simulations

Fig. 1. MIFT's mediators supplement the flow of information from simulations to

evaluation and review and complete the feedback ioop by supplying information to

plan and tailor future training exercises.

MIFT will achieve the first goal by incorporating knowledge about the
scenario objectives and the task and subtasks to be trained. MIFT uses
this scenario knowledge to relate simulation results to the objectives and
tasks to be trained so that 0/Cs, trainees, and commanders can query the
simulation results using scenario-based terminology. For example, rather
than forcing the 0/C to formulate a query to "select all enemy detections
of Alpha company before an assault," the 0/C can simply ask whether
Alpha company achieved its scenario subtask of remaining hidden until
the beginning of the attack. The mediator will know that enemy detec-
tions before the attack are evidence that the unit was not successful in
remaining hidden. In general, MIFT produces results tailored to the needs



370 D.A. Maluf and G. Wiederhold

of exercise planners, weapons designers, and tactics developers. The sec-
ond goal of a mediator-based architecture is to enable military training
and support personnel to tailor and extend analysis and feedback software
to meet their own local needs [6]. Figure 1 illustrates MIFT's mediators
to supplement the flow of information from simulations to evaluation and
review and complete the feedback loop by supplying information to plan
and tailor future training exercises.

2 Mediation Technology

A mediator is a software module that exploits encoded knowledge about
certain sets or subsets of data to create information for a higher layer
of applications [8] [9]. It should be small and simple, so that it can be
maintained by one expert or, at most, a small and coherent group of ex-
perts. The first step in developing a mediation architecture for training
feedback is to isolate the mediators from lower-level data sources and
from higher-level user interface and application code [5]. This will enable
mediators to achieve the role of a reusable middleware. Mediators inter-
act with each other through the standardized knowledge exchange and
communications protocols. We have used standard knowledge exchange
and communications protocols based on Knowledge Interchange Format
(KIF) [4] and Knowledge Query and Manipulation Language (KQML) [3]
so that mediators can work with data from multiple knowledge sources
and supply information that is reusable in multiple roles. The MIFT me-
diation architecture combines plug-in components at three levels:

1. User interfaces that accept information from mediators and provide a
standard set of display options.

2. Mediators that use scenario-based knowledge to analyze, transform,
query, and present simulation results. A mediator supports numerous
modules which are relatively small components. A module is a collec-
tion of rules reflecting the domain knowledge functionalities. Domain
experts extend the analysis functionality by adding domain knowledge
to mediators or by plugging in additional modules.

3. Wrappers connect MIFT with the output formats of operational simu-
lators. Currently wrappers are tailored for JANUS and SimNet/LEAF
data.

3 Implementation and Functionalities

The current MIFT user interface is built on Web browsers, hence enabling
a multiple platform execution. In other words, the MIFT user interface



What the Logs Can Tell You 371

can run at any location that supports Web browsing; the user does not
have to download the simulation data. An innovation of the user interface
is that it is designed to display information received from a mediator.
Users connect to MIFT and the underlying exercise results by using a
Java-capable browser. Building the user interface in a browser has several
advantages:

1. Users can access exercise results in the same way they access other
information from local and remote sources. The user interface will be
increasingly familiar to 0/Cs and trainees.

2. The exercise data may be local or remote. Startup and initialization is
simple. Users do not have to download and manage the exercise data.

A key benefit of mediators for military training applications is that
they avoid the need for each simulation program having to build from
scratch and maintain a separate set of analysis and feedback software
packages.

The operations referenced by the mediator can be layered in the di-
rection of the data-to-knowledge aggregation as shown in Figure 2. For
example, the first two levels in the mediator perform standard aggrega-
tions, selections, and analyses on the data sources. We have implemented
these two levels to provide a basic level of functionality for higher levels.
The third level in the mediator uses knowledge of the training scenario
so that 0/Cs and trainees can obtain feedback about how well specific
scenario tasks have been performed. The mediator allows users to obtain
specific feedback without having to understand the structure of the under-
lying data. A planned fourth level in the mediator will use domain-specific
models about the exercise, the scenario, and causal relationships in the
exercise to analyze the data for its probable significance and automati-
cally call the users' attention to what it perceives as the more relevant
exercise results. It is useful to think of the mediator as composed of three
parts:

1 . Data from disparate sources are converted into object instances over
which inferences can be performed.

2. Knowledge about the application domain is maintained in declarative
representations.

3. An inference engine processes the knowledge and data sources to pro-
duce higher level information that is passed to other mediators or to
the user interface in a standardized form.

One of the MIFT functionalities is that an Observer/ Controller (0/C)
will depend upon it during an After Action Review (AAR) or that a



372 D.A. Maluf and G. Wiederhold

Playback Graph
User Interfsce Uli~ Din~

CJava

Application Training
Layer Tae Developers Commanders Analyst

CStanda~rd~sin KQML

Mediation Media~tor

Layers Mediator Mediator tin CLIPSS

Simulation Wrappers
Resources Janu___s S---__

Stanford University, 12/02/96, p. 3

Fig. 2. The operations envisaged from the mediator can be layered in the direction of
the data-to-knowledge aggregation.

trainee will use it after the AAR. As similar MIFT functionality will be
useful to commanders, exercise evaluators, weapons designers, and others,
but each of these other users is likely to want a different user interface
and additional mediator functionality.

MIFT uses wrappers to isolate the mediators from the specific data
formats and other differences between simulator outputs. When a medi-
ator needs additional information, it calls the appropriate wrapper. The
wrapper accesses the data and creates instances of the appropriate ob-
jects. The current implementation includes wrappers that process the
outputs of Janus simulation runs, and LEAF 1 formated data from Sim-
Net results. We believe that MIFT functionality can be made available

1 Janus simulation databases.



What the Logs Can Tell You 373

for additional simulators by writing the appropriate wrapper to process
simulator outputs. Writing additional wrappers requires programming ex-
pertise, but it is not a major undertaking. Using MIFT on a different
simulation may also require additional modules and/or user interfaces to
provide new functionality appropriate for that simulation. For example,
the mediator that creates force ratios is more useful for simulations at the
battalion or higher level and might not have been developed for analysis
of simulations at the company level.

3.1 Implementing a Programmable Mediator

The architecture used for the MIFT mediator was based on a system
that can sustain minimal first order logic inference capability. To fur-
ther minimize development cost, the Mediator is finally written in parts
in Clips [7], a widely-available and easily portable expert system shell.
With little and careful programming, Clips was capable of supporting
networking [2], a forward or backward chainer, a unifier, an in-memory
object oriented database and a knowledge base that accepts and trans-
late knowledge in the form of objects, rules and facts. The major function
of the architecture is to allow a temporal hyper-graph construction that
triggers modules to it which will perform their assigned tasks. The major
five modules were as follows: A Conflict Resolver to maintain the truth
values in the system, Domain Modules or the processes revolving around
the domain knowledge of the main requirements, a Report Agent in which
reports are generated and wrapped in KQML after the main requirements
are accomplished, a Maintenance Module once some processes have ter-
minated after the data and finally Data Wrappers which perform the
necessary wrapping to maintain a correct syntax for the language in use.
Hence, template structures are not violated. This reduces tremendously
the amount of data to be loaded in comparision to the amount that will
be used. Typically most databases are collections of instance events which
have a time stamp associated with them and hence the wrappers are ca-
pable of playing back the databases as a function of time. Wrappers are
mostly written in C++ to suit the variety and embedded complexity of
the original databases.

Programming the MIFT mediator as a reusable system from task to
task is performed by changing the domain module. Although attempt was
made to make the conflict resolver generic in its functionalities among the
tasks, domain specific rules are used in the module. The major goal of the
conflict resolver is to identify the knowledge which might be disruptive
to the overall mediator operation. The domain expert rules were divided
under



374 D.A. Maluf and G. Wiederhold

1. Cyclic behavior: where asserted events result in cyclic effects in the
process of inference.

2. Repetition and redundancy: where asserted events are redundant in
the databases.

3. Constrained Space: where asserted events who's truth value conflicts
with prior asserted events. For example a stated destroyed tank ap-
pearing later on in the simulation as a functional unit. Conflicts were
generically sorted out using deduction rules which eliminates the er-
roneous event.

4 Conclusion

This paper describes Mediation to Implement Feedback in Training to
customize the feedback from training exercises by exploiting knowledge
about the training scenario, training objectives, and specific student/teacher
needs. We plan to achieve this by inserting intelligent mediators into the
information flow from observations collected during training exercises to
the display and user interface functionality. Knowledge about training ob-
jectives, scenerios, and tasks is maintained in the mediators. A technical
constraint is that domain experts must be able to extend mediators by
adding domain-specific knowledge that supports additional aggregations,
abstractions, and views of the results of training exercises.

MIFT is intended to allow analysis and evaluation software to be
reused by all of the different consumers of simulation results. In addi-
tion to trainees, 0/C, and commanders, others who need to analyze and
evaluate simulation results include exercise planners, training managers,
weapons designers, tactics developers, and doctrine writers. MIFT can
also provide results to other software applications; for example, software
used to assist in exercise planning and preparation can use MIFT analyses
of previous exercises to identify the tasks and subtasks that need to be
emphasized in additional training. Thus MIFT contributes to completing
the feedback loop from the results of one simulation run into the planning
and preparation for future training.

The Mediator is currently written in Clips 6.0 [7], a widely-available
and easily portable expert system shell. Since user interface functions
and data access functions are separated out into other components, the
module implementations are quite small. For example, the force ratio
computation for any set and/or combination of units is only four rules for
a total of 12 lines. Most other mediators at the current stage are smaller.
We believe that some domain experts will be able to write modules in
Clips.



What the Logs Can Tell You 375

5 Acknowledgments

This research was supported by a grant from DARPA under the CAETI-
EXMAN program and under contract N66001-95-C08618; Kirstie Bell-
man is the Program Manager. Input from Julia Loughran from IDA has
been particularly helpful. This research has tremendously benefited from
Ted Linden (Project Manager, Myriad Software) and Priya Panchapage-
san (Stanford Graduate Research Assistant).

References

1. M. Crissey, G. Stone, D. Briggs and M. Mollaghasemi, "Training Exercise Planing:
Leveraging Data and Technologies"; Proceedings of the 16th Interservice/Industry
Training System and Education Conference. Washington, DC: national Security
Industrial Association.

2. Clips Knowledge Networking Protocol www-db. stanford. edu/-maluf/cknp/
3. T. Finin, J. Weber, G. Wiederhold, M. Genesereth, R. Fritzson, J. McGuire, S.

Shapiro, and C. Beck, "Specification of the KQML Agent-Communication Lan-
guage"; Stanford February 1994.

4. M. Genesereth."Knowledge Interchange Format"; Technical Report Logic-92-1,
Stanford University, 1992.

5. D. Maluf, G. Wiederhold, T. Linden and P. Panchapagesan, "Mediation to Imple-
ment Feedback in Training"; CrossTalk: Journal of Defense Software Engineering
Software Technology Support Center, Department of Defense, 1997.

6. MIFT Home page www-db. stanford. edu/mift
7. Riley, G. "CLIPS: An Expert System Building Tool"; Proceedings of the Technology

2001 Conference, San Jose, CA, December 1991.
8. G. Wiederhold, "Mediators in the Architecture of Future Information Systems";

IEEE Computer, March 1992, pages 38-49.
9. Y. Papakonstantinou, H. Garcia-Molina and J. Widom, "Object Exchange Across

Heterogeneous Information Sources"; International Conference on Data Engineer-
ing, 1995.



376 D.A. Maluf and G. Wiederhold

--

C:'

U>11
CdC

Fig. 3. The application Mediation to Implement Feedback in Training (MIFT) is the

Exercise Analysis and Feedback phase of military exercise management. This figure

illustrates the many different simulation results and the roles that MIFT can play by
implementing reusable mediators that aggregate, summarize, and analyze simulation

results and deliver them to various consumers in terms tailored to their individual

needs.



Top-Down Query Processing in First Order
Deductive Databases under the DWFS

C A Johnson

Computer Science Department, University of Keele, Staffs, ST5 5BG, England

Abstract. A top-down query processing method for first order deduc-
tive databases under the disjunctive well-founded semantics (DWFS) is
presented. The method is based upon a characterisation of the DWFS
in terms of the Gelfond-Lifschitz transformation, and employs a hyper-
resolution like operator and quasi cyclic trees to handle minimal model
processing. The method is correct and complete, and can be guaranteed
to terminate given certain mild constraints on the format of database
rules. The efficiency of the method may be enhanced by the applica-
tion of partial compilation, subgoal re-ordering, and further constraints
on the format of database rules. For finite propositional databases the
method runs in polynomial space.

1 Introduction

Over the last few years there has been a great deal of interest in the study of
semantics for deductive databases and logic programs [5], one of the most promi-
nent to emerge being the disjunctive well-founded semantics (DWFS). This was
introduced by Brass and Dix [1-4] as the weakest semantics which satisfies cer-
tain desirable properties, including the generalised principle of partial evaluation.
In [2,3] an extension of the Gelfond-Lifschitz transformation was employed to
give a bottom-up characterisation of DWFS. This was then used in the DIS-
LOP project [1] to develop a bottom-up method of computing DWFS, using the
(bottom-up) methods of [12] to handle minimal model reasoning.

In [10] we presented a characterisation of the DWFS directly in terms of
the Gelfond-Lifschitz transformation, and using this derived a top-down method
of testing DWFS membership in propositional countable logic programs. In this
paper we extend these techniques to provide a top-down query processing method
for first order deductive databases under the DWFS. Our method is correct and
complete, and can be guaranteed to terminate given certain mild constraints on
the format of database rules. We also consider how our method can be made
more efficient by the application of partial compilation, subgoal re-ordering and
further restrictions on database rule format.

In Section 3 we restate the bottom-up characterisation of DWFS given in [2,3]
and its re-characterisation in terms of the Gelfond-Lifschitz transformation [10].
In Section 4 we (re)introduce the concept of a deduction tree [7,8] which is based
on a hyperresolution-like operator, and facilitates top-down query processing in
positive databases. In Section 5 we (re)introduce quasi cyclic trees [10], which

Z.W. Rai and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 377-388, 2000.
© Springer-Verlag Berlin Heidelberg 2000



378 C.A. Johnson

are variants of cyclic trees [6-9], and enable us to perform top-down minimal
model reasoning in databases resulting from applications of the Gelfond-Lifschitz
transformation. In Section 6 we combine deduction and quasi cyclic trees to form
our top-down method, which is presented by means of an example. Sections 7 and
8 then examine the construction (traversal) of deduction and quasi cyclic trees,
and the related termination and efficiency issues. Finally Section 9 contains our
conclusions and suggestions for further research.

2 Terminology

Throughout C {PO, P 1 ,..., P1, c1, c2 ,..., Cm} denotes a finite function free
first order language. We assume that {P 1,P 2 ,... ,P,} is the disjoint union of
EXT(L) (the extensional predicates) and INT(L) (the intensional predicates).
A positive (negative) atom is a formula of the form P(x) (-iP(x)), and informally
we write P(x) E EXT(C) when P E EXT(L), etc. 7- denotes the set of positive
ground atoms, ie., the Herbrand base. If I is a set of atoms, then I = {-fK
K E I}. If 0 is a first order formula, then VAR(0) denotes the variables in 0.

A deductive database T is a finite set of rules C of the form A1 A A2 A... A An A
-iAn+±iA-An+ 2 A... A-iAn+h -- B 1 VB 2 v ... VBr, where each Ai, Bj is a positive
atom and r > 0. antec(C) = {A 1 ,A 2,.. .,An}, conseq(C) = {B 1 ,B 2 ,.. .,Br}
and A/(C) = {An+i, An+ 2 ,... , An+h}. We make the standard assumptions that
VAR(conseq(C) U A(C)) C VAR(antec(C)), and that if {B 1 ,B 2 ,... ,B,} n
EXT(C) : 0, then {B 1 , B 2 ,..., B,} C EXT(L) and antec(C) U K/(C) = 0.

T is regarded as representing the set of its ground instances, which we denote
by gr(T). T is positive iff A(C) = 0 for each C E T.

As in [6-81 we assume the existence of a set of semi-definite predicates
SD(L) C INT(C) such that for each rule C, if P E SD(L) appears in conseq(C),
then C is definite (ie., Iconseq(C) I = 1), and each predicate appearing in the body
of C is in EXT(L)tU SD(L). SD(T) = {C c T: conseq(C) = {B}, B E SD(I)},
EXT(T) = {C E T: conseq(C) C EXT(C)}, and INT(T) = T-EXT(T). Notice
that EXT(T) consists of disjuncts of ground positive extensional atoms.

3 The disjunctive well-founded semantics

Definition 3.1. If C is a ground rule, then pos(C) = A antec(C) -+ V conseq(C).
If T is ground, and N C R-, then let Tf9 N denote the Gelfond-Lifschitz trans-
formation, TIgN = {pos(C) : C E T,.A(C) n N = 0}.

Theorem 3.2 [2,3]. Let Do = 0 and D,+ 1 = D U+ I3 D- 1, where
D+ +1 = {VP: P 7-/, (gr(T)/D.)1gt ý= VP},

a {ýQ : Q C 7H, (VN C L)(N 1= D++ 1 === (gr(T)/D,1)iN kmin -iQ)},
and gr(T)/Da is formed from gr(T) by (i) removing any rule C for which D+

V A/(C), and (ii) for each remaining rule C, replacing AP(C) by A/(C) - Da.



Top-Down Query Processing in First Order Deductive Databases 379

Then Do C D1 g D 2 C ... grows monotonically and DWFS = D,.

Recall that D.- {K : -K C Da}. T Irnin "iQ iff Q is false in all minimal
models of T. Note that no clause for limit ordinals is needed since R is finite.

The construction of DWFS given above is based upon computing a set of
disjuncts and negative atoms, using these to reduce the database with the /-
operator, and then repeating the process. This is ideal for a bottom-up compu-
tation, but for a top-down approach it is essential to express each of the sets
D,+, directly in terms of gr(T) rather than gr(T)/D,.

Theorem 3.3 [10]. D++ 1 = {VP: P C 7W,gr(T)Ig(7W- D-) 1= V P}, and

DQ+1 = 9Q : Q E W, (VN C 7W - D-)(N = D gr(T)+gN -

4 Computation in positive databases

In Theorem 3.3 we saw that the computation of D,+i employs the pos-

itive database gr(T)9 (7-W - D,). Derivability in positive databases can be
characterised using deduction trees [7,8,10] which in turn are based upon a
hyperresolution-like operator akin to that employed in SLO-resolution [13].

Definition 4.1. Suppose that T is positive and that P is a set of positive atoms.
A deduction tree for P in T is a finite tree containing predicate nodes and rule
nodes satisfying the following conditions.
(i) The root node (at the top of the tree) is a predicate node labelled with P.

All other predicate nodes are labelled with a positive atom.
(ii) If N is a predicate node, then let ACT(N) denote the set of atoms labelling

predicate nodes at or above N (on the current branch). N has a single child
node which is a rule node labelled with an instance CO of a rule C E T
(written RNco) such that conseq(C9) C ACT(N). For each K E antec(CO),
RNco has a (predicate) child node labelled with K.

(iii) Each leaf node is a rule node.

An instance of T is formed by applying some substitution to all labels (in-
cluding rules) within the tree. Clearly if T is a deduction tree in T, then so is
any instance of T. A predicate node N is redundant iff there is a predicate node
N' > N such that lab(N) equals, or is contained in, lab(N') [7,8].

Theorem 4.2 [7,8]. If T is positive and P C_ 71, then T - V P iff P has a
deduction tree in gr(T) in which
(i) no predicate node is redundant, and

(ii) if N is a predicate node with lab(N) C SD(L) and RNco is the child node
of N, then conseq(CO) = {lab(N)}.



380 C.A. Johnson

Thus we see that such trees may be constructed using ancestor pruning (con-
dition (i)) and that semi-definite atoms are expanded in a linear fashion. The
construction of deduction trees is discussed in Section 7.

5 Quasi cyclic trees

In [6-8] we introduced the notion of a cyclic tree as a means of testing min-
imal model membership. The following variant of this notion (adapted from
[10]) enables us to characterise minimal models of databases of the form TIjN.
Motivation for the following definition appears in [6-10].

Definition 5.1. A quasi cyclic tree T for P(t) in T is a finite tree T containing
predicate nodes and rule nodes satisfying the following conditions.
(a) The root node (at the top of T) is a predicate node labelled with P(t).
(b) Each predicate node N is labelled with a positive atom, denoted by lab(N),

and CYC(N) = {lab(N') : N' is a predicate node, N' > N, and 3N" >
N', N" is a predicate node, lab(N") = lab(N)}. Let Pred(T) = {lab(N) : N
is a predicate node in 7-}.

(c) A predicate node N has at most a single child node which (if it exists) is a
rule node labelled with an instance CO of a rule C E T (written RNco) such
that conseq(CO)n CYC(N) 0 0, antec(CO)fCYC(N) = 0, and O(RNco) =
(conseq(CO) - CYC(N)) is disjoint from Pred(T). For each K E antec(C0),
RNco has a (predicate) child node labelled with K.

(d) If N is a predicate node with lab(N) E SD(£), then N is not redundant.
We define .M(T) = U{AK(CO) : RNCO is a rule node in T}, and 0(T)

U{O(RNco) : RNCO is a rule node in T}. As in [6-10], an unfactored quasi
cyclic (UQC) tree is a quasi cyclic tree in which each leaf node is a rule node.

Notice that condition (c) is inherently top-down. Also note that if lab(N) E
EXT(L) U SD(Z), then CYC(N) = {lab(N)}. Let RNco be the child node
of N. If lab(N) E SD(£), then conseq(CO) = {lab(N)} and C E SD(T). If
lab(N) c EXT(£), then 0 = 0, lab(N) G conseq(C) and C E EXT(T).

The following theorem details the basic properties of UQC trees.

Theorem 5.2 [6,7,10]. Let N C 7.
(a) If T is a UQC tree, then all labels in T are ground.
(b) Suppose that M is a minimal model of gr(T)IgN with P(a) E M. Then we

may find a UQC tree T for P(a) in T such that Pred(T) _ M C -1 - 0(T)
and Kf(T) n N = 0.

(c) Suppose that T is a UQC tree in T, Af(T) n N = 0, and M - gr(T)IgN
with M n 0(T) = 0. Then Pred(T) C M.

In order to perform top-down testing of membership in D,+,, we will need
the following characterisation.



Top-Down Query Processing in First Order Deductive Databases 381

Theorem 5.3 [10]. -ýQ C D-+I iff for each UQC tree T for Q in T, either

VKI(T) C D++, or gr(T)flQ(i - M(T) uD-) P V O(T).

Note that the two clauses on the right hand side of Theorem 5.3 are actually

quite similar, since VKA(T) E D'+ 1 iff gr(T)1IQg(W - Da-) P VKZ(T).
Note also that if T1, T2 are UQC trees for Q with O(T1 ) c 0(T 2) and A((T 1 ) C

.M(T2 ), then T2 is redundant as far as Theorem 5.3 is concerned, since V A!(T 1) E
D+ 1+ implies VAK(T2) E D+, 1 , and gr(T)j9 (TW-M(T1)UD,) I V O(T1 ) implies

gr(T)Ig(71 - /(T2 ) U Da-) ý= V 0(T2).

6 Top-down query processing

We can now combine the results of previous sections to develop a top-down
method of query processing under DWFS. We illustrate the method by means
of an example.

Example 6.1. Let T consist of the following rules.
1. -iP(y) A S(y,z) A Q(z,y) -+ Q(a,y) V Q(y,b)
2. -iF(w, w) A F(w, x) A F(x, y) -+ S(x, y) 3. E(a, b) 4. E(a, a)
5. -•P(x) A Q(x, x) -- R(x) 6. F(a, b) 7. F(b, a)
8. D(a, b) 9. D(b, a) 10. -iE(y, x) A D(y, x) -+ R(x)
11. -'E(x, y) A D(y, x) -+ P(y) V R(y) 12. Q(a, b) V Q(b, a)
where x, y, z, w are variables and a, b are constants.

Suppose that we wish to test whether Q(a, a) V Q(a, b) is in DWFS. In order
to show that Q(a, a) V Q(a, b) C D+ we need to develop a deduction tree for

{Q(a, a), Q(a, b)} in gr(T)Ig('t - D). The only rule whose head unifies with a
subset of {Q(a, a), Q(a, b)} is rule 1, with the unifier {y -+ a}, thus resulting in
the partial deduction tree T1 in Figure 6.1(i).

{Q(a, a), Q(a, b)} P(a)
I I

RN1  RN1

-•P(a) S (a, z) Q (z, a) D (a, b)
I

RN8

Figure 6.1(i)

Thus if -,P(a) E D-, then Q(a, a) V Q(a, b) C D++1 iff S(a, z) V Q(a, a) V
Q(a, b) E D'+ 1 and Q(z, a)VQ(a, a)VQ(a, b) E D+ (for some z). Note however
that if iP(a) • D-, then the fact that S(a, z) V Q(a, a) V Q(a, b) C D++, and



382 C.A. Johnson

Q(z, a) V Q(a, a) V Q(a, b) E D++ (for some z) is of no help whatsoever. We
thus attack the negative subgoal -P(a) first.

The only UQC tree for P(a) is depicted as T 2 in Figure 6.1(i), with (T()
{R(a)} and Af(T2 ) = {E(b, a)}. By Theorem 5.3 we are thus required to show

that either E(b,a) G D+ or that gr(T)Ig (HL - {E(b,a)} U Da_1) - R(a). In
general we therefore need to pursue one of these subgoals, returning to the other
if the first fails. In this particular case it is evident that E(b, a) V D+, since no
rule has a consequent that unifies with E(b, a).

We thus set about trying to show that gr(T)Ig(W- -{E(b, a)}UD.-_1 ) • R(a).
This resembles our original problem, and is depicted in Figure 6.1(ii) via the node
({R(a)}:{E(b, a)}). The "rule node" RNT, simply indicates the computation of
the UQC tree.

{Q(a, a), Q(a, b)}

RN1

-iP(a) S(a, z) Q(z, a)

RN- RN 2

({R(a)}:{E(b, a)}) -ýF(w, w) F(w, a) F(a, z)

RNlo

-E(b, a) D(b, a)

RN 9

Figure 6.1(ii)

We thus look for a rule whose head unifies with R(a). Notice that rule 5
should not be applied since it would introduce a duplicate subgoal (-ýP(a)) which
leads to the circular argument: -iP(a) E D- if -iP(a) E D- 1 . Hence the only
applicable rule is rule 10 yielding the two subgoals -iE(y, a) and D(y, a). For the

former, we need to look for an instance of E(y, a) which is in {E(b, a)} U Da_ .
In this case we set y equal to b (Figure 6.1(ii)), whence D(b, a) is solved by the
application of rule 9. Thus -iP(a) C Di.

Returning to the subgoal S(a, z), we apply rule 2 to yield three child nodes,
-ýF(w, w), F(w, a) and F(a, z). Again for the first of these we are required to
generate UQC trees for instances of F(w, w) in order to find an instance of
-F(w, w) that is contained in D.. Since F(a, a) and F(b, b) have no UQC trees,
it is trivially the case that both -iF(a, a) and -F(b, b) belong to D,-. Setting w
equal to a would not allow the next subgoal to be solved, thus we set w equal
to b. F(a, z) is then solved via {z -- b} and rule 6. Thus S(a, b) C D+.

Finally rule 12 shows that Q(a, a) V Q(a, b) V Q(b, a) G D+, whence Q(a, a) V

Q(a, b) e D+.



Top-Down Query Processing in First Order Deductive Databases 383

Notes. Our method thus employs a combination of deduction tree and UQC
tree constructions, and can be viewed as lifting the methods of [10] to the first
order level. At each stage, if the current leaf node is a positive atom (or a set
there-of), then we extend the current branch by applying some database rule
(unifying the consequent with some of the atoms on the branch). If the current
leaf node is a negative atom -iQ(x), then we may compute UQC trees in order
to (try to) find an instance of -,Q(x) in the relevant Dý. As with E(y, a), if the
most recent UQC tree gave rise to a goal of the form (P:Q), then we have a
second option, which is to try to find an instance of Q(x) in Q.

Each UQC tree yields a choice of two subgoals, the processing of which is
independent of the other parts of the tree, with the exception that we may need
to examine earlier nodes on the current branch to prevent duplicates.

The correctness and completeness of our method follows from Theorems 3.3,
4.2, 5.3 and the correctness and completeness of our constructions (below) for
deduction and UQC trees. In addition, if these tree constructions terminate, then
the method as a whole terminates, since the tree developed passes down the D,
hierarchy (in particular disallowing duplicate negative subgoals).

7 Constructing deduction trees

Constructing deduction trees at the ground level is trivial: at each stage we ex-
tend the current predicate leaf node N by a rule C E T such that conseq(C) C
ACT(N) and antec(C) f ACT(N) = 0. This process must terminate since du-
plicate atoms do not appear along any branch. Testing derivability in positive
databases can be achieved "branch at a time" [7,8], and therefore operates in
space which is linear in 17-.

The first order method of constructing deduction trees employed informally
in Example 6.1 is taken from [7,8]. The method is top-down, left-to-right and
depth-first, and yields a correct and complete method of testing derivability in
first order positive deductive databases [7,8]. The obvious difference at the first
order level is the use of unifying substitutions, which have the effect of enlarging
the search space. In addition, termination is far more difficult to guarantee, and
negative subgoals may need special attention, again in order to limit the size of
the search space. These issues are discussed in Sections 7.1-7.3 below.

7.1 Termination

During the construction of deduction trees we can (by Theorem 4.2) employ an-
cestor pruning at will. Consequently, it is the introduction of new variables into
the construction which threatens termination. In [7,8] we showed that termina-
tion can be guaranteed if we apply ancestor pruning, adopt a linear expansion
of semi-definite atoms (as per Theorem 4.2), and assume the existence of a level
function f: {P 1, P 2 ,..., P,} -+ {0, 1, 2,..., n + 1} such that
(a) EXT(L) = {P E £ : f(P) = 0} and SD(£) = {P e £: 1 _< (P) _< n}. (We

may therefore define f(C) = f(P) for any P occurring in conseq(C).)



384 C.A. Johnson

(b) If C C T and x E VAR(antec(C)) - VAR(conseq(C)), then we may find an
R(t) C antec(C) such that f(R) < f(C) and x appears in t.

Note that the use of ancestor pruning within our termination argument is
dependent upon the use of a function free language.

7.2 Groundedness and yes/no answers

We saw in Example 6.1 that the subgoal S(a, z) becomes grounded as a result
of the expansion of the tree below this subgoal. In [7,8] it is shown that in effect
this always occurs, thus allowing us to perform answer extraction in the case
when the top-level goal is not grounded.

In addition, if we assume the conditions of Section 7.1, and attack semi-
definite subgoals first, then we can ensure that if P(t) E INT(L) - SD(C)
occurs on the current branch, then each variable in t occurs in the root node
(whence again, ancestor pruning limits the number of such atoms). This has the
important consequence of limiting the search space when applying the disjunctive
rules in INT(T) - SD(T). (As an aside, note that the search space is already
limited when applying rules in SD(T) (by linearity and definiteness) and when
applying rules in EXT(T) (by groundedness).)

Note in particular that if the root node is ground (as it is in a yes/no query
and in the subtree below a UQC tree), then all positive atoms in INT(L)-SD(L)
lying on the current branch are ground. In this case, the unifying substitution
when applying a rule C E INT(T) - SD(T) is simply a ground instantiation of
conseq(C).

7.3 Negative subgoals and subgoal re-ordering

Generating UQC trees for instances of Q(x) will (by Theorem 5.3) tell us which
instances of -,Q(x) are contained in the relevant D,3. It will not however tell us
which of these instances to pick, hence the choice is somewhat arbitrary. This is
not desirable, since in resolution based reasoning the unifications are expected
to perform the necessary instantiations. Two solutions which guarantee that x
becomes grounded before we attack -iQ(x) are as follows.

Since VAR(N(C)) C VAR(antec(C)) we could re-order the subgoal -Q(x)
so that it appears to the right of (ie., after) other positive siblings containing the
variables in x. Since such siblings become grounded as a result of their expansion,
this would have the desired effect. On the other hand the re-ordering itself is
somewhat undesirable since (as explained in Example 6.1) we would prefer to
attack negative subgoals first.

An alternative solution is to make a further assumption:
(*) If C E INT(T) - SD(T) and Q(x) G )V(C) with Q c INT(L) - SD(L), then

VAR(x) C VAR(conseq(C)).
As in Section 7.2, in the case when the root is grounded, condition (*) has the

effect of ensuring that a negative subgoal -iQ(x) (with Q E INT(C) - SD(L))
will be grounded as soon as it enters the tree. This still leaves the problem of



Top-Down Query Processing in First Order Deductive Databases 385

ungrounded negative subgoals -iQ(x) when Q E EXT(L) U SD(L), but this is
no loss since condition (b) of Section 7.1 still requires us to handle such subgoals
below ungrounded positive semi-definite subgoals (as with -F(w, w) in Example
6.1). Moreover the relevant UQC trees are far easier to compute (ie., in a purely
linear fashion). In addition, they also allow a simpler testing of -Q(x) E Dý+,
since if Q(a) E EXT(L) U SD(C) and T is a UQC tree for Q(a), then AK(T) C

EXT(L) U SD(C), and O(T) _ EXT(L) (whence gr(T)Ig(-t - X(T) U DO)
V 0(T) iff O(T) contains some disjunct from EXT(T)).

8 Computing UQC trees

Let P(t) E EXT(L)USD(L). In [61 we showed that cyclic (and hence UQC) trees
for instance of P(t) can be computed via a top-down, left-to-right, depth-first
and linear construction. In order to guarantee termination, ancestor pruning is
employed (as dictated by condition (d) of Definition 5.1) and we assumed the
existence of a level function £ as in Section 7.1 such that
(I) If C E SD(T) and x E VAR(antec(C)) - VAR(conseq(C)), then we may

find an R(t) E antec(C) such that £(R) < t(C) and x E t.
Note that (t) is subsumed by condition (b) of Section 7.1, hence it is no

further imposition. In [6,7] we presented a construction of UQC trees for atoms
P(t) E INT(L) - SD(L) under conditions (t) and (0):
(f) If C E INT(T) - SD(T) and x E VAR(C), then we may find an R(t) E

antec(C) such that t(R) < t(C) and x E t.
However (0) is a far more stringent condition than (t). We can eliminate the

need for (ý) by partially compiling the construction of UQC trees for atoms in
INT(L) - SD(C) using semi-factored quasi cyclic trees (see below). Such com-
pilation is motivated and justified by the fact that we generally expect INT(T)
to be relatively static (in comparison to EXT(T)). Pre-processing of cyclic trees
has also been employed in [9] to facilitate query compilation in propositional
stratified databases.

8.1 Semi-factored quasi cyclic trees

Definition 8.1.1. Let P(t) E INT(L) - SD(L). A semi-factored quasi cyclic
(SQC) tree for P(t) is a quasi cyclic tree T in which for each

predicate node N, N is a leaf node iff lab(N) E EXT(L) U SD(L).
Let leaf (T) = {N : N is a predicate leaf node in 7T}.

UQC trees are constructed by extending SQC trees in the obvious way.

Theorem 8.1.2. Let P(a) E W n (INT(C) - SDCC)). Then T is a UQC for
P(a) in T iff we may find an SQC tree 7' for P(a) in gr(T), and for each
N E leaf (T') we can find a UQC tree SN for lab(N) in T such that
(a) T' is an initial segment of T,



386 C.A.Johnson

(b) for each N E leaf (T'), SN equals the subtree of T below N, and
(c) U{Pred(SN): N G leaf (T')} n U{O(SN) : N E leaf (T')} = 0.

Moreover if conditions (a), (b) and (c) are satisfied, then Pred(T), 0(T) and

Af(T) are the union of the corresponding sets from T' and {SN : N E leaf (T')}.

8.2 Partial compilation of UQC trees

We will partially compile the computation of UQC trees for atoms in INT(L) -
SD(£). The compilation phase will consist of computing a set of SQC trees, and
the run-time computation of UQC trees will involve extending these SQC trees
to UQC trees.

8.2.1 Computing SQC trees. As the construction of a first order quasi cyclic tree
proceeds, existing branches are extended by the application of rules and unifying
substitutions. The main problem is to ensure that these unifying substitutions
do not violate the conditions of Definition 5.1. This is complicated still further
by the fact that the unifying substitutions can cause the CYC sets to be altered.
In (6,71 we showed that when computing UQC trees, these problems can be
overcome by the use of conditions (t) and (0), since these cause sufficiently large
parts of the tree to become grounded as the construction proceeds.

In this section we wish to compute SQC trees without resorting to (0). ((t)
is of no help, since SQC trees employ only rules in INT(T) - SD(T).) Thus in
order to overcome the above-mentioned problems, we will, as the construction
proceeds, develop a set of constraints Y which will guarantee the conditions of
Definition 5.1, and also ensure that the CYC sets do not change. Termination
of our construction is guaranteed by the fact that the length of any branch
through an SQC tree in gr(T) is bounded by 1 + W'I * (17i'W + 1)/2, where
W' = 71 n (INT(L) - SD(£2)) [6]. Of course 7V' is likely to be large, but this
compilation only needs to be performed once (unless INT(T) - SD(T) changes).

Suppose that we have constructed a partial SQC tree T with existing con-
straints I. A valid extension of (T, I) is constructed as follows. Pick a branch
through T, (root(T) = P1(xI), P 2 (x 2),...,N = Pr(xr)), where Pr E INT(L) -
SD(L) and r < W'I * (17i'I + 1)/2. 1 will contain {xi : xj : i < j < r,Pi(xi)
and P3 (xj) are unifiable, but xi 0 xj}. First we need to fix CYC(N).

If Pr(xr) c {Pi(xi) : i < r}, then I already ensures that CYC(N) is fixed,
thus suppose that P,(xr) ý' {Pi(xi) : i < r}. If P,(x,) is not unifiable with any
Pi(xi) (i < r), then CYC(N) = {lab(N)} is fixed. Finally if Pr(xr) is unifiable
with some Pi(xi) (i < r) then we either (i) pick some such i such that the most
general unifier p mgu{xr, xi} does not violate 1, and apply p to T and 1, or
(ii) add {x, $ xi i < r, Pr(xr) and Pi(xi) are unifiable} to 1.

We can then extend our branch with some rule C G T. We need to pick a
most general unifier 77 for a subset of conseq(C) and a subset of CYC(N) such
that 7 does not violate I, antec(C77)nCYC(N)7 = 0 and CYC(N)17-conseq(C77)
is disjoint from Pred(Tq) U antec(C77) (cf., condition (c) of Definition 5.1). 7 is



Top-Down Query Processing in First Order Deductive Databases 387

applied to 7T and 1, and Tq is then extended with RNcn (and the corresponding
child nodes of RNc,). Let T' be the extended tree.

For each Q(x) C O(RNcI), if Q(x) is unifiable with some Q(x') G Pred(T'),

then we add x 5 x' to I. Similarly if Q(x) E antec(Cq) is unifiable with some
Q(x') E CYC(N), then we add x 5 x' to I.

A pair (Tm ,$m) is complete iff Tm is an SQC tree and there is a se-
quence (TOu0),c(1,1 ),... , (TmIm) suh that To consists of the single root
P(xx 2 ,...,X), -T o = i, and each (T7 +1,$ij+1) is a valid extension of (TiIi).

Theorem 8.2.2 Let P(a) c 'H A (INT(L) - SD(L)). Then T is an SQC tree

for P(a) in gr(T) iff there is complete pair (Tm,Em) and a substitution 0 such
that 0 that does not violate Im, T = Tm79 and lab(root(T)) = P(a).

After constructing a complete pair (T,7I), we can then discard the tree T
itself: we simply need to keep (root(T),leaf((T),Af(T), O(T),I). As indicated
at the end of Section 5, we can also eliminate redundant SQC trees. Specifically
if we can find a substitution 9 such that root(T)9 = root(T'), leaf (T)O C

leaf (T)),Af (T)O C .f(T'), O(T)9 c O(T') and 19 C_ ', then we can discard
(root(T'), leaf (T'), r(T'), O(T'), I').

For example suppose that INT(T)-SD(T) {S(x) -+ Q(x)VR(x), S'(x, y)A
Q(y) -+ Q(x) V P(x)}, with INT(C) - SD(L) {P, Q, R}. SQC trees for Q(x)
can be developed by m applications of the second rule followed by a single
application of the first. For m > 0 the tree developed is subsumed, in the above
sense, by the tree developed for m = 0.

8.2.3 Computing UQC trees from SQC trees. By Theorems 8.1.2 and 8.2.2, if
P(a) E INT(L)-SD(1) then T is a UQC trees for P(a) iff we can find a complete
pair (Tm, m) and for each N G leaf (Tm,) a UQC tree SN for some instance
lab(N)9 of lab(N) such that 9 does not violate Tm, lab(root(Tn))9 = P(a) and
Tm9 and {SN : N E leaf (Tmn)} satisfy the conditions of Theorem 8.1.2.

9 Conclusions and further research

We have presented a top-down correct and complete query processing method
for first order deductive databases under the DWFS. We have also investigated
termination and efficiency aspects of our method by examining partial compila-
tion, subgoal re-ordering and restrictions on database rule format. Our method
is based upon a branch by branch tree traversal, and therefore (in common with
the methods of [1]) for propositional databases operates in space that is poly-
nomial in the size of the underlying language. The techniques presented in this
paper have also been applied, suitably modified to the perfect and the disjunctive
stable model semantics [6-9,11].

The following open questions are worthy of further investigation.



388 C.A. Johnson

(i) Can our techniques handle query compilation in DWFS, in which we pre-
process a query using INT(T) so that its run-time processing then involves
EXT(T) only?

(ii) To what extent can we employ search space pruning techniques in order to
make the tree constructions more efficient. In particular, can we use infor-

mation from a UQC tree construction (say) to prune the resulting deduction

tree constructions?
(iii) Can our methods be extended to languages containing function symbols?

(iv) Could we guarantee termination with weaker constraints and/or promote
efficiency either by combining our methods with the bottom-up methods of

[1], or by making further "natural" assumptions about deductive databases

(eg., with respect to the amount of disjunctive or recursive information)?

References

1. C. Aravindan, J. Dix and I. Niemeli, DISLOP: A research project on disjunctive
logic programming, AI communications, vol. 10 (1997), 151-165.

2. S. Brass, J. Dix, I. Niemeld and T. C. Przymusinski, A comparison of the static
and disjunctive well-founded semantics, in: A.G. Cohn, L.K. Schubert and S.C.
Shapiro (eds.), Proceedings of the 6th International Conference on Principles of
Knowledge Representation and Reasoning (Morgan Kaufmann, 1998).

3. S. Brass and J. Dix, Characterisations of the disjunctive well-founded semantics:
confluent calculi and iterated GCWA, J. Automated Reasoning, vol. 20 (1998),
143-165.

4. S. Brass and J. Dix, Semantics of (disjunctive) logic programs based upon partial
evaluation, J. Logic Programming, vol. 40 (1999), 1-46.

5. J. Dix, Semantics of logic programs: Their intuitions and formal properties, in A.
Fuhrman and H. Rott (eds.), Logic, Action and Information, Essays on Logic in
Philosophy and Artificial Intelligence (DeGruyter, 1995), 241-327.

6. C. A. Johnson, On computing minimal and perfect model membership, Data and
Knowledge Engineering, vol. 18 (1996), 225-276.

7. C. A. Johnson, Extended deduction trees and query processing, Computer Science
technical report TR98-07, Keele University (1997).

8. C. A. Johnson, Top-down query processing in indefinite stratified databases, Data
and Knowledge Engineering, vol. 26 (1998), 1-36. (Extracted from [7].)

9. C. A. Johnson, On cyclic covers and perfect models, Data and Knowledge Engi-
neering, vol. 31 (1999), 25-65.

10. C. A. Johnson, On the computation of the disjunctive well-founded semantics,
submitted, J. Automated Reasoning.

11. C. A. Johnson, Processing deductive databases under the disjunctive stable model
semantics, Fundamenta Informaticae, vol. 41 (1999), 31-51.

12. I. Niemeld, A tableau calculus for minimal model reasoning, in: Proceedings of the
5th Workshop on Theorem Proving with Analytic Tableaux and Related Methods,
Terrasini, Italy (Springer, 1996), 278-294.

13. A. Rajasekar, Semantics for Disjunctive Logic Programs, PhD thesis, University
of Maryland (1989).



Discovering and Resolving User Intent in
Heterogeneous Databases

Chris Fernandes' and Lawrence Henschen 2

1 Department of Computer Science,

Colby College, Waterville, ME 04901
2 Department of Electrical and Computer Engineering,

Northwestern University, Evanston, IL 60201
henschen~ece .northwestern. edu

Abstract. We propose a system whereby subtle semantic ambiguity
found in queries of distributed heterogeneous database systems can be
resolved by considering the user's intentions. Through the use of domain-
specific knowledge embedded within a mediator-based architecture, sub-
tleties in meaning can be explicitly modeled. Through the use of dynamic
profiles and active dialogue, the system can discover user intent, provi-
ding more satisfying query answers.

1 Introduction and Problem Statement

Modern heterogeneous database systems generally require users to issue queries
via a global query language. This is because, typically, no one member database
of the distributed system has all the concepts of the whole system. Moreover,
two identical terms in two different local schemas may have slight semantic
differences in the context of the entire network. To avoid the ambiguity caused by
this heterogeneity, many systems have a global language containing a vocabulary
of terms with exact pre-specified meanings. Wrappers are then used to translate
global terms into their meanings within a local schema's context.

This global, approach places excess burden on the users to first understand
the semantic differences that terms may have in different databases and then to
very carefully express queries to precisely reflect their desired semantics. First,
note that global concepts are often expressed as generalizations that are broad
enough to cover the varying meanings of that concept at the local levels. The user
has to be aware of the different nuances that terms might have in the other local
repositories and add appropriate constraints to be sure his/her intent is specified.
Second, as new databases join the global network, existing terms may take on
even more nuances, new terms and concepts may enter the global language,
and perhaps even the global schema itself may change. Users will then need to
become familiar with the changes, and so user training in a dynamic network is
not a one-time affair like many researchers claim. Similarly, applications that had
been written for the local database and been modified to adapt to the network
at a particular point in time may also need additional updating as the network

Z.W. Ra. and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 389-399, 2000.
© Springer-Verlag Berlin Heidelberg 2000



390 C. Pernandes and L. Henschen

changes. For the same reason, commonly run queries that were written and saved
under an older incarnation of the global schema may also need to be updated.

The opposite approach allows users to specify queries in their own local
database language and provides translators to map those queries to a global
form that reflects the semantics of that local database. This allows users to issue
distributed queries and to correctly interpret answers without having to learn a
new language and be continually retrained. This would be a distinct advantage
for non-sophisticated users, and it is reasonable to expect a large number of
database users to fit into this category. For example, a distributed information
system might include car rental companies and meteorological databases, both of
which use the term "map" with related but distinct meanings. A counter agent
at a car rental location may never care about seeing meteorological maps of the
region, only street maps to give to customers renting cars. Such counter agents
are probably not database experts and should not be required to know about
all the other kinds of maps that may be available and how to specify just street
maps when issuing a query. On the other hand, the local-query approach forces
any user who wants to take advantage of the variety of related information to
again learn the global language and continuously keep up to date as the network
evolves. A travel planner in the "maps" example may very well want one or
both kinds of maps when planning a group tour to account for both the actual
transportation as well as possible weather-related contingencies. Even more, the
planner may issue the same query, for example "get a map of the Boston area",
at different times and want different kinds of maps based on what aspect of the
tour is being planned at that moment. But, again, travel planners are not likely
to be database experts, and it would be advantageous to develop some kind of
system that would help such a user cope with a semantically diverse and evolving
distributed knowledge base.

We will describe in this paper a system that attempts to merge the best
features of each approach and to help users of both kinds. Queries are expressed
in local database languages, and the query-processing algorithm uses the query
and a global knowledge base in combination with information from an individual
user profile and even user dialogue to translate the local query into a global one.
Through the use of the profile and dialogue, our system tries to discover the real
intent of the user query. In addition, our system attempts to help the user specify
the intent when it can't be guessed or when the user has requested help. The
development and use of individual user profiles and the nature of the dialogue
are the primary foci of this paper. They are described in Section 3. In Section 2,
we differentiate our work from other research in this area, but space limitations
preclude any extensive discussion of prior and related work. Section 5 presents
concluding remarks and the direction we would like to take in the future.

2 Related Work

We have chosen a mediator-based system for our implementation since it allows
for the two most important criteria we desire: the ability to ask queries through



Discovering and Resolving User Intent in Heterogeneous Databases 391

local member databases and the presence of a global knowledge base to perform
translation on a query-by-query basis. Since intent can change over time, having
this latter property is critical. Many other prototypes are also mediated systems,
but most do not consider the idea of intent as we have stated it.

Most mainstream prototypes use a single global language to represent que-
ries. These include rule-based languages such as the one used by the HERMES
system [7], description logic-based languages such as Loom used by SIMS [1],
clause-based languages such as that used by Information Manifold [4], and others
such as OQL used by DISCO [8]. Using these global languages provides certain
advantages. HERMES, for example, is able to incorporate a degree of probabi-
lity into its rules, while Information Manifold's use of logical clauses provides a
robust translation from its global language into local subquerics. However, they
all prevent the user from using a local language with which s/he may already be
familiar, and they all prevent the use of applications which already utilize that
local language.

A means of adjusting to different user intents is another aspect found in
only a few prototype systems. One such system, TSIMMIS [2], is web-based
and allows for a limited type of intent clarification by including hypertext in a
query result. By this hypertext the user can see more general or more specific
information concerning the objects involved in the query answer. This could be
extended so that the user could reissue a query after specifying a more appro-
priate level of object detail or after delineating ambiguous concepts. We propose
a dialogue system which would clearly define user intent on a level not seen in
these prototypes.

Another important aspect which we include in our system, but which others
do not, is conditional attribute equivalence. Essentially, this term means that any
two attributes which are considered to be equivalent or at least synonymous for
one query may not be considered equivalent or synonymous for another. Consider
a distributed system dealing with universities, where one local database keeps
track of an undergraduate-only institution while the other holds data of a uni-
versity with graduates and undergraduates. Two "student" attributes in these
two local databases may be considered equivalent for a query dealing with coun-
ting up all students but quite dissimilar for a query dealing solely with graduate
students. Existing systems such as OBSERVER [5] may use a single ontological
term to relate a priori to multiple local attributes. As a result, there is no easy
way for these equivalences to change from query to query. Our approach will use
constructs called annotations [3,61 to accomplish conditional attribute equiva-
lence. These annotations will provide for query-dependent processing, which we
believe is essential for determining user intent.

3 Discovering a User's Intentions

Our system discovers different possible query interpretations at run-time. Due
to space limitations we will not explain our query processing system in detail;
the interested reader is referred to [3,6]. When necessary, we will explain those



392 C. Fernandes and L. Henschen

Person

Name hone tate SELECT name, phone

FROM Person
Fred 111-1111 VA

Sally 222-2222 IL WHERE state="IL"

Tom 333-3333 HI

Fig. 1. Sample query in an Employee Database

features of the query processor that intersect with our techniques for determining
the user's true intentions.

3.1 A Motivating Example

We first illustrate that subtle heterogeneity can creep into even the most inno-
cuous of queries. Figure 1 shows a table from an employee database showing each
worker's name, phone number, and place of residence. The accompanying query
is asking for the names and phone numbers of those employees residing in IL.
While the semantics for such a query would be clear for any one relational data-
base, it becomes more complex if this is a distributed query over many employee
tables. Figure 2 shows two local databases containing identically structured em-
ployee tables, but differing in their interpretation of the phone attribute. In
DB1, the phones are all cellular phones. They do not have a permanent loca-
tion, and they are probably kept with the employee most of the time. However,
in DB2, the phones are regular permanent phones, located most'likely at the
employee's place of residence. This difference is not reflected in either of the two
tables, and it produces two different query interpretations. Did the user specify
"IL" because s/he intended to call there, perhaps looking for the employee's
family? Or did the user intend to contact people based in IL, regardless of where
their phones are? One's initial solution in a small example like this might be
to return both sets of phone-numbers so that the user could decide. But this
solution is not feasible in general, especially where scalability and time are fac-
tors. In an emergency situation such as a plane crash, passenger manifests need
to be used to notify family members quickly. ýIn this scenario, permanent phone
numbers would be desired, not cell phone numbers. Having the system return
hundreds of extraneous tuples that the user must sift through is not practical.

3.2 Finding Ambiguities in Intent

In order to choose the desired interpretations of a given query, a system must
be able to explicitly model subtle semantic differences like the one given here.



Discovering and Resolving User Intent in Heterogeneous Databases 393

DB1: cellular phones DB2: regular phones

Person Empl

Name Phone State Name Regphone Place

Fred 111-1111 VA Sally 444-4444 IL

Sally 222-2222 IL Carl 555-5555 IL

Tom 333-3333 HI Beth 666-6666 VA

Fig. 2. Subtle Heterogeneity in Logically Identical Tables

Person

D1M.Person.name, D1M.Person.name,
DB1.Person.phone} DB1.Person.state}

DDB2.empl.name,
{DB2.empl.name, calls lives DB2.empl.place,
DB2.empl.re{phonep

annotation DB2.empl.place}

Fig. 3. Section of Mediator used for Phone Example

The ambiguity in the phone example stems from the fact that there are distinct
relationships between the phone and state/place attributes in DB1 and DB2.
We have developed a graph-based mediator [3,6] that precisely and explicitly
maps out concepts and relationships at the global level and relates these to the
concepts and relationships in the individual local databases. Although the global
representation and the related algorithms are not the focus of this paper (see
[3,6] for full discussions of these), we illustrate briefly how our system models
semantic variations.

Figure 3 shows a portion of the mediator for our phone example. Vertices
represent concepts, while edges represent relationships. Knowledge is embedded
in the mediator in the form of annotations. An annotation is an ordered pair



394 C. Fernandes and L. Henschen

C . . . . . . .Pt-orde Generator

With respect to telephones the system knows about 2
different types: cellular (mobile) phones and regular
(non-mobile) phones. Which type(s) should be considered?

6- both -

ExplainMore---

Fig. 4. Creating a User Profile

{x, y} where x and y are local database attributes. If an annotation {x, y} is
associated with a relationship R, then R must hold between local attributes x
and y. Thus, the annotation {DB2.empl.regphone, DB2.empl.place} shown in
Figure 3 means that the relationship rings must hold between the Phone and
Location concepts in local database DB2. That is, for DB2, the phone must
ring in the specified place. The lack of a similar annotation for DB1 for the
rings relationship means that rings does not hold or is unknown in DB1. When
analyzing this section of the graph during query processing, our algorithm can
use the presence or absence of certain annotations to detect possible differences
in intent.

3.3 Resolving Ambiguities in Intent

Once the source of competing interpretations has been found, the system can
then move to the task of resolving the ambiguity. We have developed two me-
thods for determining what the user truly intended: individual user profiles and
on-the-fly dialogue.

A user profile is a list of preconceived notions that the user has about what
local query concepts mean. A profile may contain domain-related information,
e.g. the concept student means just undergraduates. It may also contain general
query processing preferences, e.g. to exclude a particular local database from
contributing answers or to allow separate databases to participate in providing
partial answers that can be combined into a complete whole (i.e. inter-database
joins.)



Discovering and Resolving User Intent in Heterogeneous Databases 395

A profile can be created and modified before query run-time. In the system
we are developing, a profile is initially created when a new user logs into the
system for the first time. At that point, the user is asked a series of questions
about how s/he interprets certain local concepts. A screenshot in our system for
this process is shown in Figure 4. The result is a personal knowledge base that
the query processor can consult to help determine a user's intent. In our phone
example, the query processor could examine this profile when it considered the
rings relationship shown in Figure 3. If the user had indicated that only non-
mobile phones are of interest, then DB1, containing only cell phones, would be
eliminated from the search space.

Profiles need not exist only for individual users, however. Profiles for specific
classes of individuals could also be created. For example, all incoming business
school students at a university or all new secretaries in a corporation could have
a class profile that would ensure a uniform query vocabulary. The fact that a
local query language is being used would provide a foundational interpretation
of terms for creating such a class profile. Similarly, a profile could be set up for
an application, extending its access from the original database to a distributed
federation of databases. Moreover, as the global schema changes in response to
the addition or deletion of member databases, administrators could modify these
class profiles to keep end users and applications up-to-date. These changes would
be transparent to non-sophisticated users while still allowing more advanced
users to tweak their own profiles if they so desire.

In addition to a profile generator, we have also implemented a DBA toolkit
by which profile generators can be created quickly. This toolkit is illustrated in
Figure 5. We envision that both local and global database administrators are
in the best position for understanding the subtle semantic differences between
the syntactically identical concepts across individual member databases. The
administrators can then utilize this tool to form the questions which will make
up profile generators. These generators can be tailored by each local DBA so that
questions are best expressed to match the level of user expertise and "lingo" in
use at that local site.

A query-independent mechanism like a user profile is not sufficient by itself,
however. A user may be aware that his/her interpretation of a term may change
depending on the query asked. The profile generator accounts for this by allowing
the user to pick a "depends" option as shown in Figure 4. This tells the system
that when a particular concept is used in a query, its meaning will need to be
determined at run-time. In this way, a user would not need to continually update
his/her profile just because s/he wishes to execute a different query. Instead the
"depends" option signals the query processor to ask the user (say, via a set of
choices in a dialogue box) for the user's interpretation of the concept for this
query. This type of dialogue is called on-the-fly dialogue.

Consider the mediator subset in Figure 6 dealing with an ecommerce net-
work. Here a single member database, DB3, allows two possible interpretations
for queries dealing with buyers. The Buyer concept can either represent those
who have actually made purchases of a given product (kept in the Product ta-



396 C. Fernandes and L. Henschen

iVhichl ypen of databases should: be unedn

FDatabas.es of purchase requests track buy'ers and their
equir e• tents and preferences rather than sellers.

F .: ::: , ::- oc: ,, a5;; s:; u ec: : :w .:c: I :::::::::::::::::

Fig. 5. DBA Toolkit for Creating Profile Generators

{DB3.Product.BuyerjD,
DB3.Product.prodjid}

purchases
Buyer I Prduct

in market to buy
{DB3.Want.CustomerID,

DB3.Want.Product_name}

Fig. 6. Subset of Mediator used in an Ecommerce Network

ble of DB3), or it can represent those who are just in the market to buy said
product (kept in the Want table of DB3.) Such a distinction would be made,
for example, in a name-your-own-price website such as priceline.com. During
processing of a query dealing with buyers, the mediator would detect the two
different relationships possible within DB3 and consult the user's profile to find
a preference. If one is not found (if the user chose "depends" as an answer, for
example) then the user would need to be asked to specify which relationship
s/he wanted. Tuples from the correct table in DB3 can then be retrieved.

The gravest potential pitfall of on-the-fly dialogue is its overuse. Since it
is an interruption during query processing, we wish to eliminate unnecessary
interaction. We have several ways by which our system can deduce a correct
interpretation. First, the profiles of other users of the same local database can
be used as a guide. If most users interpret a term in the same way, the system



Discovering and Resolving User Intent in Heterogeneous Databases 397

DBI: Dan's Good & Services
Transaction(PURCHASE #, date, buyer

product code, quantity)

Product (PRODUCTCODE, product-name,
description, amt in stock, unit-price)

DB2: Al's Auctions
Product(PRODUCTID, description

openingbid)

Auction(AUCTION ID, seller-id, productjid,
high bid, buyer id, closing time, numbids)

Seller(SELLERID, sellername, selleremail)

Buyer (BUYERID, buyer-name, buyer-email,
current-bid, product id)

DB3: Sam's Shopbot Site
Buyer(SAM ID#, name, email)

Want(SAM ID#, PRODUCT-NAME, PRICE)

Product(PROD ID, SAM ID#, productname, seller,
actual-price, qty, time to find)

Fig. 7. Schemas Used in Experimental Ecommerce Network (keys are in CAPS)

could prevent an interruption by assuming the same interpretation. Second, the
result of an on-the-fly dialogue, no matter what the user answers, may end up
being moot. In our phone example, a local database may be eliminated from the
search space depending on which phone type the user specified in the dialogue. If
that local repository has already been eliminated due to other query constraints,
then asking the user for clarification is fruitless. Third, by using the log data
of past queries, it is possible to detect when the result of an on-the-fly dialogue
would only result in an insignificant increase in the number of returned tuples. In
this situation, the interpretation which produced the greater number of answers
could be assumed with insignificant effect on processing time or user time when
sorting through the results. In general, on-the-fly dialogue could be bypassed if
the effect of "guessing wrong" was negligible.

4 Preliminary Results and Future Work

We have already implemented our profile generators, DBA toolkit for making
generators, and our annotated mediator. We have also completed preliminary
experiments using concepts and queries from an ecommerce domain. In these
experiments, both novice and expert computer users issued queries to a set of
three databases that each performed on-line buying and selling in a different way.
The first sold goods and services at fixed prices, the second auctioned off goods



398 C. Fernandes and L. Henschen

Table 1. Results from Experiment

Number of Number of Probability of
Query User Level Matches Mismatches Independence

Query 1 novice 3 23 .0008
expert 0 7

Query 2 novice 12 14 70
expert 3 4

Query 3 novice 15 11.39
expert 5 2

Query 4 novice 9 17.23
expert 4 3.23

Query 5 novice 16 10.15
expert 6 1

to the highest bidder, and the third was a shopbot-based database that worked
in a similar fashion to priceline. corn. Their schemas are shown in Figure 7.

Users were first asked to create a profile which recorded their own opinions
concerning common terms used in this domain. For example, a user was asked
to define the term "Buyer" given the two interpretations presented previously
in Section 3.3 and shown in Figure 6. Then, each user was shown the same
set of test queries and asked to profess what they considered to be "correct"
answers based on their profiles and responses to on-the-fly dialogue. The users
then compared the answers returned by the system to the answers they thought
would be "correct" to see if the system could properly discern their interpretation
of the query. Chi-Square analysis was performed on the raw data to test for a
relationship between the two user groups. The results, displayed in Table 1, show
the number of users whose query interpretations matched those of the system
alongside those whose interpretations did not match.

Several conclusions can be drawn from the data. The low number of matches
for the first query is not surprising since the idea of multiple query interpretations
is a new one to most users. This query represents a training period for the user.
As time went on, the user's interpretation of the query was correctly reflected by
the system's interpretation with increasing accuracy. The continually-reducing
probability of independence between the two user groups indicates that expert
users tended to become adept at using the system in a shorter amount of time
than novices. Because non-experts are the target audience for a system of this
type, we hope in the future to adjust the wording of questions in the profile ge-
nerator and to provide a more robust training period using more sample queries.
It is hoped that these will provide a ramp to proficiency that is neither too steep
nor too long for either type of user.



Discovering and Resolving User Intent in Heterogeneous Databases 399

5 Conclusion

We believe that the discovery of intent in queries is an important aspect in
determining if returned answers are indeed "correct" or not. If a system returns
tuples based on its own static interpretation of query terms, regardless of how
broadly encompassing those terms may be, the lack of consideration for the user's
expectations will always leave room for misinterpretation.

We have developed and implemented a system that attempts to take the
user's world assumptions into account by using profiles and on-the-fly dialogue
to guide the query translation process. Using preferences specified both before
and during run-time, a single query can return different sets of answers that
correspond to what different users had in mind. Preliminary empirical evidence
is favorable, though we hope to do more experiments to increase proficiency and
decrease training time.

References

1. Arens, Hsu, and Knoblock. Query processing in the SIMS information mediiator. In
Austin Tate, editor, Advanced Planning Technology, Menlo Park, CA, 1996. AAAI
Press.

2. Garcia-Molina, Papakonstantinou, Quass, Rajaraman, Sagiv, Ullman, and Widom.
The TSIMMIS approach to mediation: Data models and languages (extended ab-
stract). JIIS, 1997.

3. Henschen, Neild, and Fernandes. An object-oriented graph traversal algorithm for
data mediation. In Proceedings of the 2nd Americas Conference on Information
Systems (AIS96), Phoenix, AZ, August 1996.

4. Levy, Rajaraman, and Ordille. Query-answering algorithms for information agents.
In Proceedings of the Thirteenth National Conference on Artificial Intelligence
(AAAI-96), Portland, OR, December 1996.

5. Mena, Kashyap, Sheth, and Illarramendi. OBSERVER: An approach for query
processing in global information systems based on interoperation across pre-existing
ontologies. In COOPIS, Brussels, Belgium, June 1996.

6. Tania Neild. The Virtual Data Integrator: An Object-Oriented Mediator for Hete-
rogeeous Database Integration. PhD thesis, Northwestern University, June 1999.

7. Subrahmanian, Adah, Brink, Emery, Lu, Rajput, Rogers, Ross, and Ward. HER-
MES: A heterogeneous reasoning and mediator system. submitted for publication.

8. Tomasic, Raschid, and Valduriez. Scaling heterogeneous databases and the design
of DISCO. In Proceedings of the International Conference on Distributed Computer
Systems, 1996.



Discovering and Matching Elastic Rules from
Sequence Databases

Sanghyun Park and Wesley W. Chu

Department of Computer Science
University of California, Los Angeles

Los Angeles, CA 90095, USA
{shpark, wwc}Oca .ucla.edu

Abstract. This paper presents techniques for discovering and matching
rules with elastic patterns. Elastic patterns are ordered lists of elements
that can be stretched along the time axis. Elastic patterns are useful for
discovering rules from data sequences with different sampling rates. For
fast discovery of rules whose heads (left-hand sides) and bodies (right-
hand sides) are elastic patterns, we construct a trimmed suffix tree from
succinct forms of data sequences and keep the tree as a compact represen-
tation of rules. The trimmed suffix tree is also used as an index structure
for finding rules matched to a target head sequence. When matched ru-
les cannot be found, the concept of rule relaxation is introduced. Using
a cluster hierarchy and relaxation error as a new distance function, we
find the least relaxed rules that provide the most specific information on
a target head sequence. Experiments on synthetic data sequences reveal
the effectiveness of our proposed approach.

1 Introduction

Rule discovery from sequential data is a data mining technique for trend pre-
diction [3] ['7]. There have been several approaches [1] [6] [9] [14] to discover useful
rules from patterns occurring frequently in data sequences. A pattern is defined
as a partially ordered collection of elements. According to the constraints on
the arrangement of elements, patterns can be classified as serial patterns and
parallel patterns [9].-

As a subset of serial patterns, we can think of elastic patterns where elements
can be stretched along the time axis by replicating themselves. Elastic patterns
AB and ABC are interpreted as A+B+ and A+B+C+, respectively, using the
notation of a regular expression. (A, B) and (A, A, B, B, B) are instances of an
elastic pattern AB while (A, C, B) is not. Elastic patterns are useful for disco-
vering rules from data sequences whose sampling rates may vary. For example,
consider medical data sequences that record the body temperatures of pati-
ents. Some data sequences may have temperature values taken every day while
others may have values taken every week. Furthermore, even within a single
data sequence, time intervals between neighboring temperature values can vary

Z.W. Ra,4 and S. Obsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 4007408, 2000.
© Springer-Verlag Berlin Heidelberg 2000



Discovering and Matching Elastic Rules 401

non-linearly. These sequences cannot be compared directly without considering
stretches or compressions of elements along the time axis.

The rules whose heads (left-hand sides) and bodies (right-hand sides) are
elastic patterns are called elastic rules. Given elastic patterns a and /3, elastic
rules have the format 'a -+ý 0' that is interpreted as "if there occurs a sequence
which is an instance of a, then it will be followed by a sequence which is an
instance of 83". Time intervals are not associated with elastic patterns because
these patterns are flexible on the time axis.

There are many techniques [1] [6] [9] [14] to discover rules with serial patterns.
Many of them use the relationship between patterns and their sub-patterns.
Given the serial patterns AB occurring 200 times and ABAC occurring 150
times, they extract the rule 'AB -* AC with confidence L5-(=r 0. 75)'. Infrequent
patterns whose numbers of occurrences are below a threshold are ignored because
infrequent patterns are considered insignificant. To find frequent patterns, they
first find short frequent patterns and then combine them to generate longer
candidate patterns. Candidate patterns are checked whether they are frequent or
not. These combining and checking steps are repeated until all frequent patterns
are found. Therefore, repeated readings of data sequences are unavoidable.

Once rules are discovered from data sequences, they may be used to predict
the future trend of a target head sequence ý via the process of rule matching.
We say that a rule is matched to q* when each element of the rule head is equal
to the corresponding element of '4. However, if there are large number of rules,
it is not a trivial task to find rules efficiently that are matched to 4'.

There are some occasions when we fail to find rules matched to a target
head sequence oy. This failure often occurs when 4* is not a frequent sequence.
For those infrequent target head sequences, we can introduce the concept of rule
relaxation. Based on a cluster hierarchy, a rule R is relaxed to R' by replacing
some elements of R with elements denoting more general concepts or broader
range values. Given a target head sequence 4' and a rule R that is not matched to

ý,we can relax R to R' so that R' covers oy. We say that a rule covers 17when each
element of the rule head represents the same range as or broader range than the
one represented by the corresponding element of q*. Among many relaxed rules
that can cover 4 we are interested in finding the least relaxed rules since they
describe q more accurately than the other relaxed rules.

In this paper, we investigate the problems of discovering and matching elastic
rules for data sequences with different sample rates. An efficient rule discover-
ing algorithm is developed and algorithms for exact and relaxed rule matching
algorithms are presented.

2 Background

2.1 Suffix Tree

A suffix tree [13] is an index structure that has been used as a fast access method
to locate substrings (or subsequences) that are exactly matched to a target string



402 S. Park and W.W. Chu

(or a target sequence). The suffix tree structure is based on tries and suffix tries.

A trie is an indexing structure used for indexing sets of keywords of varying sizes.
A suffix trie is a trie whose set of keywords comprises the suffixes of sequences.
Nodes of a suffix trie with a single outgoing edge can be collapsed, yielding a
suffix tree. We use the notation PN for the parent node of N, and the notation

label(Ni, Nj) for the labels on the path connecting nodes N, and Nj.

2.2 Type Abstraction Hierarchy

Type Abstraction Hierarchy (TAH) [5] is a data-driven multi-level cluster hier-

archy that uses relaxation error as a goodness measure for generating clusters.
For a cluster C = {x1, x 2 , ... , XI} of n elements, the relaxation error for C is de-
fined as RE(C) = E', E'=l P(xi)P(xj) I xi -xj I where P(xi) and P(xj) are

occurring probabilities of xi and xj, respectively. The algorithms for generating
binary and n-ary TAHs are given in [5]. TAH is easier to implement than the
maximum-entropy clustering method and generates more accurate clusters than
the equal-length interval clustering method. Figure 1 shows an example TAH
built from a distribution of data sequences whose elements take values within

the range of [0, 7.0). The relaxation error and the value range are stored in each
node, and the nodes are labeled with unique symbols.

U

RE=0.01 RE0.02 RE=0.1 RE=0.31 RE=0.24 R=8 1 E00
[0,18) [1.8,.5) [2.5,4.) [4.0,5.0) [505.) [965) 65,7.0)

Fig. 1. An example 
of TAH. Each node is labeled with a unique symbol. The value

range and the corresponding 
relaxation 

error are stored at each node.

3 
Rule 

Discovery

In this section, 
we propose 

an efficient 
method 

to discover 
elastic rules from data

sequences 
via a suffix tree. We assume that the TAHl has been generated 

from

data sequences 
and distinct 

symbols 
have been assigned 

to the TAH nodes.

The 
support 

value 
of the pattern 

nd 
is defined 

as the number 
of suffixes 

having

Sas their prefixes. SUPmin is the minimum support value that is used to filter



Discovering and Matching Elastic Rules 403

out infrequent patterns. We also define the relative support value of the pattern
a as RSUP(a) = (the number of suffixes having a as their prefixes) / (the
total number of suffixes). For the applications where the total number of data
sequences and their lengths may vary, the relative support is better than the
(absolute) support.

The problem of elastic rule discovery is defined as follows: Given a database
with M sequences jY2, ... ,YM and the minimum support value SUPmin, disco-
ver rules composed of elastic patterns whose supports are at least SUPmiu. This
elastic rule discovery consists of the following five steps.

Step 1. Converting numeric elements to symbol elements: We con-
vert each numeric element of data sequences into the symbol of the corre-
sponding leaf node of the TAH. The symbolized representation of X is deno-
ted as S(Y). For example, based on the TAH in Figure 1, a data sequence
Y = (3.4,3.0,3.7,2.3,2.1,4.3) is converted to S(Y) = (C,C,C,B,B,D).

Step 2. Compaction: We convert the symbolized data sequence S(Y) into the
compact representation C(S(Y)) by replacing consecutive elements that have the
same value with a single element of that value. This step is for considering the
property of elastic patterns. For example, S(Y) = (C, C, C, B, B, D) is converted
to C(S(Y)) = (C, B, D). We use the notation X for C(S(Y)).

Step 3. Suffix tree construction: From the set of M converted data sequen-
ces k1 ,m.., XM, we build a suffix tree using either McCreight's algorithm [8] or
incremental disk-based algorithm [4].

Step 4. Trimming: We compute the support values of the nodes and trim out
the nodes whose support values are less than SUPmin. The support values of
internal nodes are obtained by summing up the support values of their children
nodes. The support values of the leaf nodes are the same as the number of suf-
fixes represented by the leaf nodes. The trimmed suffix tree is called the rule tree.

Step 5. Rule extraction: We compute the confidence values of nodes and then
extract rules. The expression for computing the confidence value of the node N
is confidence(N) = Support(N)/Support(PN) where PN is the parent node of
N. If the number of labels on the path from PN to N is L, we extract L rules
as shown in the following:

R, label (rootNode, PN) -* label(PN, N)
R2 label(rootNode, PN) * (label(PN, N)[1 1]) -+ label(PN, N)[2: L]
R3 : label (rootNode, PN) e (label(PN, N)[1 2]) -+ label(PN, N)[3: L]

RL: label(rootNode, PN) e (label(PN, N)[1: L - 1]) -4 label(PN, N)[L : L]



404 S. Park and W.W. Chu

where label(PN, N)[i : j] is the subsequence of label(PN, N) including elements
in positions i through j (i < j < L), and '.' is the binary operator for concate-
nating two sequences. If N is the root node, then label(rootNode, PN) becomes
the empty sequence (). The confidence of R 1 is the same as confidence(N) while
the confidences of R 2 , R 3 , ... , and RL are 1. Figure 2 shows a part of a rule tree
and the rules extracted from the tree. The values in the nodes represent their
support values.

N1

5<> -> A with confidence 15/50

N2 <> -> BA with confidence 20/50
2A -> BC with confidence 6/15

A -> D with confidence 5/15

AB -> C with confidence 1
B %D B -> A with confidence 1

(a) A part of a rule tree (b) Rules extracted from a rule tree

Fig. 2. An example of a rule tree and the corresponding rules.

4 Exact Rule Matching

Exact rule matching is defined as follows: Given a rule tree, a type abstraction
hierarchy, and a target head sequence q*, find the rules matched to i. Our approach
for exact rule matching consists of two steps.

Step 1. Search for exactly matched rule head: Using the rule tree as an
index structure, we find the rule head h that is exactly matched to a target head
sequence. Algorithm 1 shows the exact matching algorithm RTI-E (Rule Tree

Index for Exact matching). We use the notation Q for C(S(q-). The algorithm
traverses the rule tree and returns a pair (N, p) that represents the matched

rule head K = label (rootNode, PN) e (label(PN, N)[1 : p]). The first call to the

algorithm has two arguments: rootNode and Q.

Step 2. Rule extraction from exactly matched rule head: Using the
relationship between the exactly matched rule head and its following subse-
quences, we extract the rules. Let us assume that RTI-E has returned the pair
(N, p) and the length of label(PN, N) is L. If p < L, then the matched rule
is 'label (rootNode, PN) e (label(PN, N)[1 : p]) --* label(PN, N)[p + 1 : L]
with confidence 1'. Otherwise, the number of matched rules is the same as the
number of children of N. For each child node CN of N, the matched rule is
'label(rootNode, N) -- label(N, CN) with confidence(CN)'.



Discovering and Matching Elastic Rules 405

Input : node N, target head sequence
Output: child node CN, length of matched prefix

Visit the node N;
Select the child node, CN, where label(N, CN) is matched to the prefix of Q;
Remove the matched prefix from Q;
if (Q becomes empty then return a pair (CN, the length of a matched prefix);
else call RTI-E(CN, Q);

Algorithm 1: Exact matching algorithm RTI-E

5 Relaxed Rule Matching

Relaxed rule matching is defined as follows: Given a rule tree, a type abstraction
hierarchy, and a target head sequence 4, find the least relaxed rules that cover q.

Since a rule head h whose length is not equal to jq- may be stretched and
relaxed to cover T, we propose a relaxation-error based time warping distance
function DRE(h, q) as a similarity measure of h and 4. DRE(h, qj stretches K and
4' non-linearly to find the best element mappings that minimize the difference
of h and 4'. Let h[i] be mapped to q•j]. Then, the distance of this mapping is

defined as RE(h[i], qlj]) - RE(h[i]) where RE(K[i], q-jJ])) is the relaxation error

of the lowest node containing both iK[i] and q'j], and RE(h[i]) is the relaxation

error of the lowest node containing Kh[i]. The detailed description of DRE (K, qj
is given in [10]

DRE (h, q) can be calculated efficiently by the dynamic programming techni-

que [2] based on the recurrence relation r(x,y). (x = 1, ... , IfK , y = 1, ... , Iq7). The

final cumulative distance, r(IhI, I4), is the amount of relaxation needed for K to
cover q. Using the cluster hierarchy (Figure 1), Figure 3 shows the cumulative

distance table T for DRE(h = (C, A, E, D, A), ý= (C, E, A)) and the element
mappings after time warping and relaxation. In the following, we present the
two-step approach for relaxed rule matching.

Step 1. Search for the nearest rule head: To generate the least relaxed
rules, we first traverse the rule tree to find the rule head K that requires the least
relaxation to cover a target head sequence 4 The similarity matching algorithm
RTI-S (Rule Tree Index for Similarity matching) is given in Algorithm 2. Note

that a target head sequence 4 is converted to the compact representation Q be-
fore beginning the search process. The algorithm maintains three global variables
during its execution: (Q, the nearest rule head h found so far, and its distance
MinDist from Q. The first call to the algorithm has two arguments: rootNode
and emptyTable. RTI-S reduces the search time by applying the branch-pruning
approach [11] and by allowing the cumulative distance table to be shared by rule
heads that have the same prefix.



406 S. Park and W.W. Chu

h , > '>

A 1.69 1.17 L0.50 q=<C, E, A> q=<C, E, A>

D 1.25 050 0.81 --

E 0.88 0.44 0.88 I-
A 044 0.67 0.47 --

C 0 0.47 0.71 h- < C. A, , , h= < C, X, EY, A>

C E A q

(a) Cumulative distance table T for (b) Mapping of elements after time (c) Mapping of elements after relaxation.
DRE(<C,A,E,D,A>,<C,E,A>) warping. The first and the third The second element (=A) and the fourth

element of query sequence are element (=D) of head sequence are
replicated. relaxed to X and Y, respectively.

Fig. 3. Cumulative distance table T for DRE (h = (C, A, E, D, A), (C, E, A)) and
the mapping of elements after time warping and relaxation.

Input : node N, cumulative distance table T

Visit the node N;
for each child node CN do

Build a new cumulative distance table newT, by adding rows corresponding
to label(N, CN) on T;
Find a nearer rule head Ki from newT and update MinDist;
If further traverse-down the tree is necessary, call RTI-S(CN, newT);

Algorithm 2: Similarity matching algorithm RTI-S

Step 2. Rule extraction from the nearest rule head: After finding the
rule head h most similar to (Q, we generate the least relaxed rules from h and its
following subsequences. This step begins with extracting the rules from h using
the method explained in Section 4. Then, we convert symbols of rule heads and
bodies into their relaxed symbols according to the mapping of K and Q, and get
the compact representations of rules. Finally, the rules having the same head
and body are merged and their confidence values are recomputed.

6 Experiments

To study the effectiveness of our proposed methods, we performed experiments
on the random walk synthetic data sequences [10]. We used the relative minimum
support value RSUPmin to control the number of discovered rules.

6.1 Rule Discovery

We used the total elapsed time as a performance measure of our rule discovery

algorithm. First, we increased the number of sequences from 100 to 10,000 while
keeping their average length constant at 200. Then, we changed the average



Discovering and Matching Elastic Rules 407

length of sequences from 100 to 1,000 while maintaining the number of sequences
at 500. As shown in Figures 4 and 5, the total elapsed times increase linearly as
the number of and the average length of data sequences grow. The figures also

show that the linearity is maintained with different RSUPmin values.

40 FASUPrnn-O.Ol -- 1 6 RSUP ' O
35 RSUPMin=0.001 - 5.5 RSUPmin -

RStJPmtin-0.0001 RSUP =0,0001 -9--

25 4

20 35

to 0

5 1.5,

00 1000 2000 3000 40D0 5000 6000 7000 8000 9000100DO 100 200 300 400 500 600 700 8O0 800 1000
number of data sequen0es average length of data sequentes

Fig. 4. Total elapsed time for discover- Fig. 5. Total elapsed time for discover-
ing elastic rules with selected numbers ing elastic rules with selected average
of data sequences. length of data sequences.

8 S-ased acact 4aatic a Sg-based similari trty no
7 RTI-y 30 RTI-S -0-

5 125

4 "20

04 15

21 04

5o 6@r-1

0 2000 4000 6000 8000 10000 12000 14000 16000 0 1000 2000 3000 4000 5000 6000 7000 8000 900010D00
numt er of rtAs number of rudes

Fig. 6. Performance comparison bet- Fig. 7. Performance comparison bet-
ween sequential scanning and RTI-E for ween sequential scanning and RTI-S for
exact rule matching. relaxed rule matching.

6.2 Rule Matching

For 500 data sequences with the average length 400, Figure 6 shows the aver-
age search times of RTI-E and SS(Sequential- Scanning)-based exact matching
algorithm for increasing numbers of rules. The search times of SS-based exact
matching algorithm increase linearly with the number of rules while the search
times of RTI-E remain relatively constant. Figure 7 shows the average search
times of RTI-S and SS-based similarity matching algorithm. The performance
gain of RTI-S increases as the number of rules increases.



408 S. Park and W.W. Chu

7 Conclusion

In this paper, we proposed a method to discover elastic rules from sequence data-
bases. We also presented efficient techniques to find matched rules and to derive
the least relaxed rules. We focused on data sequences consisted of univariate nu-
meric values. If elements are non-numeric, we employ an encoding scheme that
converts non-numeric elements to numeric elements.

Experiments on synthetic data sequences revealed that: 1) our rule disco-
vering algorithm is linear to both the total number of and the average length
of data sequences, and 2) our exact and relaxed rule matching algorithms are
several orders of magnitude faster than sequential scanning.

References

1. R. Agrawal, and R. Srikant, "Mining Sequential Patterns", Proc. IEEE ICDE, 1995.
2. D. J. Berndt, and J. Clifford, "Finding Patterns in Time Series: A Dynamic

Programming Approach", Advances in Knowledge Discovery and Data Mining,
AAAI/MIT, 1996.

3. P. S. Bradley, U. M. Fayyad, and 0. L. Mangasarian, "Data Mining: Overview and
Optimization Opportunities", Microsoft Research Report MSR-TR-98-O4, 1998.

4. P. Bieganski, J. Riedl, and J. V. Carlis, "Generalized Suffix Trees for Biological
Sequence Data: Applications and Implementation", Proc. Hawaii Int'l Conf. on
System Sciences, 1994.

5. W. W. Chu, and K. Chiang, "Abstraction of High Level Concepts from Numeri-
cal Values in Databases", Proc. of AAAI Workshop on Knowledge Discovery in
Databases, 1994.

6. G. Das, K. Lin, H. Mannila, G. Renganathan, and P. Smyth, "Rule Discovery from
Time Series", Proc. International Conference on Knowledge Discovery and Data
Mining, 1998.

7. U. M. Fayyad, "Mining Databases: Toward Algorithms for Knowledge Discovery",
Data Engineering Bulletin 21(1), 1998.

8. E. M. McCreight, "A Space-Economical Suffix Tree Construction Algorithm", Jour-
nal of the ACM, Vol. 23, No. 2, 1976

9. H. Mannila, H. Toivonen, and A. I. Verkamo, "Discovering Frequent Episodes in
Sequences", Proc. International Conference on Knowledge Discovery and Data Mi-
ning, 1995.

10. S. Park and W. W. Chu, "Discovering and Matching Elastic Rules from Sequence
Databases", UCLA Technical Report UCLA-CS-TR-200012, 2000.

11. S. Park, W. W. Chu, J. Yoon, and C. Hsu, "Efficient Searches for Similar Subse-
quences of Different Lengths in Sequence Databases", Proc. IEEE ICDE, 2000.

12. L. Rabinar, and B. Juang. Fundamentals of Speech Recognition, Prentice Hall,
1993.

13. G. A. Stephen, String Searching Algorithms, World Scientific Publishing, 1994.
14. J. T.-L. Wang, G.-W. Chirn, T. G. Marr, B. Shapiro, D. Shasha, and K. Zhang,

"Combinatorial Pattern Discovery for Scientific Data: Some Preliminary Results",
Proc. ACM SIGMOD, 1994.



Perception-Based Granularity Levels in Concept
Representation

Lorenza Saitta1 and Jean-Daniel Zucker2

1 Univ. del Piemonte Orientale Dip. di Scienze e Tecnologie Avanzate

Corso Borsalino 54, 15100 Alessandria (Italy)
saitta@di.unito.it

2 Universit6 Paris VI - CNRS, Laboratoire d'Informatique de Paris 6
4, Place Jussieu, F-75252 Paris (France)

Jean-Daniel.Zucker@lip6.fr

Abstract. In this paper we propose a perception-based view of abstraction, which
originates from the observation that conceptualization of a domain involves entities
belonging to several epistemological levels. The fundamental level corresponds to
the perception of a world. For memorization purposes, some kind of structure is
needed, in order to organize objects and relations perceived in the world into
coherent ensembles. To communicate with others, a language must be invented,
and, finally, a theory makes it possible to reason about the world. After discussing
suitable properties abstraction should have to be useful for concept representation,
examples of abstraction operators, designed to perform the abstraction process in
practice, will be introduced.

1 Introduction

Abstraction, intended as the ability to forget irrelevant details and to find simpler
descriptions, has been mainly investigated in problem solving [16, 20, 5, 3, 8], and in
problem reformulation [12, 1, 18, 24]. In this paper we are interested, instead, in the
role played by abstraction in a phase preceding problem solving, namely the phase of
conceptualizing a domain, when a set of appropriate, possibly interrelated concepts is
defined.

In problem solving and problem reformulation, abstraction consists of a
transformation of the representation language that allows a theorem to be proved (or a
problem to be solved) more easily, i.e., with a reduced computational effort. This
pragmatic view of abstraction, which proved very useful to its intended goal, may not
be sufficient for concept definition, where computational issues, even though
important, are subsequent to the establishing of meaningful relations between the
"concepts" and their referents in the world. In concept representation, in fact, the role
of abstraction seems more related to "making sense" of the perception of the world,
by transforming it into a set of meaningful "concepts", prior than to an efficient use of
them. Abstraction is thus a fundamental mechanism for saving cognitive efforts, by
offering us a "higher" level view of our physical and intellectual environment.
Goldstone and Barsalou [6] have recently advocated a stricter link between perception
and conceptualization in Cognitive Science. We think that their approach offers a
cognitive foundation to our model of abstraction.

Z.W. RaM and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 409-416, 2000.
© Springer-Verlag Berlin Heidelberg 2000



410 L. Saitta and J.-D. Zucker

2 Related Work

Plaisted [16] has provided foundations of theorem proving with abstraction, seen as a
function from a set of clauses to another one that satisfies some properties related to
the resolution principle. Tenenberg [201 starts from Plaisted's work to define an
abstraction as a mapping between predicates that preserves logical consistency. He
defines an abstraction either as a predicate mapping, or a mapping between clauses
based on predicate mappings, where only consistent clauses are considered.

Giunchighia and Walsh [5] reviewed most of the work done in reasoning with
abstraction. Extending Tenenberg's work, Nayak and Levy [14] proposed a semantic
theory of abstraction. This theory defines abstraction as a model level mapping rather
than predicate mapping. This semantic theory yields model increasing abstractions
that are weaker than the base theory, i.e., they are strictly a subset of the "theorem
decreasing" abstractions introduced in [5].

Abstraction has also been studied in relation with change of problem
representation [2,1,18,19,11,12]. The notion of granularity is related to the analysis of
possible links between levels of abstractions [7, 9, 15].

3 Definition of Perception-Based Abstraction

The novel perspective on abstraction that we propose originates from the observation
that the conceptual izati on of a domain involves at least four different levels.
Underlying any source of experience there is the world W. We consider a fixed part
of the world, and we assume further that it does not change over time. The world is
not really known, because we only have a mediated access to it through our
perception. An actual world perception P is obtained through a process P of
signal/information acquisition from/about the world:

P = PV (W)
Even though the primary source of information is the flow of sensory perceptions

from the world, we cannot go back to them every time we approach a new task. Then,
when we consider a world, we can think of using a perception system P more
complex than the one sufficient to capture basic signals; P detects objects, properties
and relations specified by P through mechanisms that we leave implicit. More
precisely, in the world, both atomic and compound objects can be perceived. Atomic
objects do not have parts, whereas compound objects do have parts that are
themselves objects: a part-of hierarchy relates compound objects to their
constituents. Single objects (both atomic and compound ones) have properties, which
we call attributes. Other types of properties involve groups of objects, resulting in
fuinctions and relations. The percepts in P, provided by P(W), can be grouped into
four classes:

P =< OBJ,A TT FUNC, REL >.
OB] is a set of objects, ATT is a set of object attributes, FUNC is a set of

functional links, and REL is a set of relations.



Perception-Based Granularity Levels in Concept Representation 411

At the perception level, the percepts "exist" only for the observer, and only during
the act of perceiving. In order to let the stimuli become available over time, for
retrieval and further reasoning, they must be memorized and organized into a
structure S [22]. This structure is an extensional representation of the perceived
world, in which stimuli perceptually related one to another are stored together. In an
artificial system, storage occurs in a relational database, manipulated via relational
algebra operators [2 1]. We will denote by N the memorization process:

S = 7&' (P)
Finally, in order to describe in a symbolic way the perceived world, and to

communicate with other agents, a language L is needed. L allows the perceived
world to be described intensionally. Assigning "names" to the tables in the structure S
and to their entries is a process of description:

L =V(S)
Finally, a theory allows reasoning about the world. The theory may also contain

general knowledge, which does not belong to any specific domain. At the theory level
inference rules are used. We call formalization the process of expressing the theory in
the language L (possibly enriched to accommodate domain-independent background
knowledge):

T = 5(L)
The four levels are ordered as in Figure 1. The meaning of an arrow X -> Y and,

consequently, of the functional denotation Y = ý(X), indicates that the syntactic and
semantic definition of level Y must take into account the content of level X.

As no world is totally isolated, a body of background knowledge provides, in
principle, input to each level, especially to the theory, where general laws and
domain-independent facts may be needed.

Background Knowledge

Fig. 1. Levels involved in representing and reasoning about a world W. P denotes a perception
of objects and their physical links in W. S is a set of tables, each one grouping objects sharing
some property. L is a formal language, whose semantics is evaluated on the tables of S. Finally,
T is a theory formulated using L, in which properties of the world and general knowledge are
embedded. General background knowledge may provide inputs to any level.

In this paper we consider the levels as given, and we do not discuss the nature of
the P, N, V, and 9 processes. Instead, we concentrate on representational issues and
define a Description Framework D (W), over a world W, as the 4-tuple D (W) = (P,
S, L, T). Given a world W, let P be a perception of W resulting from a process P that
uses a set of sensors, each one tailored to capture a particular signal. Each sensor has
a resolution threshold that establishes the minimum difference between two signals in



412 L. Saitta and J.-D. Zucker

order to consider them as distinct. A set of values provided by the sensors in P is

called a signal pattern or a configuration. Let F be the set of possible configurations
detectable by A. In order to capture the intuitive notion that a more abstract

configuration should be described in a simpler way, and that its simplicity should not
depend upon the tool used for the description, but should be intrinsic to the
configuration itself, we can exploit the notion of algorithmic complexity introduced

by Kolmogorov [13].
Given P, and, hence, F, any configuration y c F can be described by a program Ri

on a universal computer U. Then, a complexity measure can be associated to F
according to the following definition:

Definition 1 - Given a perception system P and the associated set F, let y . F be
any configuration. Given a universal machine V let

K(y)= m i n L(n) + C
u(n)=y

be the Kolmogorov complexity of y, defined as the length ý (nt) of the shortest
program it that output y on the universal machine. The complexity of F can be

defined as:
K() = Max K(y) + C

ye F
The above definition has the advantage to be an "absolute" measure of the

complexity of F, because it is machine-independent up to an additive constant. The

additive constant C can be interpreted as the length of the program that describes the
common structure of the configurations, i.e., the length of the program necessary for
the machine V to interpret the descriptions 7r. Kolmogorov complexity is not

computable. Nevertheless, we can use computable approximations of, K sufficient
for practical purposes, provided that the same approximation is used uniformly over
all the F's.

Definition 2 - Given a world W, let P, and 72 be two perception processes

generating P1 and P2 , respectively. Let Fl and F2 be the corresponding configuration

sets. The perceived world P 2 will be said simpler , according to Definition 1, than P1

iff:

K(72) < K(F 1) 0
The above definition has the advantage of linking simplicity to its semantic

meaning of cognitive effort of the information processing, rather to its syntactic
expression. Obviously, syntactic complexity may have an effect on the simplicity of a
perceived world, when a higher syntactic complexity implies more work to handle the
conveyed information.

Definition 3 - Given a world W, let Dg(W) = (Pg, Sg, Lg, Tg) and Da(W) = (Pa,

Sa, La, Ta) be two description frameworks over the same world W, which we



Perception-Based Granularity Levels in Concept Representation 413

conventionally label as ground and abstract, respectively. An Abstraction is a
mapping

,4 : Dg(W) -- Da(W)

such that Pa is "simpler" than Pg.

Definition 3 is very general, and does not impose any "semantic " link between F

and F; it only states that F is simpler to describe. Abstraction is, of course, a

transitive relation [10, 23], and chains of abstraction mapping can be considered.
Notice that abstraction is not concerned with the probability distribution of the
configurations belonging to F: just one configuration, the observed one y, is relevant.

Also, the target problem is not recognizing the configuration, but describing it.

Assuming that a ground representation framework Dg (W) = (Pg, Sg, Lg, Tg) has

been defined over a world W, we will now investigate the relations between Dg and a

more abstract representation framework Da(W) = (Pa, Sa, La, Ta). These relations

are schematically illustrated in Figure 2.

............... . ....

1Sg=M (PjW)) ..... ..... S = (.

L =D (Sd ......... ..... - L =X(Sd

T = F(L) d-.

Fig. 2. Abstraction mapping between a ground representation framework Dg(W) = (Pg, Sg,
Lg, Tg) and a more abstract one Da(W) = (Pa, Sa, La, Ta).

The symbols o, a, X and 'r denote abstraction operators belonging to four sets 0_',
Q-s, K2L, and Ch, respectively acting at the four considered levels.

In Figure 2 two dimensions appear: the vertical one, along which the nature of the
representation changes, and the horizontal one, along which abstraction, for each type
of description, occurs. As abstraction is, in the proposed model, grounded on
perception, the P-operators are the ones that have to be defined first, whereas the other
operators must reflect, if possible, the perceptual transformations. If a perceptual
transformation linking P and V' exists, no problems of consistency should appear [6];

instead, it is possible that the language (and/or the theory) becomes unable to describe
the new perceived world. In the next section, more details about the abstraction
operators will be given.



414 L. Saitta and J.-D. Zucker

4 Abstraction Operators

The previous section provides a formal definition of abstraction as a functional
mapping ,4 between a given perception of a world and a simpler one. Given A, we

would like to introduce operators that can actually operate the transformation.

Definition 4 - An abstraction P-operator o denotes a procedure that takes as input
a perception Pg(W) of a world W and outputs a simpler perception Pa(W) of the same

world. The domain of application of a P-operator represents the subset of the world
perceptions to which it applies. 0

Many P-operators can be defined, depending on the domain and task.
Given a P-operator o, in order to obtain the structure Sa that memorizes the

abstract world perception Pa, it would be enough to apply the N process to it,

namely to define Sa = W (Pa).However, building the structure Sa in this way requires

first to explicitly build the abstract world perception Pa = C(Pg(W)) and then to

memorize it. Because the memorization step is difficult to automate, and the abstract
perception could be difficult to acquire, it would be more useful to have a
transformation that works directly on the ground structure Sg. Therefore, we shall

define the notion of a structure level operator a (S-operator), compatible with a P-

operator co. This compatibility provides the semantic foundation to the abstract

operators at the structure level.

Definition 5 - An S-operator (T, applicable at the structure level, is compatible

with a P-operator co, at the world perception level, iff:
N ((0 (Pg(W))) = Y ( N (Pg (W))) CI

For any given P-operator co, there is no guarantee that a corresponding, effective

S-operator, compatible with o, exists, nor that, if it exists, it is unique.
Operators that directly modify languages have been predominant in modeling

abstraction [16, 20, 5, 14]. Given a P-operator Co and a compatible S-operator aj, in
order to obtain the abstract language La that describes the abstract structure Sa =

a(Sg), it would be enough to apply V to the abstract structure, i.e., to define La =

v(C7(Sg)). However, the same considerations made for the S-operators hold also for

the language level: we would like to define L-operators that operate directly on Lg.

Definition 6 - Given an S-operator cy, an L-operator X at the language level is

compatible with a iff X(V(Sg)) = V(a(Sg)). C3

Given a ground language Lg, a theory Tg is expressed as a set of formulas
formalizing a body of knowledge. These formulas use predicates from Lg, the ones
that have an operational semantics (their interpretations are in the structure), as well
as other predicates symbols. Given a compatible L-operator k, the abstract theory Ta



Perception-Based Granularity Levels in Concept Representation 415

may be built up by formalizing, using the abstracted language X(Lg), the same

knowledge that was formalized using language Lg, i.e., Ta = 5()X(Tg)).

Definition 7 - Given a language Lg and an L-operator X, a T-operator t at the
theory level is compatible with X iff u(9(Lg)) = 7(X(Lg)). C3

The definition of operators at the theory level is the most difficult step in the
whole process of abstraction, the one that requires background knowledge to be
performed. A preliminary solution to theory abstraction has been proposed by
Giordana, Saitta and Roverso [4].

5 Conclusions

In this paper we have presented a new model of abstraction, which advocates the
primary role played by perception in the conceptualization of a domain. The same
claim, put forward recently by Goldstone and Barsalou [1998], provides the cognitive
grounds to this model.

The presented work outlines only general properties of abstraction. We have also
introduced the notion of operator, which, at each considered representation level,
maps a ground to an "abstract" level. Specific operators may also be defined in
connection with particular application and/or tasks.

Given the complexity of the problem, we are well aware that this work leaves open
many fundamental questions. One of them is related to the "compatibility" notion and the
concrete definition of compatible operators.

References

1. Amarel, S. (1983). "Representation in problem solving". In Methods of Heuristics,
Lawrence Erlbaum, Palo Alto, CA, pp. 131-171.

2. Benjamin D.P., Dorst L., Mandhyan I., and Rosar M. (1990). "An Algebraic Approach to
Abstraction and Representation Change". In Proc. AAAI Workshop on Automatic
Generation of Approximations and Abstractions (Boston, MA), pp. 47-52.

3. Ellman T. (1993). "Synthesis of Abstraction Hierarchies for Constraint Satisfaction by
Clustering Approximately Equivalent Objects". In Proc. of 1 0 rh Int. Conf. on Machine
Learning (Amherst, MA), pp. 104-111.

4. Giordana A., Saitta L., Roverso D. (1991). "Abstracting Concepts with Inverse
Resolution", In Proc. 8th Int. Machine Learning Workshop, pp. 142-146.

5. Giunchiglia F., and Walsh T. (1992). "A Theory of Abstraction". Artificial Intelligence,

56, 323-390.
6. Goldstone R., and Barsalou L. 1998). "Reuniting Perception and Conception". Cognition,

65, 231-262



416 L. Saitta and J.-D. Zucker

7. Hobbs J. (1985). "Granularity". In Proc. IJCAI-85 (Vancouver, USA), pp. 432-435.
8. Holte R.C., Mkadmi T., Zimmer R.M., and MacDonald A.J. (1996). "Speeding Up

Problem-Solving by Abstraction: A Graph-Oriented Approach". Artificial Intelligence, 85,

321-361.
9. Imielinski T. (1987). "Domain Abstraction and Limited Reasoning". In Proc.IJCAI-87

(Milano, Italy, pp. 997-1003.
10. Iwasaski Y. (1990). "Reasoning with Multiple Abstraction Models". In Proc. AAAI

Workshop on Automatic Generation of Approximations and Abstractions (Boston, MA),
pp. 122-133.

11. Korf, R. E. (1980). "Towards a Model for Representation Change". Artificial Intelligence,
14, 41-78.

12. Lowry, M. (1987). "The Abstraction/Implementation Model of Problem Reformulation".
In Proc. IJCAI-87 (Milano, Italy), pp. 1004-1010.

13. Li M., and Vitdnyi P. (1997). An Introduction to Kolmogorov Complexity and Its
Applications, Springer-Verlag, New York, NY.

14. Nayak P.P., and Levy A.Y. (1995). "A Semantic Theory of Abstraction". In Proc. IJCAI-
95 (Montrdal, Canada), pp. 196-202.

15. Pawlak Z. (1991). Rough Sets : Theoretical Aspects of Reasoning about Data, Kluwer
Academic Publ., Norwell, MA.

16. Plaisted, D. (1981). "Theorem Proving with Abstraction". Artificial Intelligence, 16, 47-
108.

17. Sacerdoti, E. (1973). Planning in a hierarchy of abstraction spaces. In Proc. of the 3rd Int.
Joint Conf. on Artificial Intelligence, pp. 412-422.

18. Subramanian, D. (1990). "A Theory of Justified Reformulations". In D. P. Benjamin
(Ed.),Change of Representation and Inductive Bias, Kluwer Academic Pub., Boston, MA,
pp. 147-167.

19. Subramanian D., Greiner R., and Pearl J. (Eds.) (1997). Artificial Intelligence, 97 (1-2).

Special Issue on Relevance.
20. Tenenberg J. (1987). "Preserving Consistency across Abstraction Mappings". In Proc.

IJCAI-87 (Milan, Italy), pp. 1011-1014.
21. Ullman, J. D. (1983). Principles of Database Systems. Computer Science Press.
22. Van Dalen, D. (1983). Logic and Structure, Springer-Verlag, Berlin, Germany.
23. Yoshida K. and Motoda H. (1990). "Towards Automatic Generation of Hierarchical

Knowledge Bases". In Proc. AAAI Workshop on Automatic Generation of Approximations
and Abstractions (Boston, MA), pp. 98-109.

24. Zucker J-D., and Ganascia J-G. (1996). "Changes of Representation for Efficient Learning
in Structural Domains". In Proc. 13'h Int. Conf. on Machine Learning (Bari, Italy), pp.
543-551.



Local Feature Selection with Dynamic Integration of
Classifiers

Alexey Tsymbal and Seppo Puuronen

University of Jyvdskyl•, P.O.Box 35, FIN-40351 Jyviskyl5i, Finland
I Alexey, Sepi I @jytko.jyu.fi

Abstract. Multidimensional data is often feature-space heterogeneous so that
different features have different importance in different subareas of the whole
space. In this paper we suggest a technique that searches for a strategic splitting
of the feature space identifying the best subsets of features for each instance.
Our technique is based on the wrapper approach where a classification algorithm
is used as the evaluation function to differentiate between several feature sub-
sets. In order to make the feature selection local, we apply the recently devel-
oped technique for dynamic integration of classifiers. It allows us to determine
what classifier and with what feature subset should be applied for each new in-
stance. In order to restrict the number of feature combinations being analyzed
we propose to use decision trees. For each test instance we consider only those
feature combinations that include features present in the path taken by the test
instance in the decision tree built on the whole feature set. We evaluate our
technique on datasets from the UCI machine learning repository. In our experi-
ments, we use the C4.5 algorithm as the learning algorithm for base classifiers
and for decision trees that guide the local feature selection. The experiments
show advantages of the local feature selection in comparison with the selection
of one feature subset for the whole space.

1 Introduction

Current electronic data repositories contain enormous amount of data including also
unknown and potentially interesting patterns and relations, which are tried to be re-
vealed using knowledge discovery and data mining methods [8]. One approach com-
monly used is supervised machine learning, in which a set of training instances is used
to train one or more classifiers that map the space formed by different features of the
instances into the set of class values [1]. Each training instance is usually represented
by a vector of the values of the features and the class label of the instance. An induc-
tion algorithm is used to learn a classifier, which maps the space of feature values into
the set of class values.

The multidimensional data is sometimes feature-space heterogeneous so that differ-
ent features have different importance in different subareas of the whole space. Many
methods have been proposed for the purpose of feature selection, but almost all of
them ignore the fact that some features may be relevant only in context (i.e. in some
regions of the instance space) [7].

In this paper we describe a technique that searches for a division of the feature
space identifying the best subsets of features for each instance. To make the feature

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 417-425, 2000.
© Springer-Verlag Berlin Heidelberg 2000



418 A. Tsymbal and S. Puuronen

selection local, we apply the recently developed technique for dynamic integration of
classifiers to determine what classifier and with what feature subset is applied for each
new instance [12]. We make experiments with well-known datasets of the UCI ma-
chine learning repository using ensembles of quite simple base classifiers [4].

In Chapter 2 we consider the dynamic integration of classifiers. Chapter 3 discusses
local feature selection with the dynamic classifier integration. In the next chapter we
consider our experiments with the local feature selection technique on different da-
tasets. We conclude briefly in Chapter 5 with a summary and further research topics.

2 Dynamic Integration of Classifiers

In this chapter, the dynamic integration of classifiers is discussed, and a variation of
stacked generalization, which uses a metric to locally estimate the errors of the base
classifiers, is considered.

There are two main approaches to the integration. First, combination approach,
where the base classifiers produce their classifications. The simplest method of com-
bining classifiers is voting [1]. Examples of more complex algorithms are weighted
voting (WV) and stacked generalization [12].

Second, selection approach, where one of the classifiers is selected and the final re-
sult is the result produced by it. One very popular but simple static selection approach
is CVM (Cross-Validation Majority) [9]. And an example of more sophisticated dy-
namic selection approach predicts the correctness of the base classifiers for a new
instance [ 11 ]. We have elaborated a dynamic approach that estimates the local accu-
racy of the base classifiers by analyzing the accuracy in near-by instances [ 12].

The dynamic integration approach contains two phases [12]. In the learning phase
(procedure lea rning-phase in Fig. 1), the training set T is partitioned into v folds. The
cros s- validation technique is used to estimate the errors of the base classifiers E1.(x) on
the training set and the meta-level training set T* is formed. It contains the attributes of
the training instances x, and the estimates of the errors of the base classifiers on those
instances E1(x*). Several cross-validation runs can be used in order to obtain more
accurate estimates of the base classifiers' errors. Then each estimated error will be
equal to the number of times that an instance was incorrectly predicted by the classi-
fier when it appeared as a test example in a cross-validation run. The learning phase
finishes with training the base classifiers C1 on the whole training set.

In the application phase, the combining classifier (either the function
DSý_application~phase or the function DV application-.phase in Fig. 1) is used to
predict the performance of each base classifier for a new instance. Two different
functions implementing the application phase were considered [12]. In the DS (Dy-
namic Selection) application phase the classification error Eý*is predicted for each
base classifier Cq using a nearest neighbor procedure and a classifier with the smallest
error (with the least global error in the case of ties) is selected to make the final classi-
fication. In the DV (Dynamic Voting) application phase each base classifier C. re-
ceives a weight W,. that depends on the local classifier's performance and the final
classification is conducted by voting classifier predictions Cj(x) with their weights W1.



Local Feature Selection with Dynamic Integration of Classifiers 419

Ti i-th fold of the training set T
T* meta-level training set for the combining algorithm
c(x) classification of the instance with attributes x
C set of base classifiers
Cj j-th base classifier
Cj(x) prediction produced by Cjon instance x
Ej(x) estimation of error of Cj on instance x
E*j(x) prediction of error of Cj on instance x
m number of base classifiers
W vector of weights for base classifiers
nn number of near-by instances for error prediction
WNNi weight of i-th near-by instance

procedure learning-phase(T,C)
begin {fills in the meta-level training set T*}

partition T into v folds
loop for TiC T, j=I I/

loop for j from 1 to m train(Cj,T-Ti)
loop for xeTj

loop for j from 1 to m
compare Cj(x) with c(x) and derive Ej(x)

collect (x, E(x) .... Em(x)) into T*
loop for j from 1 to m train(Cj,T)

end
function DSapplicationphase(T*,C,x) returns class of x

begin
loop for j from 1 to m

) <--=nWNn E,(XNN) {NN estimation}

nnij=1
/+-agmin E] {number of cl-er with min. E}}

I
{with the least global error in the case of ties}
return Cj(x)

end
function DVapplication phase(T*,C,x) returns class of x

begin
loop for j from 1 to m

1 nn
W. <1 -- IWNN," Ej(XNN) {NN estimation)i/V nn<-- 1 Xnn.

return Weighted-Voting(W, C, (x) . C.(x))
end

Fig. 1. The algorithm for dynamic integration of classifiers [12]



420 A. Tsymbal and S. Puuronen

3 Local Feature Selection

In data mining the object of processing is usually multidimensional data presented by
a number of features. Commonly there are present also a number of irrelevant fea-
tures. In this chapter the feature selection problem is discussed based on local consid-
erations of the relevance of each feature.

The feature space is often heterogeneous, where the features that are important for
data mining are different in different regions of the feature space [2]. Of the two main
approaches to manage this [3] we apply the approach where the data mining problem
is divided into subproblems and the solution of the whole classification task is guided
by the heterogeneity of the feature space.

First, a feature selection algorithm can be based on a heuristic measure acting as a
filter extracting features from a feature set before its use by the main algorithm. Sec-
ond, a feature selection algorithm based on the actual accuracy acts as a wrapper
around the main algorithm [6]. We propose to apply the wrapper approach for dy-
namic integration of classifiers [12] using local classification accuracy [15].

In this paper we consider an advanced version of the method presented in [15]. We
previously analyzed all possible combinations of features to build the ensemble of
base classifiers. However, this can be very expensive computationally and can lead to
overfitting. The big number of feature subsets and, consequently, integrated base clas-
sifiers dramatically increases the number of degrees of freedom in the training proc-
ess, leading to increased variance of predictions and an increased risk of overfitting
the data. To reduce the risk, we propose to limit the number of considered feature
subsets in our local wrapper technique. The base classifiers in the ensemble can be
built using combinations of only potentially locally relevant features, discarding fea-
tures that are definitely irrelevant at that region.

Some recursive partitioning techniques or some heuristic measures can be used to
discard features that are locally irrelevant with a high probability. Thus, we propose to
combine our wrapper-based method with a filter approach, using it in advance for
restricting the possible feature combinations.

In [5] a decision tree was proposed to be used for local feature selection, where for
a test case only those features are considered to be locally relevant, which lie on the
path taken by the test case in the decision tree. We propose to use a decision tree ap-
proach [5] as a filter for feature selection with our method.

4 Experiments

In this chapter, we present our experiments with the use of the C4.5 decision tree algo-
rithm to guide the local feature selection process. First we describe the experimental
setting and then present results of our experiments. We conduct the experiments on
eight datasets taken from the UCI machine learning repository [4] and on the Dystonia
dataset considered in [16]. Previously we have experimentally evaluated the dynamic
classifier integration [12] and the unguided local feature selection [15]. Here we use a



Local Feature Selection with Dynamic Integration of Classifiers 421

similar experimental environment, but this time the algorithm builds C4.5 decision
trees with and without pruning [14] at the end of the training phase for local feature
filtering at the beginning of the application phase. For each test instance we consider
only those feature combinations that include features present in the path taken by the
test instance in the decision tree.

For each dataset 30 test runs are made. In each run 30 percent of the instances of
the dataset are by random sampling picked up to the test set. The rest 70 percent of the
instances form the training set which is passed to the learning algorithm. This training
set is divided into 10 folds using stratified random sampling because we apply 10-fold
cross-validation to build the cross- validation history for the dynamic integration of the
base classifiers [12]. The base classifiers themselves are learned using the C4.5 deci-
sion tree algorithm with pruning [14] on feature subsets including only exactly one or
two features. In the estimation of the classification err ors of the base classifiers for a
new instance we use the collected classification information about classification errors
for seven nearest neighbors of the new instance [12]. Based on the comparisons be-
tween different distance functions for dynamic integration presented in [13] we de-
cided to use the Heterogeneous Euclidean-Overlap Metric, which produced good test
results. The test environment was implemented within the MLC++ framework (the
machine learning library in C++) [ 10].

Table 1 presents accuracy values and numbers of analyzed features for our algo-
rithm of local feature selection when considered feature subsets consisted of exactly
one feature, and Table 2 presents the same results when the feature subsets consisted
of two features each. The left-hand side (until the bold line) of the tables shows the
averages of the classification accuracies over the 30 runs. The first five columns in-
clude the average of the minimum accuracies of the base classifiers (min), the average
of average accuracies of the base classifiers (aver), the average of the maximum accu-
racies of the base classifiers (max), the average percentage of test instances where all
the base classifiers managed to produce the right classification (agree), and the aver-
age amount of test instances where at least one base classifier during each run man-
aged to produce the right classification (cover). The next four columns of the left-hand
side of Table 1 and Table 2 include the accuracies for the four types of integration of
the base classifiers.

These are: (1) CVM - Cross-Validated Majority, (2) WV - Weighted Voting, (3)
DS - Dynamic Selection, and (4) DV - Dynamic Voting. The three columns of the
right-hand side include the minimum (min), average (aver), and maximum (max)
number of features used to classify test instances. All the above columns are averaged
over the 30 test runs.

In vertical direction the main body of the tables is divided into groups of three rows
each corresponding to one dataset. The first row contains accuracies received with
unguided local feature selection, the second row contains accuracies received when
the feature selection is guided by the C4.5 with pruning, and the third one contains
accuracies received when the feature selection is guided by the C4.5 without pruning.
The last group in the tables shows accuracies averaged over all the datasets.

When the numbers of features are compared inside the three lines of the groups cor-
responding to all the datasets, one can see that the use of the C4.5 algorithm with or



422 A. Tsymbal and S. Puuronen

without pruning for local feature selection significantly reduces the number of locally
analyzed features. When the corresponding accuracies achieved are compared one can
see that this has often happened without a loss in the classification accuracy. For many
datasets, the number of locally analyzed features is several times less in average than
the total number of features. For example, in the Dystonia dataset there are totally 7
features, whereas the average number of locally analyzed features in the case when
one-feature subsets were analyzed (Table 1) is 1.133 for pruned C4.5 and the same
number for C4.5 without pruning (the trees generated were already too simple to
prune).

Table 1. Accuracy values and numbers of analyzed features for our algorithm of local feature
selection with feature subsets including one feature

Base classifiers: C4.5 with pruning Integration of classifiers Features

DB min aver max agree cover CVM WV DS DV min aver max

Breast 0.673 0.706 0.737 0.473 0.887 0.69! 0.70E 0.70E 0.70E E E

0.332 0.669 0.906 0.551 0.831 0.69- 0.72 0.70C 0.730 1.83 3.294 6.00C

0.561 0.720 0.875 0.524 0.84C 0.69! 0.725 0.69- 0.725 1.93 4.43ý 7.43,ý

Dystonia 0.892 0.977 1.000 0.847 1.o 1.00 1.000 1.00C 1.000

1.000 1.000 1.00( 1.000 1.000 1.00C 1.000 1.00C 1.00( 1.00C 1.13 1.20(

1.00 1 1.00 1.00( 1.000 1.00C 1.00( 1.00C 1.00( 1.00( 1.00( 1.13ý 1.20C

Glass 0.274 0.43( 0.57( 0.004 0.85E 0.51- 0.59( 0.530 0.57C E
0.256 0.44( 0.631 0.046 0.81C 0.50E 0.535 0.502 0.548 2.50( 6.08!. 7.86-

0.278 0.465 0.71' 0.042 0.81, 0.50E 0.54 0.512 0.556 2.50C 6.43! 8.53

Heart 0.493 0.641 0.79ý 0.01 0.99 0.72 0.77 0.641 0.741 13 1" 17:

0.364 0.641 0.84 0.145 0.983 0.715 0.732 0.621 0.704 2.533 5.933 8.237
0.35, 0.640 0.84( 0.138 0.98d 0.716 0.730 0.621 0.703 2.533 6.03, 8.23

Ins 0.502 0.775 0.96, 0.351 0.986 0.942 0.935 0.93( 0.934 ,4 d ,d

0.735 0.879 0.96! 0.890 0.974 0.941 0.94! 0.94E 0.945 1.00( 1.578 2.30(

0.412 0.764 0.96ý 0.844 0.97 0.941 0.94, 0.93E 0.934 1.00( 1.75, 3.00(

Liver 0.496 0.557 0.62 0.066 0.967 0.56ý 0.59E 0.59- 0.61( E E 4

0.50 0.565 0.628 0.09, 0.965 0.574 0.61f 0.595 0.62ý 1.13ý 5.65 6.00(

0.50d 0.565 0.628 0.099 0.965 0.574 0.61 0.595 0.62E 1.13 5.65 6.00(

MONK-1 0.403 0.491 0.757 0.091 0.957 0.75 0.50 0.453 0.46x E 6 __

0.308 0.490 0.762 0.338 0.927 0.757 0.612 0.623 0.57! 1.00( 2.96W 4.967

0.314 0.490 0.757 0.332 0.937 0.757 0.61 0.625 0.57- 1.00C 3.053 5.167

MONK-2 0.669 0.669 0.66` 0.66 0.66 0.66 0.66 0.66 0.66E E E

0.566 0.646 0.701 0.669 0.6 0.6 0.66E 066 0.66 2.76- 4.50E 6.00C

0.57ý 0.643 0.69, 0.669 0.66E 0.66 0.66 0,66 0.66ý 2.96- 4.77 6.00C

MONK-3 0.47 0.604 0.81, 0.290 1.00ý 0.781 0.57( 0.781 0.56E E E E

0.46 "0.70 0.87ý 0.591 1.00 0.781 0.76 0.78E 0.94 1.96ý 2.104 3.00(

0.46 0.706 0.87ý 0.591 1.00d 0.781 0.763 0.78ý 0.941 1.96ý 2.104 3.00(

verage 0.542 0.650 0.770 0.312 0.925 0.738 0.705 0.702 0.69

0.503 0.671 0.812 0.481 0.907 0.738 0.733 0.716 0.74

0.496 0.666 0.816 0.471 0.909 0.738 0.734 0.716 0.74J _



Local Feature Selection with Dynamic Integration of Classifiers 423

For many datasets and on average, the classification accuracy is even higher with
the guided feature selection. Thus, sometimes the guided feature selection helps to
improve the classification accuracy, as on the Breast, MONK-i, and MONK-3 da-
tasets. However, some datasets are complex, containing many locally relevant fea-
tures, even more than there are levels in the decision tree. In those cases, the guided
local feature selection usually produces slightly lower accuracy than the unguided
feature selection, as on the Glass dataset.

Table 2. Accuracy values and numbers of analyzed features for our algorithm of local feature
selection with feature subsets each including two features

Base classifiers: C4.5 with pruning Integration of classifiers Features
DB min aver max agree cover CVM WV DS DV mi aver max

Breast 0.641 0.725 0.79 0.37E 0.93, 0.737 0.740 0.732 0.719 9 E9 9

0.196 0.725 1.000 0.611 0.81! 0.744 0.744 0.73E 0.745 2.100 3.54E 6.33"

0.381 0.773 0.98E 0.54E 0.85ý 0.74d 0.746 0.73E 0.747 2.267 4.637 7.500

Dystonia 0.951 0.997 1.000 0.950 1.00( 1.00( 1.00( 1.000 1.00C 7

1.000 1.000 1.000 1.000 1.00C 1.00( 1.00C 1.00d 1.00( 1 1.18 1.26ý

1.01.00 1.00 1.000 1.000 1.00( 1.00 1.00 1.00( 1.00( 1 1.18 1.26-

Glass 0.31ý 0.523 0.686 0.001 0.961 0.61 0.675 0.63. 0.671 9 9

0.166 0.500 0.765 0.110 0.90E 0.59 0.604 0.541 0.584 2.367 5.938 7.60(

0.188 0.528 0.801 0.106 0.90 0.607 0.61 0.55f 0.60 2.367 6.344 8.63`

Heart 0.457 0.667 0.82( 0.003 1.00( 0.74 0.82 0.76 0.80 13 1, 1

0.155 0.651 0.979 0.128 0.97d 0.754 0.76, 0.711 0.75E 2.16A 5.817 8.10

0.136 0.657 0.987 0.114 0.973 0.754 0.762 0.70, 0.75E 2.16 5.952 8.20

Iris 0.703 0.905 0.971 0.66 0.98( 0.933 0.954 0.94! 0.95C , 4 _ 4

0.838 0.939 0.984 0.93, 0.954 0.94 0.94 0.94, 0.94E 1.00( 1.60 2.26

0.716 0,902 0.986 0.92( 0.961 0.940 0.94E 0.94, 0.947 1.00( 1.69 2.66

Liver 0.469 0.574 0.673 0.01( 1.000 0.57. 0.64 0.60 0.65E ( ( E_

0.468 0.574 0.677 0.05E 0.99 0.58' 0.64( 0.61! 0.653 1.10C 5.64f 6.00C

0.46ý 0.574 0.671 0.05 0.990 0.58, 0.646 0.61 0.653 1.10C 5.641 6.00C

MONK-1 0.368 0.549 0.82E 0.02 1.000 0.82, 0.711 0.82d 0.575 E_ ( __

0.204 0,618 1.00( 0.49( 0.962 0.95C 0.748 0.94ý 0.80( 1.00d 3.06' 5.46-

0.215 0.605 1.00( 0.48' 0.98( 0.964 0.741 0.95, 0.804 1.00d 3.16, 5.60C

MONK-2 0.686 0.686 0.68( 0.68E 0.68E 0.68( 0.68E 0.686 0.68E E ( E

0.547 0,646 0.72d 0.68E 0.68E 0.68E 0.686 0.686 0.68E 2.76- 4.541 6.00C

0.54, 0.641 0.71( 0.68E 0.68E 0.68( 0.68( 0.686 0.68E 3.00( 4.79( 600
MONK-3 0.431 0.67 0.96 0.151 1.00 0.96 0.74( 0.972 0.684 E E_

0.426 0.730 0.96 0.90 1.000 0.96, 0.96§ 0.981 0.96K 1.90C 2.08 3.00(

0.426 0.730 0.96 0.90 1.00d 0.96 0.96 0.981 0.964 1.90 2.08 3.00C
verage 0.509 0.663 0.805 0.241 0.947 0.762 0.748 0.771 0.72(

0.375 0.673 0.887 0.490 0.911 0.778 0.764 0.771 0.761

0.385 0.676 0.890 0.478 0.919 0.781 0.766 0.774 0.77(

For some datasets, the dynamic integration (local feature selection) is clearly better
than the static approaches, as on the Liver and MONK-3 datasets. The MONK-3 da-



424 A. Tsymbal and S. Puuronen

taset is a good example of the benefit from the local feature selection guided by a
decision tree. On this dataset, the guided feature selection is better than the unguided
one, and the dynamic integration is better than the static integration. The dynamic
integration of classifiers built on different feature subsets guided by the C4.5 decision
tree is the best choice for this domain. The C4.5 decision tree clearly helps to reject
the three irrelevant features present in the dataset. One can see that at maximum, just
three relevant features are selected as locally relevant with the C4.5 on this dataset.

According to the last groups of the tables, the guided feature selection is better on
average than the unguided one. The C4.5 without pruning naturally generates bigger
trees, and it leads to greater average number of locally relevant features selected.
However, the accuracies of the algorithm with C4.5 with and without pruning usually
are almost undistinguishable. Only on the Glass dataset pruning gives clearly better
results. When the two tables are compared, one could see, that Table 2 contains natu-
rally greater accuracies (because subsets with 2 features were analyzed whereas only
one-feature subsets were analyzed in Table 1). However, the difference is less than
one could expect. Integration of classifiers based on only one feature gives surpris-
ingly good results. And these results can be only slightly improved when more fea-
tures are considered.

5 Conclusion

In this paper we described a technique that searches for a division of the feature space
identifying the best subsets of features for each instance. The technique is based on the
local wrapper approach, and uses the method for dynamic integration of classifiers to
determine what classifier and with what feature subset is applied for each new in-
stance. At the application phase, in order to restrict the number of feature combina-
tions being analyzed, we used the C4.5 decision tree built on the whole feature set as a
feature filter. For each test instance we considered only those feature combinations
that included features present in the path taken by the test instance in the decision tree.
Our technique can be applied in the case of implicit heterogeneity when the regions of
heterogeneity cannot be easily defined by a simple dependency.

We conducted experiments on datasets of the UCI machine learning repository us-
ing ensembles of simple base classifiers each generated on either one or two features.
The results achieved are promising and show that the local feature selection in com-
parison with selecting only one feature set for the whole space can be advantageous.

Further experiments can be conducted to make deeper analysis of applying recur-
sive partitioning and the dynamic integration of classifiers for local feature selection
(and particularly to define the dependency between the parameters of local feature
selection, characteristics of a domain, and the data mining accuracy). Decision trees
built on the whole instance set were used in our experiments. Use of other feature
filters can be tested in future experiments. Another potentially interesting topic for
further research is the analysis of feature subsets without the restriction on their size.
Also it would be interesting to consider an application of this technique to a hard real-
world problem.



Local Feature Selection with Dynamic Integration of Classifiers 425

Acknowledgments: This research is partly supported by the COMAS Graduate
School of the University of Jyviiskyla. We would like to thank the UCI machine
learning repository of databases, domain theories and data generators for the datasets,
and the machine learning library in C++ for the source code used in this study. We are
grateful to the anonymous referees for their valuable comments and constructive criti-
cism.

References

1. Aivazyan, S.A.: Applied Statistics: Classification and Dimension Reduction. Finance and
Statistics, Moscow (1989).

2. Apte, C., Hong, S.J., Hosking, J.R.M., Lepre, J., Pednault, E.P.D., Rosen, B.K.:
Decomposition of Heterogeneous Classification Problems. In: X. Hiu, P.Cohen, M. Berthold
(eds.), Advances in Intelligent Data Analysis (IDA-97), Springer-Verlag, London (1997) 17-
28.

3. Atkeson, C.G., Moore, A.W., Schaal, S.: Locally Weighted Learning. Artificial Intelligence
Review, Vol. 11, Ns. 1-5 (1997) 11-73.

4. Blake, C.L., Merz, C.J.: UCI Repository of Machine Learning Databases [http://
www.ics.uci.edu/ -mlearn/ MLRepository.html]. Dep-t of Information and CS, Un-ty of
California, Irvine CA (1998).

5. Cardie, C., Howe, N.: Improving Minority Class Prediction Using Case-Specific Feature
Weights. In: Proc. 14e Int. Conf. on Machine Learning, Morgan Kaufmann (1997) 57-65.

6. Dash, M., Liu, H.: Feature Selection for Classification. Intelligent Data Analysis, Vol. 1,
No. 3, Elsevier Science (1997).

7. Domingos, P.: Context-Sensitive Feature Selection for Lazy Learners. J. of Al Review, Vol.
11, Ns. 1-5 (1997) 227-253.

8. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R.: Advances in Knowledge
Discovery and Data Mining. AAAI/ MIT Press (1997).

9. Kohavi, R.: A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model
Selection. In: C. Mellish (ed.), Proceedings of IJCAI'95, Morgan Kaufmann (1995).

10. Kohavi, R., Sommerfield, D., Dougherty, J.: Data Mining Using MLC++: A Machine
Learning Library in C++. Tools with Artificial Intelligence, IEEE CS Press (1996) 234-245.

11. Merz, C.: Dynamical Selection of Learning Algorithms. In: D.Fisher, H.-J.Lenz (eds.),
Learning from Data, Artificial Intelligence and Statistics, Springer-Verlag, NY (1996).

12. Puuronen, S., Terziyan, V., Tsymbal, A.: A Dynamic Integration Algorithm for an Ensemble
of Classifiers. In: Z.W. Ras, A. Skowron (eds.), Foundations of Intelligent Systems:
ISMIS'99, Lecture Notes in AI, Vol. 1609, Springer-Verlag, Warsaw (1999) 592-600.

13. Puuronen, S., Tsymbal, A., Terziyan, V.: Distance Functions in Dynamic Integration of Data
Mining Techniques. In: B.V. Dasarathy (ed.), Data Mining and Knowledge Discovery: The-
ory, Tools and Technology II, Proceedings of SPIE, Vol.4057, USA, 2000, pp.2 2-3 2 .

14. Quinlan, J.R.: C4.5 Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA
(1993).

15. Skrypnik, I., Terziyan, V., Puuronen, S., Tsymbal, A.: Learning Feature Selection for Medi-
cal Databases. In: Proc. 12"h IEEE Symp. on Computer-Based Medical Systems CBMS'99,
IEEE CS Press, Stamford, CT (1999) 53-58.

16. Terziyan, V., Tsymbal, A., Puuronen, S.: The Decision Support System for Telemedicine
Based on Multiple Expertise. Int. J. of Medical Informatics, Vol. 49, No. 2 (1998) 217-229.



Prediction of Ordinal Classes Using
Regression Trees

Stefan Kramer1 , Gerhard Widmer2' 3 , Bernhard Pfahringer 4

and Michael de Groeve
5

1 Department of Computer Science, Albert-Ludwigs-University Freiburg,

Am Flughafen 17, D-79110 Freiburg, Germany
2 Department of Medical Cybernetics and Artificial Intelligence,

University of Vienna, Freyung 6/2, A-1010 Vienna, Austria
3 Austrian Research Institute for Artificial Intelligence,

Schottengasse 3, A-1010 Vienna, Austria
4 Department of Computer Science, University of Waikato, Hamilton, New Zealand

5 Department of Computer Science, Katholieke Universiteit Leuven,
Celestijnenlaan 200A, B-3001 Heverlee, Belgium

Abstract. This paper is devoted to the problem of learning to predict
ordinal (i.e., ordered discrete) classes using classification and regression
trees. We start with S-CART, a tree induction algorithm, and study var-
ious ways of transforming it into a learner for ordinal classification tasks.
These algorithm variants are compared on a number of benchmark data
sets to verify the relative strengths and weaknesses of the strategies and
to study the trade-off between optimal categorical classification accuracy
(hit rate) and minimum distance-based error. Preliminary results indi-
cate that this is a promising avenue towards algorithms that combine
aspects of classification and regression.

1 Introduction

Learning to predict discrete classes or numerical values from preclassified ex-
amples has long been, and continues to be, a central research topic in Machine
Learning (e.g., [Breiman et al., 1984, Quinlan, 1992, Quinlan 1993]). A class
of problems between classification and regression, learning to predict ordinal
classes, i.e., discrete classes with a linear ordering, has not received much atten-
tion so far, which seems somewhat surprising, as there are many classification
problems in the real world that fall into that category.

Recently, [Potharst & Bioch, 1999] presented a tree-based algorithm for the
prediction of ordinal classes. [Potharst & Bioch, 1999] assume that the indepen-
dent variables are ordered as well, which implies that the predictions made should
be consistent with the order of the attribute values in the decision nodes. So,
the authors present "repair strategies" correcting inconsistent trees in case these
consistency constraints are violated, as well as an algorithm for constructing
consistent trees in the first place.

Z.W. Rai and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 426-434, 2000.
O Springer-Verlag Berlin Heidelberg 2000



Prediction of Ordinal Classes Using Regression Trees 427

Other machine learning research that seems relevant to the problem
of predicting ordinal classes is work on cost-sensitive learning. In the do-
main of propositional learning, some induction algorithms have been pro-
posed that can take into account matrices of misclassification costs (e.g.,
[Schiffers, 1997,Turney, 1995]. Such cost matrices can be used to express relative
distances between classes. In the area of statistics, there are methods directly
relevant to our problem (e.g., Ordinal Logistic Regression [McCullagh, 1980]);
some of these have also been studied in the field of neural networks (e.g.,
[Mathieson, 1996]). However, our goal is to develop induction algorithms that
produce interpretable, symbolic models. Moreover, our algorithm S-CART, to
be presented below, can learn in both propositional and relational domains.

The purpose of the research described in this paper is to study ways of
learning to predict ordinal classes using regression trees. We will start with an
algorithm for the induction of regression trees and turn it into an ordinal learner
by some simple modifications. This seems a natural strategy because regression
algorithms by definition have a notion of relative distance of target values, while
classification algorithms usually do not. More precisely, we start with the algo-
rithm S-CART (Structural Classification and Regression Trees) [Kramer 1996,
Kramer 1999] and study several modifications of the basic algorithm that turn it
into a distance-sensitive classification learner. Several variants of this algorithm
are compared on a number of data sets to verify the relative strengths and weak-
nesses of the strategies and to study the trade-off between optimal categorical
classification accuracy (hit rate) and minimum distance-based error.

2 The Basic Learning Algorithm: S-CART (Structural
Classification and Regression Trees)

Structural Classification and Regression Trees (S-CART) [Kramer 1996, Kramer
1999] is an algorithm that learns a first-order theory for the prediction of ei-
ther discrete classes or numerical values from examples and relational back-
ground knowledge. The algorithm constructs a tree containing a positive literal
or a conjunction of literals in each node, and assigns a discrete class or a nu-
meric value to each leaf. S-CART is a full-fledged relational version of CART
[Breiman et al., 1984]. After the tree growing phase, the tree is pruned using
so-called error-complexity pruning for regression or cost-complexity pruning for
classification [Breiman et al., 1984]. These types of pruning are based on a sep-
arate "prune set" of examples or on cross-validation.

For the construction of a tree, S-CART follows the general procedure of top-
down decision tree induction algorithms [Quinlan, 1993]. It recursively builds a
binary tree, selecting a positive literal or a conjunction of literals (as defined
by user-defined schemata [Silverstein & Pazzani, 1991]) in each node of the tree
until a stopping criterion is fulfilled. The algorithm keeps track of the examples
in each node and the positive literals or conjunctions of literals in each path
leading to the respective nodes. This information can be turned into a clausal
theory (i.e., a set of first-order classification or regression rules).



428 S. Kramer et al.

As a regression algorithm, S-CART is designed to predict a numeric (real)
value in each node and, in particular, in each leaf. In the original version of the
algorithm the target value predicted in a node (let us call this the center value
from now on) is simply the mean of the numeric class values of the instances
covered by the node. A natural choice for the evaluation measure for rating
candidate splits during tree construction is then the Mean Squared Error (MSE)
of the example values relative to the means in the two new nodes created by the
split:

2 ri

MSE = 1i (1) 9

where ri~ is the number of instances covered by branch i, yij is the value of the
dependent variable of training instance ej in branch i, and gi is the mean of the
target values of all training instances in branch i.

In constructing a single tree, the simplest possible stopping criterion is used
to decide whether the tree should be further refined: S-CART stops extending
the tree given some node when no literal(s) can be found that produce(s) two
partitions of the training instances in the node with a required minimum car-
dinality. The post-pruning strategy then takes care of reducing the tree to an
appropriate size.

S-CART has been shown to be competitive with other regression algorithms.
Its main advantages are that it offers the full power and flexibility of first-order
(Horn clause) logic, provides a rich vocabulary for the user to explicitly represent
a suitable language bias (e.g. through the provision of schemata), and produces
trees that are interpretable as well as good predictors.

As our goal is to predict discrete ordered classes, S-CART cannot be used
directly for this task. We will, however, include results with standard S-CART
in the experimental section to find out how paying attention to ordinal classes
influences the mean squared error achievable by a learner.

3 Inducing Trees for the Prediction of Ordinal Classes

In the following, we describe a few simple modifications that turn S-CART into a
learning algorithm for ordinal classification problems. In section 3.2, we consider
some pre-processing methods that also might improve the results.

3.1 Adapting S-CART to Ordinal Class Prediction

The most straightforward way of adapting a regression algorithm like S-CART
to classification tasks is to simply run the algorithm on the given data as if the
ordinal classes (represented by integers) were real values, and then to apply some
sort of post-processing to the resulting rules or regression tree that translates
real-valued predictions into discrete class labels.



Prediction of Ordinal Classes Using Regression Trees 429

An obvious post-processing method is rounding. S-CART is run on the train-
ing data, producing a regular regression tree. The real values predicted in the
leaves of the tree are then simply rounded to the nearest of the ordinal classes
(not to the nearest integer, as the classes may be discontiguous; after pre-
processing, they might indeed be non-integers - see section 3.2 below).

More complex methods for mapping predicted real values to symbolic (ordi-
nal) class labels are conceivable. In fact, we did experiments with an algorithm
that greedily searches for a mapping, within a defined class of functions, that
minimizes the mean squared error of the resulting (mapped) predictions on the
training set. Initial experiments were rather inconclusive; in fact, there were
indications of the algorithm overfitting the training data. However, more sophis-
ticated methods might turn out to be useful. This is one of the goals of our
future research.

An alternative to post-processing is to modify the way S-CART computes
the target values in the nodes of the tree during tree construction. We can force
S-CART to always predict integer values (or more generally: a valid class from
the given set of ordinal classes) in any node of the tree. The leaf values will thus
automatically be valid classes, and no post-processing is necessary.

It is a simple matter to modify S-CART so that instead of the mean of the
class values of instances covered by a node (which will in general not be a valid
class value), it chooses one of the class values represented in the examples covered
by the node as the center value that is predicted by the node, and relative to
which the node evaluation measure (e.g., the mean squared error, see Section
2 above) is computed. Note that in this way, we modify S-CART's evaluation
heuristic and thus its bias.

There are many possible ways of choosing a center value; we have imple-
mented three: the median, the rounded mean, and the mode, i.e., the most fre-
quent class. Let Ej be the set of training examples covered by node Ni during
tree construction and Ci the multiset of the class labels of the examples in Ej,
with IEvI = ICil = n. In the MEDIAN strategy, S-CART selects the class 4 as
center value that is the median of the class labels in Cj; in other words, if we
assume that the example set Ej is sorted with respect to the class values of the
examples, MEDIAN chooses the class of the (n/ 2 )th example.1 In contrast, the
ROUNDEDMEANTOCLASS strategy chooses the class closest to the (real-valued)
mean Z of the class values in Ci. Finally, in the MODE strategy the center value
di for node Ni is chosen to be the class with the highest frequency in Ci.

Table 1 summarizes the variants of S-CART that will be put to the test in
Section 4 below.

3.2 Preprocessing

The results of regression algorithms can often be improved by applying various
transformations to the raw input data before learning. The basic idea underly-

In this case the Mean Absolute Deviation (MAD) is used as distance metric instead

of the Mean Squared Error, because the former measure is the one that is known to
be minimized by the median.



430 S. Kramer et al.

Table 1. Variants of S-CART for learning ordinal classes.

Name Formula
POSTPROC. ROUND c = mean of the cij c Cj;

real values in leaves of learned tree are rounded
to nearest class in Ci

MEDIAN ci = median of class labels in multiset Ci
ROUNDEDMEANTOCLASS Z - mean of the cij E Ci,

6i c rounded to nearest class cjj G Cj
MODE -= most frequent class in C,

ing different data transformations is that numbers may represent fundamentally
different types of measurements. [Mosteller & Tukey, 1977] distinguish, among
others, the broad classes of amounts and counts (which cannot be negative),
ranks (e.g., 1 = smallest, 2 = next-to-smallest, ... ), and grades (ordered la-
bels, as in A, B, C, D, E). They suggest the following types of pre-processing
transformations: for amounts and counts, translate value v to tv = log(v + c);
for ranks, tv = log((v - 1/3)/(N - v + 2/3)), where N is the maximum rank;
and for grades, tv = (O(P) - q(p))/(P - p), where P is the fraction of ob-
served values that are at least as big as v, p is the fraction of values > v, and
O(x) = x log x + (1 - x) log(1 - x). We have tentatively implemented these three
pre-processing methods in our experimental system and applied the appropri-
ate transformation to the respective learning problem in our experiments. Table
2 summarizes them in succinct form, in the notational frame of our learning
problem.

Note that these transformations do not by themselves contribute to the goal
of learning rules for ordinal classes. They are simply tested here as additional
enhancements to the methods described above. In fact, pre-processing usually
transforms the original ordinal classes into real numbers. That is no problem,
however, as the number of distinct values remains unchanged. Thus, the trans-

Table 2. Pre-processing types (c = original class value; tc = transformed class value)

Name Formula
RAW No pre-processing (tc = c)
COUNTS tc = log(c + 1 - min(Classes))
RANKS tc =- log((c - 1/3)/(N - c + 2/3)), where

N -- max(Classes)
GRADES tc = (q$(P) - 0(p))/(P - p), where

O(x) = xlogx + (1 - x)log(1 - x),
PZ fraction of observed class values > c,
p = fraction of observed class values > c



Prediction of Ordinal Classes Using Regression Trees 431

formed values can still be treated as discrete class values without changing the
learning algorithms.

In the experiments, we applied only the one type of pre-processing that we
considered suitable for the dependent variable of the given learning problem.
Subsequently, we rounded to the next class in the "transformed space" and
mapped this prediction back. As it turned out, the dependent variable was a
"grade" in all four application domains. So, due to the nature of the data, we
actually use only one transformation in the experiments. Although we conjecture
that the other transformations might give good results as well, this has to be
confirmed (or refuted) in further experiments in other domains.

4 Experiments

4.1 Algorithms compared

In the following, we experimentally compare the S-CART variants and prepro-
cessing methods on several benchmark datasets. Three quantities will be mea-
sured:

1. Classification Accuracy as the percentage of exact class hits,
2. the Root Mean Squared Error (RMSE) V/1/n Z-ýt 1 (ci- ý)2 of the predic-

tions on the test set, as a measure of the average distance of the algorithms'
predictions from the true class, and

3. the Spearman rank correlation coefficient with a correction for ties, which is
a measure for the concordance of actual and predicted ranks.

As ordinal class prediction is somewhere 'between' classification and regres-
sion, we additionally include two 'extreme' algorithms in the experimental com-
parison. One, S-CARTCLASS, is a variant of S-CART designed for categorical
classification. S-CARTCLASS chooses the most frequent class in a node as cen-
ter value and uses the Gini index of diversity [Breiman et al., 1984] as evaluation
measure; it does not pay attention to the distance between classes. The other ex-
treme, called S-CARTREGRESS, is simply the original S-CART as a regression
algorithm that acts as if the task were to predict real values; we are interested in
finding out how much paying attention to the discreteness of the classes costs in
terms of achievable RMSE. (Of course, the percentage of exact class hits achieved
by S-CARTREGRESS cannot be expected to be high.) Finally, we will also list
the Default or Baseline Accuracy for each algorithm on each data set and the
corresponding Baseline RMSE.

4.2 Data sets

The algorithms were compared on four datasets that are characterized by a clear
linear ordering among the classes. Three of the data sets were taken from the
UCI repository: Balance, Cars and Nursery. The fourth dataset, the Biodegrad-
ability data set [D~eroski et al., 1999], describes 328 chemical substances in the



432 S. Kramer et al.

familiar "atoms and bonds" representation [Srinivasan et al., 1995]. The task is
to predict the half-rate of surface water aerobic aqueous biodegradation in hours.
For previous experiments, we had already discretized this quantity and mapped
it to the four classes fast, moderate, slow, and resistant, represented as 1, 2, 3,
and 4.

4.3 Results

In Table 4.3, we summarize the results (RMSE and classification accuracy) of
10-fold stratified cross-validation runs on these data sets.

The first and most fundamental obervation we make is that the learners
improve upon the baseline values in almost all cases, both in terms of RMSE and
in terms of classification accuracy. In other words, they really learn something.

As expected, there seems to be a fundamental tradeoff between the two
goals of error minimization and accuracy maximization. This tradeoff shows
most clearly in the results of the 'extreme' algorithms S-CARTREGRESS and
S-CARTCLASS: S-CARTCLASS, which solely seeks to optimize the hit rate
during tree construction but has no notion of class distance, is among the best
class predictors in all four domains, but among the worst in terms of RMSE.
S-CARTREGRESS, on the other hand, is rather successful as a minimizer of the
RMSE, but unusable as a classifier.

Interestingly, neither of the two solves its particular problem optimally: some
ordinal learners beat S-CARTCLASS in terms of accuracy, and some beat the
regression "specialist" S-CARTREGRESS in terms of the RMSE.

For Balance and for Cars, both the pre-processing and the simple post-
processing method are able to achieve good predictive accuracy while at the
same time keeping an eye on the class-distance-weighted error. These methods
also perform favorably in terms of the Spearman rank correlation coefficient.

For Nursery, the results are less pronounced. Still, both methods improve
upon the classification result of S-CARTREGRESS. Post-processing leads to a
slight improvement in terms of the RMSE and the Spearman rank correlation
coefficient (note that these are results for 12961 examples).

For Balance, Cars and Nursery, methods modifying the center value during
tree construction (MEDIAN, ROUNDEDMEANTOCLASS and MODE) do not seem
to perform as well. In particular for Nursery, these methods perform drastically
worse than PREPROC. GRADES and POSTPROC. ROUND.

Results for Biodegradability appear to be different from the other results.
The biodegradability domain is different from the other domains in several re-
spects: It has fewer examples, it is known to have class noise and it is essentially
relational. Here, methods modifying the center value during tree construction
perform better, but not good enough to be competitive with either the classifi-
cation method or the regression method. Still, it should be noted that the RMSE
of these methods is between the RMSE of the classification "specialist" and the
one of the regression "specialist".

Drawing more general conclusions from these limited experimental data
seems unwarranted. Our results so far show that tree learning algorithms for



Prediction of Ordinal Classes Using Regression Trees 433

predicting ordinal classes can be naturally derived from regression tree algo-
rithms, but more extensive experiments with larger data sets from diverse areas
will be needed to establish the precise capabilities and relative advantages of
these algorithms.

Table 3. Results from 10-fold cross-validation for Balance (625 examples, 4 at-
tributes), Cars (1278 examples, 6 attributes), Nursery (12961 examples, 8 attributes)
and Biodegradability (328 examples)

Balance Cars
Approach Accuracy RMSE Spearm. Accuracy RMSE Spearm.
BASELINE 46.1%7- 1.39 - 70.0% -0.84 -

S-CART-CLASS 77.8% - 0.80 0.676 94.67. 0.29 0.933
S-CARTREORESS 6.4% 0.69 0.677 78.7% 0.23 0.948
PREPROC. GRADES 77.0%o- 0.70 0.732 94.7% 0.24 0.942
POSTPROC. ROUND 77.6% 0.70 0.733 94.7% 0.25 0.946
MEDIAN 76.5% 0.76 0.692 91.5% 0.34 0.866
ROUNDEDMEANTOCLASS 75.0% 0.67 0.747 93.0% 0.29 0.913
MODE 78.9% 0.75 0.710 88.9% 0.40 0.818

Nursery Biodegradability
Approach Accuracy RMSE Spearm. Accuracy RMSE Spearm.
BASELINE 33.3% 2.84 - 36.6% 1.01 -

S-CART-cLASS 98.4% 0.14 0.988 57.9% 0.84 0.561
S-CARTREORESS 88.0% 0.11 0.984 1.2% 0.76 0.537
PREPROC. GRADES 97.7% 0.14 0.986 43.3% 0.84 0.436
POSTPROc. ROUND 98.2% 0.13 0.990 48.8% 0.82 0.489
MEDIAN 92.8% 0.27 0.963 50.3% 0.79 0.538
ROUNDEDMEANTOCLASS 93.1% 0.26 0.964 47.3% 0.80 0.510
MODE 92.3% 0.27 0.962 50.3% 0.82 0.506

5 Further Work and Conclusion

Further work will be to perform other experiments including the other transfor-
mations suggested by Mosteller and Tukey. It also would be interesting to build
tree induction algorithms that do not enforce the prediction of "legal" classes
during tree construction, but deal with this problem in the pruning phase. More-
over, it might be rewarding to experiment with tree learners that optimize some
other measure (such as the Spearman rank correlation coefficient) for the pre-
diction of ordinal classes.

In this paper, we have taken first steps towards effective methods for learn-
ing to predict ordinal classes using regression trees. We have shown how al-
gorithms for learning ordered discrete classes can be derived by simple modi-
fications to a basic regression tree algorithm. Preliminary experiments in four
benchmark domains have shown that, in some cases, the resulting algorithms
are able to achieve good predictive accuracy while at the same time keeping the
class-distance-weighted error low.



436 AM1 Alaffar J Dl un! I H I

A typical information retrieval (IR) systems S can be defined as a 5-tuple,
S = (T, D, Q, V, f), where: T is a set of index terms, D is a set of documents, Q is
a set of queries, V is a subset of real numbers, and f : D x Q •. V is a retrieval
function between a query and a document. IR systems based on the vector
processing model represent documents by vectors of term values of the form
d = (tl, Wd1 ; t2, Wd 2; .. ; tn, W1d.), where ti is an index term in d (i.e. ti C T n d)
and Wdi is the weight of ti that reflects relative importance of ti in d. Similarly,
for a query q E Q, it is represented as q = (ql,Wq1 ;q2, Wq2 1,... ; qm, wq-), where
qi G T is an index term in q (i.e. qi C T n q) and wqi is the weight of query term
qi that reflects relative importance of qi in q.

Our objective is to formulate an optimal query, Qopt, that discriminates more
preferred documents from less preferred documents. With this objective in mind,
we define a preference relation >- on a set of documents, A, in a retrieval (ran-
king) output as follows. For d, d' E A, d >- d' is interpreted as d is preferred to
or is equally good as d'. It is assumed that the user's preference relation on A
yields a weak order where the following conditions are hold [8]:

d >- d' or d' >- d.
d >- d' and d' >_ d" •' d >- d".

The essential motivation is that Qopt provides an acceptable retrieval output;
that is, for all d, d' E A, there exists Qopt E Q such that d > d' =:. f(Qopt, d) >
f(Qopt, d').

Given the user ranking as a preference relation defined on a set of documents,
"a system that produces a system ranking closer to the user ranking is better than
"a system that produces a ranking that is further away. To quantify this idea,
"a performance measure may be derived by using the distance between a user
ranking and a system ranking. A possible evaluation measure is Rnorm as sug-
gested by Bollmann and Wong [2], other measures have also been proposed [9].
Let (D, _-) be a document space, where D is a finite set of documents and >- be
a preference relation as defined above. Let A be some ranking of D given by a
retrieval system. Then Rnorm is defined as

1(1 S+ -S-)
Rnor2(A) = ( + (1)

where S+ is the number of document pairs where a preferred document is ranked
higher than non-preferred document, S- is the number of document pairs where

1 1.1 .I r-1-I-- CY4 j-L.-.



Optimal Queries in Information Filtering 437

f(Q, d) > f(Q, d') #: QTd > QTd/ • QT(d - d') > 0 •ý f(Q, b) > 0. The steps

of the algorithm are as follows.

1. Choose a starting query vector Qo; let k = 0.

2. Let Qk be a query vector at the start of the (k+1)th iteration; identify. the

following set of difference vectors:

F(Qk) = {b = d - d' : d >- d' and f(Qk, b) •_ 0};

if F(Qk) = 0, Qpt = Qk is a solution and exit, otherwise,
3. Let

Qk+1=Qk+ S b

bEr(Qk)

4. k = k + 1; go back to Step (2).

Theoretically it is known that SDA terminates only if the set of retrieved

documents is linearly separable. Therefore, a practical implementation of the

algorithm should guarantee that the algorithm terminates whether or not the

retrieved set is linearly separable. In this paper, we use a pre-defined iteration

number and Rnorm measure for this purpose. The algorithm is terminated if the

iteration number reaches the pre-defined limit or the Rnorm value of the current

query is higher than or equal to some pre-defined value. Within the algorithm

loop we continually update the query, Qk, that yields the highest Rnorm value
in order to return Qk as optimal query.

2 Effectiveness Measures

In order to measure the performance of a classifier, 1 we use text categorization
effectiveness measures. There are a number of effectiveness measures employed
in evaluating text categorization algorithms. Most of these measures are based

on the contingency table model. Consider a system that is required to categorize
n documents by a query, the result is an outcome of n binary (or two-level) deci-
sions. From these decisions a dichotomous table is constructed as in Figure 1 (a).

Each entry in the table specifies the number of documents with the specified
outcome label. For example, a is the number of documents whose predicted and
actual labels agree upon being relevant.

In our experiment, the performance measures are based on precision and
recall whose values are computed as a/(a + b) and a/(a + c) in Fig 1(a), respec-

tively. Usually a single composite recall-precision graph is reported reflecting the
average performance of all individual queries in the system. Two average effec-

tiveness measures, widely used in the literature, are: Macro-average and Micro-
average [4]. In information retrieval, Macro-average is preferred in evaluating

1 In this paper, a classifier is defined as a query. Therefore, we will use query and

classifier interchangeably.



438 A.H. Alsaffar, J. Deogun, and H. Sever

Predicted 11 Actual Label Training Test
Label relevant non-relevant With at least one topic 7,775 3,019

Relevant a b With no topic 1,828 280
Non-relevant c d Total 9,603 3,299

(a) (b)

Fig. 1. (a) Measures of system effectiveness. (b) Number of documents in the collection.

query-driven retrieval, while in text categorization Micro-average is preferred.
Consider a system with n documents and q queries. Then there are q dichoto-
mous tables each of which is similar to the one in Figure 1(a) representing the
outcomes of two-level decisions (relevant or nonrelevant) by the filtering system
(predicted label) and the user/expert (actual label) when a query is evaluated
against all n documents. Macro-average computes precision and recall separa-
tely from the dichotomous tables for each query, and then computes the mean
of these values. Micro-average, on the other hand, adds up the q dichotomous
tables all together, and then precision and recall are computed.

For the purpose of plotting a single summary figure for recall versus precision
values, an adjustable parameter is used to control assignment of documents to
profiles (or categories in text categorization). Furthermore recall and precision
values at different parameter settings are computed to show trade-off between
recall and precision. This single summary figure is then used to compute what
is called breakeven point, which is the point at which recall is approximately
equal to precision [4]. It is possible to use linear interpolation to compute the
breakeven point between recall and precision points.

3 The Experiment

In this section, we describe the experimental set up in detail. First, we describe
how the Reuters-21578 dataset is parsed and the vocabulary for indexing is con-
structed. Upon discussion of our approach to training, the experimental results
are presented.

3.1 Reuters-21578 Data Set and Text Representation

To experimentally evaluate the proposed information filtering method, we have
used the corpus of Distribution 1.0 of Reuters-21578 text categorization test
collection 2. This collection consists of 21,578 documents selected from Reuters
newswire stories. The documents of this collection are divided into training and
test sets. Each document has five category tags, namely, EXCHANGES, ORGS,
PEOPLE, PLACES, and TOPICS. Each category consists of a number of topics
that are used for document assignment. We restrict our study to only TOPICS

2 Reuters-21578 collection is available at: http://www.research.att.com/fiewis.



Optimal Queries in Information Filtering 439

category. To be more specific, we have used the Modified Apte split of Reuters-
21578 corpus that has 9,603 training documents, 3,299 test documents, and 8,676
unused documents.

The training set was reduced to 7,775 documents as a result of screening out
training documents with empty value of TOPICS category. There are 135 topics
in the TOPICS category, with 118 of these topics occurring at least once in the
training and test documents 3 . Each of the three topics out of 118 ones has been
assigned to only one document in the test set. We have chosen to experiment
with all of these 118 topics despite the fact that three topic categories with no oc-
currence of training set automatically degrades system performance. Figure 1(b)
shows some statistics about the number of documents in the collection.

We have produced a dictionary of single words excluding numbers as a result
of pre-processing the corpus including performing parsing and tokenizing the text
portion of the title as well as the body of both training and unused documents.
We have used a universal list of 343 stop words to eliminate functional words
from the dictionary '. The Porter stemmer algorithm was employed to reduce
each remaining words to word-stems form ~. Since any word occurring only a
few times is statistically unreliable [6], the words occurring less than five times
were eliminated. The remaining words were then sorted in descending order of
frequency.

Our filtering framework is based on the Vector Space Model (VSM) in which
documents and queries are represented as vectors of weighted terms. Let tik
be a jth term of document with identity of k in a collection. One common
function employed for computing document term weight, say Wjk, is to mul-
tiply term frequency (indicating the frequency of the term in a document)
by the inverse document frequency of that term which can be formulated as
wjk = tkx log(N/nj) [6], where tik is the term frequency, N is the total num-
ber of documents in the collection, and nj is the number of documents containing
tjk. We use a normalized version of this function (i.e., making magnitudes of do-
cument vectors one). A document is assigned to a topic by a particular classifier
if the cosine similarity measure between this document and the query is grea-
ter than or equal to an externally supplied threshold value, called adjustable
parameter previously.

3.2 Training

In contrast to information retrieval systems, in text categorization systems, we
have neither a retrieval output nor a user query. Instead, we have a number of
topics and for each topic the document collection is partitioned into training

3 In the description of the Reuters-2 1578 read-me file it was stated that the number of
topics with one or more occurrences in TOPICS category is 120, but we have found
only 118. The missing two topics were assigned to unused documents.

4 The stop list is available at: http://www.iiasa.ac.at/docs/RiLibrary/libsrchs.html.
5 The source code for the Porter Algorithm is found at:

http://ils.unc.edu/keyes/J~ava/porter/index.html.



440 A.H. Alsaffar, J. Deogun, and H. Sever

Table 1. Top 16 topics with more than 100 positive examples.

[[Name ITrain Test IIName ITrain Test
earn 2877 1087 ship 197 89
acq 1650 719 corn 182 56
money-fx 538 179 money-supply 140 34
grain 433 149 dlr 131 44
crude 389 189 sugar 126 36
trade 369 118 oilseed 124 47
interest 347 131 coffee 111 28
wheat 212 71 gnp 101 35

and test cases. The training set contains only positive examples of a topic. In
this sense, the training set is not a counterpart of the retrieval output due to
the fact that we do not have any negative examples. We can, however, construct
a training set for a topic that consists of positive and negative examples, under
the plausible assumption that any document considered as positive example for
the other topics and not in the set of positive examples of the topic at hand is
a candidate for being a negative example of this topic.

The maximum number of positive examples per topic in the corpus is 2877
and the average is 84. The size and especially the quality of the training set is an
important issue in generating an induction rule set. In an information routing
study [7], the learning method was not applied to the full training set but rather
to the set of documents in the local region for each query. The local region for a
query was defined as the 2000 documents nearest to the query, where similarity
was measured using the inner product score to the query expansion of the initial

query. Also, in [1] the rules for text categorization were obtained by creating local
dictionaries for each classification topic. Only single words found in documents
on the given topic were entered in the local dictionary.

In our experiment, the training set for each topic consists of all positive
examples while the negative data is sampled from other topics. The reason for
including the entire set of positive examples is that SDA is an enhanced version
of a relevance feedback algorithm and thus a larger number of positive examples
makes the algorithm produce more efficient induction rules. Additionally, the
result published by Dumais et al. [3] for the Reuters-21578 data shows that with
respect to micro-avaraged score of the SVM (Support Vector Machine) over
multiple random samples of training sets for the top 10 categories with varying
sample size, but keeping size of negative data the same, performance of the SVM
was degraded from 92% to 72.6% while the size was reduced from whole training
set down to 1%. Another important finding reported in that study shows that
performance of the SVM becomes somewhat unstable when a category has fewer
than 5 positive training examples. Here we have investigated the size of training
set from a different perspective and tried to estimate the best size for the negative
data in proportion to positive ones, which is described in the remaining part of
this section.



Optimal Queries in Information Filtering 441

Si 89
88

86

84 87

breakeven 82
in % 880

0 10 20 30 40 50 60 70 80 90 100 110 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6
Negative proportion size in %. R.,or value

(a) (b)

Fig. 2. (a) Performance of the top 16 topics at various negative-to-positive percentages.
(b) R•,m value versus breakeven on the top 10 topics.

To estimate the best size for negative data in the training set, we have expe-
rimented with the top 16 topics of the Reuters-21578 data as shown in Table 1
in which training and testing sizes of positive data are given. We have trained
each of these topics as follows: 1) Consider all positive data, 2) take a 05% of
the positive data as the sample size of the negative data, 3) apply SDA on this
training set and compute breakeven point, 4) repeat the above steps but sel-
ecting a different negative sample in Step 2. This process is continued until all
negative data (i.e., varying sample sizes of negative data for each of the 16 top
topics) is exhausted. Figure 2(a) shows the performance for 0 = 10, 20, .-. , 110.
The initial query of SDA is first set to the mean of the positive examples and
for subsequent iterations the initial query is simply set to the query obtained in
the previous iteration. We set Rn.... value to its maximum value (i.e. 1.0) and
assert on maximum of 150 iterations in case the value of Rn.... is not reached.

As indicated in Figure 2(a), the quality of the induction is effectively en-
hanced best when the proportion of negative data over positive data becomes
10% (local maximal point) with respect to ratio of increase in breakeven point
over the one in size of negative data. Besides the maximum point is reached
(i.e., the best performance in the absolute sense) when proportion of negative
data becomes 50% or 80%. It is worth stating that the performance is abruptly
degraded when the size of negative data exceeds that of positive data. For the
concern of obtaining the best quality of induction, we fixed the size of negative
sample to 50% of the positive set. For example, for 'grain' topic in Table 1(b),
we considered all the 433 training examples as positive data and 216 as negative
data sampled from other topics.

The choice of Rnorm value used in terminating criteria of the SDA algorithm
is important in the learning process. This is because there is an application-
dependent trade off between quality of a query and processing overhead Fi-
gure 2(b) shows the performance trade offs on various values of Rnorm on the
top 10 topics. As the value of Rnorm decreases, the system performance also
decreases until a point where the query produced for subsequent values of Rnorm



442 A.H. Alsaffar, J. Deogun, and H. Sever

Average Precision/Recall

0.9

Precision 0-8

0.7

0.5 0.6 0.7 0.8 0.9

Recall

Fig. 3. (c) Average Precision/Recall on all 118 topics with breakeven point of 81.28%.

remains unchanged. This is because on the first run, the algorithm yields a query
with a higher Rnom value than whatever the supplied Rno,,m value is.

3.3 Results

The average precision/recall graph of the 118 topics is shown in Figure 3. The
graph is magnified and plotted around the area where recall and precision are
approximately equal (i.e. breakeven point.) From the graph, the breakeven is
approximately 81.28%. As a comparative study, Table 2 presents results of SDA
and other five inductive algorithms that were recently experimented on Reuters-
21578 dataset [3]. Findsim method is a variant of Rocchio's method for relevance
feedback. The weight of each term is the average (or centroid) of its weight in
positive instances of the topic. We may compare SDA with this method since
it is a first-order approximation. The list of names such as NBayes, BayesNets,
Trees, and SVM in Table 2 stand for Naive Bayes, Bayes Nets, Decision Trees,
and Linear Support Vector Machines methods, respectively. For further details
of these methods the reader is referred to [3].

SDA outperforms Findsim, NBayes, and BayesNet, and is almost as good as
the Decision Trees method. It is however outperformed by the Linear SVM me-
thod due to the fact that relevance feedback methods (including SDA) require as
large size of positive data as possible for drifting the query towards the solution
region. Therefore, for topics with small number of positive examples, which re-
present the majority of the topics in the Reuters-21578 data, the optimal query
which is close to the solution region is hard to find and the performance of the
algorithm SDA is the same as Findsim method on these topics. Nevertheless,
on average it outperforms the Findsim method by a significant margin which
upholds the plausible fact that higher-order approximation methods, such as
SDA, outperforms their counterpart first-order approximation methods, such as
Findsim.



Optimal Queries in Information Filtering 443

Table 2. Comparing results with other five inductive algorithms. Breakeven is com-
puted on top 10 topics and on overall 118 topics.

Topic Findsim NBayes BayesNets Trees SDA SVM
earn 92.9% 95.9% 95.8% 97.8% 98.5% 98.0%
acq 64.7% 87.8% 88.3% 89.7% 95.9% 93.6%
money-fx 46.7% 56.6% 58.8% 66.2% 78.4% 74.5%
grain 67.5% 78.8% 81.4% 85.0% 90.6% 94.6%
crude 70.1% 79.5% 79.6% 85.0% 86.5% 88.9%
trade 65.1% 63.9% 69.0% 72.5% 76.06% 75.9%
interest 63.4% 64.9% 71.3% 67.1% 77.29% 77.7%
wheat 68.9% 69.7% 82.7% 92.5% 82.2% 91.9%
ship 49.2% 85.4% 84.4% 74.2% 88.1% 85.6%
corn 48.2% 65.3% 76.4% 91.8% 82.36% 90.3%
Avg. Top 10 64.6% 81.5% 85.0% 88.4% 87.99% 92.0%
Avg All Cat. 61.7% 75.2% 80.0% N/A 81.28% 87.0%

References

1. Apt C., Damerau F., and Weiss S. M. Automated learning of decision rules for
text categorization. ACM Transactions on Information Systems, 12(3):233-251,
July 1994.

2. Bollman, P. and Wong, S. K. M. Adaptive linear information retrieval models. In
Proc. of the 101h Int. ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 157-163, New Orleans, LA., June 1987.

3. Dumais, S., Platt, J., Heckerman, D., and Sahami, M. Inductive learning algorithms
and representations for text categorization. In Proceedings of A CM- CIKM98, Nov.
1998.

4. Lewis, David D. Evaluating text categorization. In Proceedings of Speech and Na-
tural Language Workshop, pages 312-318, February, 1991.

5. Raghavan, V. V., and Sever H. On the reuse of past optimal queries. In Proc. of the
18th Int. ACM-SIGIR Conference on Research and Development of Information
Retrieval, pages 344-350, 1995.

6. Salton, G, Automatic Text Processing, The Transformation, Analysis, and Retrie-
val of Information by Computer. Addison-Wesely, 1988.

7. Schiitze, H., Hull, D. A., and Pederson, J. 0. A comparison of classifiers and
document representations for the routing problem. In Proc. of the 18th Annual Int.
ACM-SIGIR Conference on Research and Development of Information Retrieval
(Seattle, Washington, 1995) 229-237.

8. Wong, S. K. M., and Yao, Y. Y. Query formulation in linear retrieval models.
Journal of the American Society for Information Science, 41, 5 (1990), 334-341.

9. Wong, S. K. M. Measuring retrieval effectiveness based on user preference of do-
cuments. Journal of the American Society for Information Science, 46(2):133-145,
1995.



Automatic Semantic Header Generator

Bipin C. Desai, Sami S. Haddad, and Abdelbaset Ali

Department of Computer Science,
Concordia University,

1455 de Maisonneuve Blvd West,
Montr6al,

CANADA H3G 1M8
Email contact: bcdesai~cs. concordia. ca

http://www.cs.concordia.ca/ faculty/bcdesai

Abstract. As the mounds of information and the number of Internet
users grow, the problem of indexing and retrieving of electronic informa-
tion resources becomes more critical. The existing search systems tend
to generate misses and false hits due to the fact that they attempt to
match the specified search terms without proper context in the target
information resource. In environments that contain many different ty-
pes of data, content indexing requires type-specific processing to extract
indexing information effectively. The COncordia INdexing and DIsco-
very (Cindi) system is a system devised to support the registration of
indexing meta-data for information resources and provide a convenient
system for search and discovery. The Semantic Header, containing the
semantic contents of information resources stored in the Cindi system,
provides a useful tool to facilitate the searching for documents based on
a number of commonly used criteria. This paper presents an automatic
tool for the extraction and storage of some of the meta-information in
a Semantic Header and the classification scheme used for generating the
subject headings.

1 Introduction

Rapid growth in data volume, user base and data diversity render Internet-
accessible information increasingly difficult to use effectively. The number of
information sources, both public and private, available on the Internet are in-
creasing almost exponentially. They include text, computer programs, books,
electronic journals, newspapers, organisational, local and national directories of
various types, sound and voice recordings, images, video clips, scientific data,
and private information services such as price lists and quotations, databases
of products and services, and speciality newsletters [3]. There is a need for an
automated search system that allows easy search for and access to relevant re-
sources available on the Internet which in turn requires proper indexing of the
available information. The semantics of the resource are exploited in the cur-
rent system to extract and summarise the relevant meta-information(Semantic

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 444-452, 2000.
©) Springer-Verlag Berlin Heidelberg 2000



Automatic Semantic Header Generator 445

Headers [2]) to support its discovery. Specialised databases maintain archives of
these Semantic Headers(SH) which could be searched by another component of
Cindi which features cooperating distributed expert systems and helps users in
locating pertinent documents.

The Cindi system provides mechanisms to register, search and manage the
SHs, with the help of easy to use graphical user interfaces. Cindi avoids problems
caused by differences in semantics and representation as well as incomplete and
incorrect data cataloguing by using a standardized subject heading hierarchy.
This meta-information could be entered by the primary resource provider with
the help of an Automatic Semantic Header Generator (ASHG) described in
this paper. ASHG is a software that assists the authors of documents to semi-
automatically generate many of the fields of the SH and hence assist them in
the registration of their documents in the Cindi system. One of the main tasks
of ASHG is to classify a document under a list of subject headings as described
herein. As the author is required to verify and complete the ASHG generated
Semantic Header entry, the potential for its accuracy is high.

The paper is organized as follows: in section 2, we introduce the Cindi system.
Section 3 covers our approach to the building of the thesaurus used in ASHG
system and section 4 describes its components. Following this, we give the results
of our tests to generate the SH on a set of documents prepared in the HTML,
LA_•TEX, RTF and plain text format and our conclusions.

2 The Cindi System

Attempts to provide easy search of relevant documents has led to a number
of systems [1,5,7,8,13,15,18,19,20]. However, the problem with many of these is
that their selectivity of documents is often poor [3]. The chances of getting in-
appropriate documents and missing relevant information because of poor choice
of search terms are great. Hence, there is a need for the development of a system
which allows easy search for and access to resources available on the Internet.
Using a standard index structure and building an expert system based biblio-
graphic system using standardised control definitions and terms can alleviate
the problem and provide fast, efficient and easy access to the Web documents.
For cataloguing and searching, Cindi uses a meta-data description called SH[4]
to describe an information resource. The SH includes those elements that are
most often used in the search for an information resource. Since the majority of
searches begin with a title, name of the authors (70%), subject and sub-subject
(50%) [6], Cindi requires the entry for these elements in the SH. Similarly, the
abstract and annotations are relevant in deciding whether or not a resource is
useful, so they are included too[3]. The components of the SH are: Title, Alt-
title, Language, Character Set, Keyword, Identifier, Date, Version, Classification,
Coverage, System Requirements, Genre, Source and Reference, Cost, Abstract,
Annotations and User ID, Password.

Preparing the primary source's SH requires identifying it as to its subject,
title, author, keywords, abstract, etc. These problems are addressed by Cindi,



446 B.C. Desai, S.S. Haddad, and A. Ali

which provides a mechanism to register, manage and search the bibliographic
information.

The overall Cindi system uses knowledge hases and expert sub-systems to
help the user in the registering and search processes. The index generation and
maintenance sub-system uses Cindi's thesaurus to help the provider of the re-
source select the most-appropriate standard terms for items such as suhject,
sub-subject and keywords. Similarly, another expert sub-system is used to help
the user in the search for appropriate information resources [21.

The SH information entered by the provider of the resource using a graphi-
cal interface is relayed from the user's workstation by a client process to the
database server process at one of the nodes of a distributed database system
(SHDDB). The node is chosen based on its proximity to the workstation or on
the subject of the index record. From the point of view of the users of the sy-
stem, the underlying database may he considered to he a monolithic system. In
reality, it would be distributed and replicated allowing for reliable and failure-
tolerant operations. The interface hides the distributed and replicated nature of
the database. On receipt of the information, the server verifies the correctness
and authenticity of the information and on finding everything in order, sends
an acknowledgment to the client. The server node is responsible for locating the
partitions of the SHDDB3 where the entry should be stored and forwards the
replicated information to appropriate nodes. The various sites of the database
work in a cooperating mode to maintain consistency of the replicated portion.
The replicated nature of the database also ensures distribution of load and ensu-
res continued access to the bibliography when one or more sites are temporarily
nonfunctional.

Cindi search sub-system guides the user in entering the various search items
in a graphical interface similar to the one used by the index entry system. Once
the user has entered a search request, the client process communicates with
the nearest SHDDB3 catalogue to determine the appropriate site of the SHDDB
database. Subsequently, the client process communicates with this database and
retrieves one or more SHs. The result of the query could then he collected and
sent to the user's workstation. The contents of these headers are displayed, on
demand, to the user who may decide to access one or more of the actual resources.

3 ASHG's Thesaurus

ACM[17], INSPEC[14] and Library of Congress Subject Headings (LCSH)[16]
were the main building blocks of Cindi's three level Subject Hierarchy which
currently is limited to the domains of Computer Science and Electrical Enginee-
ring. ASHG's computer science subject hierarchy uses ACM's subject hierarchy
as the starting point, and electrical engineering subject hierarchy is based on
that of INSPEC's. We have exploited LCSH's subject headings relations to re-
fine both hierarchies. LCSH contained relations between subject headings such
as BT (Broader Term), NT (Narrow Term), UF (Used For), and RT (Related
To). In order to augment ACM and INSPEC subject hierarchies, a search for an



Automatic Semantic Header Generator 447

ACM or INSPEC subject heading was made in LCSH. If a match was found, the
narrow terms found in LCSH under the matched subject were added to the list of
subjects or terms under the ACM or INSPEC's matched subject heading. This
augmentation produced a hierarchy composed of five or six levels. Since Cindi's
subject hierarchy was limited to only three levels, the following rules illustrated
in Figure 1, were applied to merge these subject headings. The (LeveL O) subject
is Computer Science or Electrical Engineering. Some of the subject headings
found in the Level-1 and Level-2 augmented subject hierarchies were concaten-
ated to form the Cindi's Level-l subject heading. The same rule was applied on
subject headings at Level-3 and Level_4 to yield Cindi's Level_2 subject heading.
The LeveL5 and LeveL6 subjects were used as controlled terms associated with
Cindi's LeveL2 subject headings.

The resulting subject hierarchy has three levels and a set of control terms
associated with the lowest level subject headings.

The reason behind the Control Term Subject association is to extract or
classify the primary source under a number of subject headings by comparing
the significant list of words contained in the document with the list of control
terms. An association between the control terms and their corresponding subject
headings is created.

Each control term has three lists of subject headings attached to it. The con-
trol terms are based on the terms found in ASHG's subject hierarchy and the
additional terms that are associated with LeveL2 subject headings. For each sub-
ject heading and the additional controlled terms, we use their constituent English
none noise words as their corresponding control terms. For example, the control
term compute will be associated with Computer Science general subject heading.
Similarly, the control term hardware will be associated with Hardware integrated
circuits and Hardware performance and reliability level-l subject headings and
Hardware Simulation Design Aids level_2 subject heading. Each controlled term
is associated with one or more subject headings.

Mapping ASHG's subject heading terms into control terms involves: remo-
ving noise (stop) words; stemming the remaining words to find the the root and
associating the root with the corresponding subject heading.

4 ASHG Implementation

In this section, we present the implementation details of the Automatic Semantic
Header Generator (ASHG) of the Cindi system. This is an important step in
providing the author of a document a draft SH with an initial set of subject
classifications and a number of components of the SH for the document. The
ASHG scheme takes into account both the occurrence frequency and positional
weight of keywords found in the document. Based on the document's keywords,
ASHG assigns a list of subject headings by matching those keywords with the
controlled terms found in the controlled term subject association. The ASHG also
extracts some of the meta-information from a document such as title, abstract,
keywords, dates, author, author's information, size and type.



448 B.C. Desai, S.S. Haddad, and A. Ali

ASHG uses the syntax of documents in HTML, LaTex, RTF or text to extract
the document's meta-information. ASHG extracts summary information, such
as the title, keywords, dates of creation, author, author's information, abstract
and size. In tagged documents, the author might explicitly tag some of the fields
to be extracted. In case these fields are not explicitly tagged, ASHG attempts to
extract them using heuristics. However, if the explicit keywords were not found
in the document, then words found in the title, abstract and other tagged words
would be used to extract an implicit list of keywords.

E-~t~y~egfro A I

El-

K. &s Ate G-rr A lis of

enriating Kayndord

E-1se Esphiri

Wrrd~ ZrdirG= 2-

Srrljnr Hndi' 'gr

Fig. 1. ASHG's extraction steps

Generating an Implicit List of Keywords and Words Used in
Document Classification

ASHG generates an implicit list of keywords in case explicit keywords were not
found in the document, the system derives a list of words from the words found
in the title, abstract, and other tagged fields. This list of derived words will also
be used in classifying the document. However, if the keywords were explicitly
stated in the document, then ASHG will augment them with a list of words from
the words found in the title, abstract, and other tagged fields.

Generating both lists of words relies on the stemming process that will map
the words into their root words, the stemmed word frequency of occurrence and
the word location in the document. Because the terms are not equally useful for



Automatic Semantic Header Generator 449

content representation, it is important to introduce a term weighting system that
assigns high weights for important terms and low weight for the less important
terms [11]. The weight assignment uses the following scheme:

If the keywords are explicitly included in the document, they convey some
important concepts and hence are assigned the highest weight of five. Usually,
words found in the abstract are the second most important words, and are as-
signed a weight of four. The words in the title, are assigned a weight of three.
The word appearing in the other tagged fields, are assigned a weight of two.

Each numeric weight is a class by itself defining the words' location. The
range of class weight generated will be hetween two and 14, depending on the
positions where a word appears.

For each class, we set the maximum class frequency to be the frequency of oc-
currence of a term found most often in that class. For instance, if, in class four, we
had three terms having two, four and six as frequencies, the system would select
six as the maximum class four frequency. The words' frequencies are compa-
red with their corresponding maximum class frequency. For low weighted classes
such as two and three, significant terms have the maximum class frequencies.
Thus, limiting the number of significant terms. However, all terms found in class
eight and more are significant regardless of their frequency of occurrence.

Table 1. Weight and F~requency numbers used in extracting terms

ITerm Weight Term FRequency
2 Maximum Class 2 frequency
3 Maximum Class 3 frequency
4 Greater or equal to Maximum Glass 4 frequency minus 1
5 Greater or equal to Maximum Class 5 frequency minus 1
6 Greater or equal to Maximum Glass 6 frequency minus 2
7 lGreater or equal to Maximum Glass 7 frequency minus 31
J>8 1All ý

Two lists of words are generated. The first one containing only the root words
or control terms found in Gindi's thesaurus. This list of control terms is used in
the document's subject classification scheme. The second list contains the most
significant root words not found in Gindi's thesaurus. If no keywords were found
in the document, ASHG extracts words having a term weight more than four and
their corresponding frequencies of occurrence is the same as the ones tabulated.
These words are the document's keywords. In generating a list of control terms
used to classify the document, terms having weight of two or more are extracted.
The extracted words have the frequencies of occurrence as tabulated in Table 1.

ASHG's Document Subject Headings Classification Scheme

An important step in constructing the draft SH is to automatically assign subject
headings to the documents. The title, explicitly stated keywords, and abstract
are not enough by themselves to convey the ideas or subjects of the document.



450 B.C. Desai, S.S. Haddad, and A. Ali

Since the author tries to convey or to summarise his ideas in the previously
mentioned fields, there is a need to use all none noise words found in those fields.
To assign the subject headings, ASHG uses the resulting list of significant words
generated from the previous section and the control term to subject association.
The subject heading classification scheme relies on passing weights from the
significant terms to their associated subjects, and selecting the highest weighted
subject headings. The following algorithm is used to construct the three levels
of subject headings:

1. For each term found in both Cindi's control terms and the generated list of
words, the system traces the control term's attached list of subjects (list of
levelO, levell and level2) headings, and adds the subject headings to their
corresponding list of possible subject headings.

2. Weights are also assigned to the subject hierarchies. The weight for a subject
is given according to where the term matching its controlled term was found.
A subject heading having a term or set of terms occurring in both title and
abstract, for instance, gets a weight of seven. The matched terms' weights
are passed to their subject headings.

3. The system extracts LeveL2, Level 1 and LeveLO subject headings having
the highest weights from the three lists of possible subject headings.

4. After building the three lists for the three level subject headings, the system
selects the subjects using the bottom-up scheme:

a) Having selected the highest weighted leveL2 subject headings, the system
derives their leveLl parent subject headings.

b) An intersection is made between the derived level 1 subject headings and
the list of the highest weighted level subject headings. The common
level subjects are the document's level subject headings.

c) The system uses the same procedure in selecting leveLO subject headings.

Once the process of extracting the meta-information is terminated, the SH is
displayed for the source provider to modify, add or remove some of the attributes.
Once the provider finishes, the semantic header can be registered in the Cindi
database.

5 Analysis of ASHG's Results and Conclusions

The experiments described here are designed to test the accuracy of the gene-
rated index and the subject headings classification results. After applying the
ASHG on a set of documents, the generated index fields such as title, keywords,
abstract and author are compared with those that are found in the document.

The experiments were conducted on a number of documents[21]. These do-
cuments dealt with computer science and electrical engineering subjects. Each
of these documents was rendered manually in the four formats. ASHG was able
to extract all the explicitly stated fields such as title, abstract, keywords, and
author's information with a hundred percent accuracy. If the abstract was not



Automatic Semantic Header Generator 451

explicitly stated, ASHG was able to automatically generate an abstract that
would describe the paper. However, ASHG's implicit keyword extraction gene-
rated a list of words which included some words that were insignificant. These
insignificant words in turn lead to the diversion in subject classification.

The ASHG's automatic subject headings classification results are compared
with the INSPEC's classification and with what the papers' authors would re-

gard as good subject classifications and poor ones. For the former we consulted
the authors about the subject heading generated by ASHG system for their do-
cuments. The results are tabulated in Table 2. which shows a greater than 50%
of acceptable subject headings. Some of the ASHG's subject classifications had
different words than INSPEC's even though they described the same subject.
That was due to the fact that our computer science subject classification was
built from ACM and not from INSPEC.

Table 2. Summary of ASHG's tests

Document Avg. Number of Subject Avg. Number of Acceptable Percent of Inspec
Type Headings Generated Subject Headings Heading Discovered

HTML 4.9 66.1% 74%
LaTex 4.4 63% 80%
RTF 4.8 60.6% 65%
Text 5.9 57.0% 80%

ASHG's was able to generate between 65% and 80% of the subject heading
that were generated by professional catalogers. However, since ASHG produced,
on the average more classifications, the accuracy was lower at about 22%. Since
our system was only based on the frequency and location of words in a document
to determine the document's keywords and subject classification, it missed the
importance of the word senses and the relationship between words in a sentence.
The simplistic system did not capture the concepts behind the documents, or
the ideas that the author was trying to convey. Our results support the idea that
word frequency and location are not enough in information retrieval. However,
since the ASHG's result will be used as a starting point by the author, he/she
has the opportunity to correct the errors and include fields of the SH not given
before registering it. Further work is required in refining the subject classification
to reduce the number of poor classifications.

In conclusion, we believe that resolving word senses and determining the re-
lationships that those words have to one another will have the greatest impact on
refining the ASHG's subject classification scheme. Therefore, we plan to pursue
semantic level language processing in the future.

References

1. De Bra, P., Houben, G-J., & Kornatzky, Y., Search in the World-Wide Web,
http://www.win.tue.nl/help/doc/demo.ps



452 B.C. Desai, S.S. Haddad, and A. Ali

2. Desai B. C., Cover page aka Semantic Header,
http://www.cs.concordia.ca/-faculty/bcdesai/semantic-header.html, July 1994,
revised version, August 1994.

3. Desai B. C., The Semantic Header Indexing and Searching on the internet, De-
partment of Computer Science, Concordia University. Montreal, Canada, Fe-
bruary 1995.
http://www.cs.concordia.ca/-faculty/bcdesai/cindi-system-l.l.html

4. Desai, Bipin C., Supporting Discovery in Virtual Libraries, Journal of the Ame-
rican Society of Information Science(JASIS), 48-3, pp. 190-204, 1997.

5. Fletcher, J. 1993., Jumpstation,
http://www.stir.ac.uk/jsbin/js

6. Katz, W. A., Introduction to Reference Work, Vol. 1-2 McGraw-Hill, New York,
NY.

7. Koster, M., ALIWEB(Archie Like Indexing the WEB),
http://web.nexor.co.uk/aliweb/doc/aliweb.html

8. McBryan, Oliver A., World Wide Web Worm,
http://www.cs.colorado.edu/home/mcbryan/WWWW.html

9. Paice C. D., Automatic Generation of Literature Abstracts - An Approach Based
on the identification of self indicating phrases, in information retrieval research,
R.N. Oddy, S.E. Robertson, C.J. van Rijsbergen and P.W. Williams, editors,
Butterworths, London, pp. 172-191, 1981.

10. Salton G., Allen J. , Buckley 0. , Automatic Structuring and Retrieval of Large
Text Files, Department of Computer Science, Cornell University. 1992.

11. Salton G., Allan J. , Buckley C., and Singhal A. , Automatic Analysis, Theme
Generation, and Summarization of Machine-Readable Texts, Science, Vo1264, pp.
1421-1426, June 1994.

12. Shayan N., CINDI: Concordia INdexing and DIscovery system, Department of
Computer Science, Concordia University, Montreal, Canada, 1997.

13. Thau, R., SiteIndex Transducer,
http://www.ai.mit.edu/tools/site-index.html

14. Computer and Control Abstracts, Produced by INSPEC, No. 10, October 1997.
15. Experimental Search Engine Meta-Index,

http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/Demo/metaindex.html
16. Library of Congress Subject Headings, September 1996.
17. http://www.acm.org/class/1998/ccs98.txt.
18. Search WWW document full text,

http://rbse.jsc.nasa.gov/eichmann/urlsearch.html
19. WebCrawler,

http://www.biotech.washington.edu/WebCrawler/WebQuery.html
20. World Wide Web Catalog,

http://cuiwww.unige.ch/cgi-bin/w3catalog
21. http://www.cs.concordia.ca/-faculty/bcdesai/cindi/listofpapers.html



On Modeling of Concept Based Retrieval in
Generalized Vector Spaces*

Minkoo Kim'+, Ali H. Alsaffar2, Jitender S. Deogun 2, and Vijay V. Raghavan'

'The Center for Advanced Computer Studies
University of Louisiana

Lafayette, LA 70504, USA
{mkim, raghavan}@cacs.louisiana.edu
2Department of Computer Science & Engineering

University of Nebraska
Lincoln, NE 68588, USA

Abstract. One of the main issues in the field of information retrieval is to
bridge the terminological gap existing between the way in which users specify
their information needs and the way in which queries are expressed. One of the
approaches for this purpose, called Rule Based Information Retrieval by
Computer (RUBRIC), involves the use of production rules to capture user query
concepts (or topics). In RUBRIC, a set of related production rules is represented
as an AND/OR tree. The retrieval output is determined by Boolean evaluation
of the AND/OR tree. However, since the Boolean evaluation ignores the term-
term association unless it is explicitly represented in the tree, the terminological
gap between users' queries and their information needs can still remain. To
solve this problem, we adopt the generalized vector space model (GVSM) in
which the term-term association is well established, and extend the RUBRIC
model based on GVSM. Experiments have been performed on some variations
of the extended RUBRIC model, and the results have also been compared to the
original RUBRIC model based on recall-precision.

1 Introduction
Many intelligent retrieval approaches have been studied to meet the users' individual
preferences properly [2, 6, 7]. However, there always exists a terminological gap
between the way in defining queries and the way in representing documents. One of
the approaches proposed in the literature for this purpose involves the use of
production rules to capture user query concepts (or topics). The central ideas of such
an approach were introduced in the context of a system called Rule Based Information
Retrieval by Computer (RUBRIC) [6]. In RUBRIC, a set of related production rules is
represented as an AND/OR tree, called a rule-base tree. RUBRIC allows the
definition of detailed queries starting at a conceptual level. The retrieval output is

'This work is supported in part by the US Army Research Office, by Grant No.\ DAAH04-96-
1-0325, under DEPSCoR program of Advanced Research

Projects Agency, Department of Defense, and in part by the U.S. Department of Energy, Grant
No. DE-FG02-97ER1220, and by the University of Bahrain.

+ On leave from the Department of Computer Engineering in Ajou University, Korea.

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 453-462, 2000.
© Springer-Verlag Berlin Heidelberg 2000



454 M. Kim et al.

determined by Boolean evaluation of the AND/OR tree. The RUBRIC concepts were
incorporated into a commercial system called TOPIC. Though the system was not
popular due to difficulties in generating rule-bases, recent research has developed
ways to automate the creation and update (using relevance feedback) of rule-bases [4,
3]. Other challenges in successful implementation of RUBRIC deal with efficiency
issues and the method of evaluating rule-bases. The efficiency issue has been
addressed in [1, 5]. However, the method of evaluation, using Max and Min for OR
and AND, respectively, still has limitations.

To solve the second problem, in this paper, we adopt the generalized vector
space model (GVSM) [10, 11]. In GVSM, term-term associations are computed as an
integral part of the automatic indexing process. We propose a way to integrate the
ideas of concept based retrieval in RUBRIC with the generalized vector space model.
Experiments have been conducted on some variations of the integrated model. The
results show that the integrated model is more effective than the original one in terms
of recall-precision.

2 Review of RUBRIC

In RUBRIC, concepts of interest are formulated using a top-down refinement
strategy. In a top-down strategy, the first step is to express a given request as a singie
concept. The next step is to refine the initial concept by decomposing it into a set of
component parts that are related through either the AND or OR logical operator. The
individual components may take the form of a new concept defined at a different
abstraction level, a text expression, or a single index term. In each case, a weight
value is assigned to the individual concept-component pairs that are formed during
the decomposition process. The assigned weight value represents the user's belief in
the degree to which a given component characterizes the related concept.

Violent-act

Violent-Action-Form Iuries

Shooting )ombing Slaying '(dead "wound"

0.7 08. 8 0.7
Weapon "shot" Device "explosion "murder" "slay"

S0.7 .9 0.6
gun "rifle" 'bom shell"

Fig. 1. Rule-base tree for concept Violent-act

Fig. I shows the rule-base tree for concept Violent-act where the leaf nodes are
index terms and are enclosed by double quotations, the internal nodes are concepts
and the weights are displayed along the edges connecting concepts and components.
The concept Violent-act is first being decomposed into two component concepts,



On Modeling of Concept Based Retrieval in Generalized Vector Spaces 455

Violent-Action-Form and Injuries, which are related to Violent-act with AND
operator. The AND operator is denoted by drawing a line between its branches. If
there is no line connecting the branches, the relationship is OR.

The evaluation of the relevancy (RSV: Retrieval Status Value) of a document to
concept Violent-act could be processed by a bottom-up strategy. For example, if a
document contains the words "gun," "shot," "bomb," "slay," and "dead" and no other
words in the example rule base are referred to, then the index term nodes "gun,"
"shot," "bomb," "slay," and "dead" will receive a weight of 1.0 and all other index
term nodes will receive a weight of 0. For example, the concept Weapon is composed
of two component "gun" and "rifle," and the weight for "gun" is 1.0 and "rifle" is 0.
Since the operator for Weapon is OR, the relevancy to concept Weapon is assigned
to be the max value of the product of the weights of its components and the
corresponding weights connecting its components. In this particular case, the result is
Max (1.0*0.5, 0*0.7) = 0.5. In a similar way, finally we can get the relevancy (RSV)
of the document to the concept Violent-act, which comes out to be 0.3.

In order to make the computation more efficient, Minimal Term Sets (MTSs)
should be generated through static analysis of rule-base [1, 5]. A minimal term set
consists of index terms that are necessary to make sure that the retrieval status value
of a concept is larger than 0. That means if any of the index terms in the MITS is taken
out, then the RSV would be 0. Here, we list all the MTSs and their RSVs for the
concept Violent-act in Table 1.

Table 1. MTSs and RSVs for concept Violent-act

MITS RSV
MITS ("gun," "shot," "dead")} 0.3

1
MITS {"gun," "shot," "wound") 0.3

2
MITS ("rifle," "shot," "dead") 0.4

3
MITS ("rifle," "shot," "wound") 0.32

4
MITS {["bomb," "explosion," "dead") 0.4

5
MITS ("bomb," "explosion," "ýwound") 0.32

6
MITS { "shell," "explosion," "dead") 0.36

7
MIS ("shell," "explosion," "wound") 0.32

8
MITS ("murder," "dead") 0.4

9
MITS {["murder," "wound") 0.32

10
MITS ["slay,' "dead") 0.4

11 _____________________
MI ("slay," "wound") 0.32



456 M. Kim et a].

3 Review of Generalized Vector Space Model (GVSM)

In information retrieval, it is common to model index terms and documents as vectors
in a suitably defined vector spaces [8, 9]. This approach is usually called Vector
Space Model (VSM). In VSM, all the items of interest to the information retrieval
system are modeled as elements of a vector space. Let t1, t2, ...- t, be the terms used to
index the documents in a collection. For each term, there is supposed to be a
corresponding vector t in a vector space. Those vectors {t I i =1 ... , n} are considered
as the generating set of the subspace and therefore all the items of interests can be
represented as a linear combination of t, s.

Let d1, d2. d,, be the documents in a collection. Then, we can consider each of
those documents as a vector in the form of

d, = I ai ti (3.1)
i=], n

where a.i is the component of d, along the direction of the term t, Similarly, we
can consider a query q as a linear combination of the ti's as follows.

q= Y qt, (3.2)
j=',

where q, is the component of d, along the direction of the term t.
Then, the similarity of a document and a query could be acquired by computing

the similarity of the document vector and the query vector in the vector space.
Generally, the cosine similarity function is often to be used as the measure of
similarity, that is,

d, .q = Z• Za, q, tit (3.3)
j=l,n i=l,n

The documents in a collection can be ranked by the Retrieval Status Values
(RSVs) given by similarity function values between the documents and the query. For
this purpose, we need to know a,'s and t. t.. Note that sometimes we may or may not
know the vector representation for t explicitly. Therefore earlier researchers made the
assumption that t, and tj are orthogonal if i # j. That is t, • tý = 0 if i # j. Unfortunately
such an assumption does not hold in the real world. To solve this problem, the
Generalized Vector Space Model (GVSM) is proposed.

The main idea of GVSM is to incorporate the representation of elements in a
Boolean algebra to into a vector space. In this mapping, terms are represented as a
linear combination of vectors associated with the atomic expressions (or concepts)
that are pairwise orthogonal. Let t,, t2, ... , tý denote the terms that are used to index
the documents in a collection. An atomic expression mk, called a min-term, in the n
literals t,, t, ... , tý is a conjunction of the literals where each t appears exactly once
and is either in complemented or uncomplemented form. That is, mk = x, AND x, AND
... AND x. where x. has the form either of t. or -t. Since the number of all possible
min-terms is 2" and the conjunction of any two different min-terms is always zero
(false), we can map the 2" min-terms into the orthogonal bases of the vector space R2"
as follows:

m , =(1,0,0,....0), m2 =(0,1,0, ... ,0),. m2n =(0,0,0_..., 1) (3.4)



On Modeling of Concept Based Retrieval in Generalized Vector Spaces 457

Since each t. is itself an element of the Boolean algebra generated, t, can be
expressed in its disjunctive normal form:

ti = mi, ORm,2 OR... OR mir (3.5)

where the mi's are those min-terms in which t. is uncomplemented. Let the set of
min-terms in Equation (3.5) be denoted by {m}'. We can now define basis vectors
analogous to Equation (3.4) and term t, can be written in the vector notation as

2 n

ti = 1eC& mk (3.6)
k=1

where unnomalized form of ck is given by

Cik= I W",

daE Dm,

where Dmk is a set {d, I d,, contains all the non-negated index terms in Mk and also
excludes all the negated index terms in mk 1. In the above, w, is the importance of
each term t, in document d, In Wong and et al.'s work [11], they compute these
weights from the term co-occurrence frequency.

4 Modeling RUBRIC Concepts in GVSM

In RUBRIC, the rule-base tree describes certain relationships among concepts.
Specification of a concept as a rule-base tree not only helps the user to describe
his/her retrieval request more accurately and more flexibly, but also makes the
resulting rule-base tree more understandable to other users. However, in order to
retrieve a document, RUBRIC requires that the document contain all the index terms
in one MTS. It is a strong provision for information retrieval systems, even if each
conjunction presents an alternative specification of a query topic. To overcome this
problem, we should consider term correlations.

In GVSM, however, term correlations are well established based on the co-
occurrence frequency. However GVSM itself does not provide a way for describing a
query at a conceptual level, while the RUBRIC model does. Consequently, it is a
natural way to incorporate these two models together. The main issue here is to
construct a query vector in GVSM for a concept defined in a rule base tree.

4.1 Mapping MTSs to Query Vectors in GVSM

Now, we are trying to map MTSs into query vectors in GVSM. For this purpose, we
consider potential weights of index terms to a given concept. The potential weight
means the importance of the index term to the given concept based on the assumption
that the index term is used as a term in the corresponding query to the concept. To
compute the potential weight of an index term, we just follow the paths in the rule-
base tree from the index term up to the root that denotes the given concept and
multiply the weights in the paths. For example, in rule-base tree shown as Fig. 1, the



458 M. Kim et al.

potential weight of index term "gun" to concept Violent-act will be 0.5*1.0*0.6*1.0
= 0.3. Based on the potential weights, we can consider weighted MTS for a concept c
as a MTS in which each term t, is assigned the potential weight of t, to c. For
example, the weighted MTSl corresponding to MTS1 in Table 1 is {("gun",0.3),
("shot",0.42), ("dead",0.4) 1.

To complete the mapping of MTSs into query vectors in GVSM, it is necessary
to define vector operations that correspond to OR and AND operators, respectively. In
this paper, we adopt more general definitions for these operators as follows. Given t1

= claml + 2+...+ c1 m•m P and t2 = c21M1 + Cm 2 + ... + cm, where p = 2n, t, @ t2 =

max (clk, C'k) mk and t, & t, = E and-max (clk, C21) mk, where and-max(x, y) is
max(x, y) if x and y are not zero, and otherwise zero. These are analogous to D and 0
introduced in Wong and et al. [12].

4.2 A Complete Example

In this subsection, we give an example to show how the extended RUBRIC model
works. Suppose the rule-base tree is shown as Fig. 2, where Shooting and Injuries
are defined as the same concepts as shown in Fig. 1. The weighted MTSs for concept
Killing are listed as:

{ "gun"(0.5* 1.0*0.6=0.3), "shot"(0.7*0.6=0.42), "dead"(1.0*0.4=0.4)}
f "gun" "(0.5*1.0*0.6=0.3), "shot" (0.7*0.6=0.42), "wound" (0.8*0.4=0.32)1

{"rifle" "(0.7* 1.0*0.6=0.42), "shot" (0.7*0.6=0.42), "dead" (1.0*0.4=0.4)1
"rifle" "(0.7*1.0*0.6=0.42), "shot" (0.7*0.6=0.42), "wound" (0.8*0.4=0.32)1

Killing

0 0.4

Shooting Injuries

Fig. 2. An example rule-base tree

Suppose the Document-term matrix and the basis vectors are shown as Table 2 and
Table 3, respectively.

Table 2. Document-term matrix

wound dead shot rifle gun
dl 2 0 0 1 3
d2 1 2 2 0 0
d3 4 0 0 1 1
d4 0 2 3 4 0
d5 1 2 2 2 4
d6 2 1 4 0 1



On Modeling of Concept Based Retrieval in Generalized Vector Spaces 459

Table 3. Basis vectors

wound dead shot rifle gun basis vector
m0  0 0 0 0 0 mn1
In, 0 0 0 0 1 m1

rn, 1  1 1 1 1 1 m3
M31 M31

Term vectors can be calculated as:

wound = 0.92 m,9 + 0.15 m 21 + 0.30 m2, + 0.15 m31
dead = 0.55 m1 4 + 0.55 m,, + 0.27 m 21 + 0.55 M31

shot = 0.52 m14 + 0.34 rnm +0.69 m 21 + 0.34 m3,
rifle =0.81m,4 +0.40m19 +0.40m3, gun =0.69ml,+0.17m29 +0.69m31

Using the Equation (3.6), we can compute the term vectors. For example, we can
get the coefficient of mi,, in term vector wound as follows. Since the Boolean pattern
corresponding to mi,, is 10011, only documents dl and d3 are relevant to this pattern.
Therefore, m 19's unnormalized coefficient is 2 + 4 = 6. Similarly, we can get the
unnormalized coefficients of M 28, m29, and iM3, are 1, 2, and 1, respectively. Now, we
normalize the coefficient of m n, as 6 / (62 + 12+2 2+ 12) =0.92. Using these term
vectors, we can compute document vectors. For example, since d, = 2 wound + 1
rifle + 3 gun from the document-term matrix in Table 2, d, =0.81 m 14, + 4.31 in,, +
0.30 in 2, + 1.11 M 29 +2.77 M31'

For expressing queries, we use the operators G and ® introduced in section 4.1.
For concept Killing, if we choose MTSl = {(gun, 0.3), (shot, 0.42), (dead, 0.4)1 as a
query, then we can construct the query vector as follows.

q = [0.3*(0.69 m,, + 0.17 M 29 + 0.69 m31)] 9

[0.42*(0.52 ml4 + 0.34 mn2 + 0.69 m2,, + 0.34 m,,)] 0
[0.4*(0.55 Mr4 + 0.55 in 2, + 0.27 M29 + 0.55 M31)] = 0.29 In29 + 0.22 m3,

For concept Killing, if we choose the following two MTSs as a query:

MTS I = {(gun, 0.3), (shot, 0.42), (dead, 0.4)},
MTS2 = {(rifle, 0.42), (shot, 0.42), (dead, 0.4)}

Then the corresponding vector q is computed as follows. q = q, ® q2, where q, and
q2 are query vectors for MTS 1 and MTS2, repectively.

q = 0.29 M 29 + 0.22 M3n

q2 = {[0.42*(0.81 m,4+ 0.40 m,, + 0.40 m,,)] D
[0.42*(0.52 m 4 + 0.34 m28 + 0.69 m2, + 0.34 m,,)] 0

[0.4*(0.55 In, + 0.55 in,. + 0.27 m,9 + 0.55 m,,)] I = 0.34 m,, + 0.22 m,,
% D q, = 0.34 1n4 + 0.29 m,,+ 0.22 m,1



460 M. Kim et al.

5 Experimental Design and Results

For the experimental test, we choose Google search engine in Internet [ 131. It uses a
conjunction of keywords as queries and returns a set of links to web pages. We use
the rule base tree shown in Fig. 1 for our experimental test. From Fig. 1, we can
compute 12 weighted MTSs and construct a query for each MITS. For each query, we
choose the top 20 links retrieved by Google. Since some links to the web pages might
have been changed or moved after being indexed by Google, we must eliminate those
links. Finally, we got a collection of 196 documents. The relevance judgments, for
evaluation purpose, are determined by looking through each document and choosing
those document related to the concept Violent-act. From the collected documents, we
can construct the document-term matrix. Using the matrix, we can also compute the
term vectors and document vectors. Since, with respect to each MITS, RSV (similarity
between a query and a document) is generated for each document, further processing
is done to combine them into a single RSV for each document satisfying more than
one MITS. For this purpose, the user can be given the option of performing the
disjuction operation over some or all the MTSs. Thus, the processing done by our
system for ranking requires post-processing of results from Google.

In our experiment, we select all the MTSs and compute the performance in terms
of recall-precision. We conduct experiments using two different disjunction operaters,
namly + and (D. We call the former Extended Rubric version I (ER 1) and the latter
Extended Rubric version 2 (ER.2).

Table 4. Recall-Precision using the original RUBRIC approaches (RI and R2) and the
extended RUBRIC approaches (ERi and ER2).

Recall R1 R2 PeionERI ER2
0.1 0.7143 0.5882 0.6250 0.7143

0.2 0.6250 0.5882 0.5714 0.6667
0.3 0.5 179 0.5686 0.6170 0.7073
0.4 0.5672 0.5672 0.6032 0.6909
0.5 0.6026 0.5875 0.6184 0.6528
0.6 0.6364 0.61 54 0.5895 0.6087
0.7 0.6019 0.5603 0.5328 0.5462
0.8 0.5362 0.5175 0.5175 0.5034
0.9 0.5030 0.5390 0.5155 0.5092

1 1.0 0.4742 0.4742 0.4769 0.4792

In order to compare the extended versions with the original RUBRIC approaches,
we conduct the experiment using the versions of the original RUBRIC, denoted by RI



On Modeling of Concept Based Retrieval in Generalized Vector Spaces 461

and R2, respectively. In RI, we adopt the original idea of RUBRIC. That is, we use
max operator and min operator for disjunction and conjunction, respectively. In R2,
we use the same operator (that is, min operator) for conjunction and use an operator
different from max operator for disjunction. In R2, we adopt the weighted operator for
disjunction [5]. Suppose that document d is satisfied by three weighted MTSs M1, M2 '

and M,. And suppose that weights w1, W2 , and w, are assigned to M 1, M 2 , and M3,
respectively, and W2 is the maximum value among W, PW2, and w, Then, we compute
the RSV of d in the following weighted manner: RSV = w, + 2W2 + w, The
performance of ERi1, ER2, R 1, and R2 are given in Table 4.

6 Conclusions

From the experiments, we can reach to the following conclusions about the method of
evaluating documents relative to a rule-base.

(1) The variation of RUBRIC (R2) does not improve the accuracy of RSVs.
(2) The extended approach ER I shows a similar performance as the original RUBRIC

approach RI
(3) ER2 shows a better performance than ER 1.

Our approach can be extended in several ways. First of all, the term weight is
not necessarily frequency information. For example, some existing search engines
provide weights or scores for retrieved documents. In that case, if a single term is sent
as the query to the search engine, the weight or ranking assigned to a document can be
treated as the weight of the term in the document. There are other interesting issues
currently being investigated, related to the RUBRIC approach. For example, based on
relevance feedback, we can adjust the weights both in the rule base tree and the
document-term matrix [3]. Furthermore, with the help of some knowledge bases, the
user can construct the rule base tree more automatically [4].

References

I1. Alsaffar, A. H., Deogun, J. S., Raghavan, V. V., and Sever, H. Concept-based
retrieval with minimal term sets. In Z. W. Ras and A. Skowon, editors,
Foundations of Intelligent Systems: Eleventh Int'l Symposium, ISMIS'99
proceedings, pp. 114-122, Springer, Warsaw, Poland, Jun, 1999.

2. Croft, W. B. Approaches to intelligent information retrieval. Information
Processing and Management, 1987, Vol. 23, No. 4, pp. 249-254.

3. Kim, M. and Raghavan, V. V. Adaptive Concept-based Retrieval Using a Neural
Network. In Proceedings of ACM SIGIR Workshop on Mathematical/Formal
Methods in Information Retrieval, July 28, 2000, Athens, Greece.

4. Kim, M., Lu, F., and Raghavan, V. V. Automatic Construction of Rule-based Trees
for Conceptual Retrieval. In Proceedings of SPIRE2000, September 27-29, 2000,
A Coruna, Spain, IEEE Computer Society Press.



462 M. Kim et al.

5. Lu, F., Johnsten, T., Raghavan, V. V., and Dennis Traylor, Enhancing Internet
Search Engines to Achieve Concept-based Retrieval, In Proceeding of Inforum'99,
Oakridge, USA

6. McCune, B. P., Tong, R. M., Dean, J. S., and Shapiro, D. G. RUBRIC: A System
for Rule-Based Information Retrieval, IEEE Transaction on Software Engineering,
Vol. SE-11, No. 9, September 1985.

7. Resnik, P. Using information content to evaluate semantic similarity in a
taxonomy. In Proceedings of the 14 'h International Joint Conference on Artificial
Intelligence, pp. 448-453, 1995.

8. Salton, G. and Lesk, M. E. Computer Evaluation of Indexing and Text Processing.
ACM 15, 1 (Jan, 1968), pp. 8-36.

9. Salton, G. and McGill, M. J. Introduction to Modern Information Retrieval.
McGraw Hill, New York, 1983.

10.Wong, S.K.M., Ziarko, W., and Wong, P. C. N. Generalized Vector Space Model
in Information Retrieval. In Proceedings of the 81h Annual International ACM-
SIGIR Conference, 1985, New York, pp. 18-25.

ll.Wong, S.K.M., Ziarko, W., Raghavan,V., and Wong, P. C. N. On Modeling of
Information Retrieval Concepts in Vector Spaces, ACM Transaction on Database
System, Vol. 12, No. 2, June 1987. pp. 299-321.

12.Wong, S.K.M., Ziarko, W., Raghavan,V., and Wong, P. C. N. Extended Boolean
Query Processing in the Generalized Vector Space Model, Information Systems
Vol. 14, No. 1, pp. 47-63, 1989.

13. "Google Search Engine," http://www.google.com



Template Generation for Identifying Text
Patterns

C~cile Boisson and Nahid Shahmehri

Department of Computer and Information Science, Link6pings universitet, Sweden
{cecbo,nahsh}lida.liu.se

Abstract. It is common that a text document contains information that
can be interpreted as instructions to pursue a given task. This informa-
tion called, pattern, can be seen as the triggering mechanism for a set of
predefined operations. We are interested in automating the recognition of
these patterns for repetitive tasks. We introduce the notion of template
generation which allows for the recognition of new patterns that trigger
operations. We implemented an algorithm for template generation and
we tested it in an electronic publishing application. The tests show that
some characteristics of the processed text can be used to adapt the gen-
eration process and obtain templates that provide better precision and
recall.

1 Introduction

Today, most operations on text such as classification or editing, are still done
manually. Some of these operations are repeatedly performed on a daily basis, e.g.
in e-publishing or document management. In these cases, it is common that a text
document contains information that can be interpreted as instructions to pursue
a given task. This information can be seen as the triggering mechanism for a set of
predefined operations. We use the common name of pattern for this information.
A pattern can appear in different forms such as word, phrase, sentence, etc.
The following are examples of repetitive tasks on text which contain implicit or
explicit instructions:

- Establishing an interaction in natural language with a computer. For exam-
ple, a command like "turn on the light in the kitchen" is a written
instruction that could be given on a regular basis to an intelligent device in
charge of the environmental control of a house.

- Classifying/routing documents. For example, an electronic message that
contains the pattern "Mr Hill wants to change the carburetor of his
car" is forwarded to the team in charge of engine repair, while the mes-
sage which contains the pattern "Mrs Jones wants to change the door
of her van" is forwarded to the team in charge of chassis repair.

- Transforming textual information into data. For example, the string "let ' s
meet at 3 pm on Wednesday in my office" written in a message can be
an implicit instruction to create and insert a meeting appointment in a cal-
endar.

Z.W. Rai and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 463-473, 2000.
© Springer-Verlag Berlin Heidelberg 2000



464 C. Boisson and N. Shahmehri

- Performing an editing operation to fit a policy. For example, in an electronic
journal, the references to articles like "in the IJOAT paper of Harris"
will be transformed into a link to the actual article.

Typically, the properties shared by these repetitive tasks are:

- No initial corpus is provided for training. For example, to produce a training
corpus, the editor of a journal would need to accumulate hundreds of articles
and thus would produce tens of issues before getting any automatic support.

- The set of patterns to be identified can change. This can be due to the
modification of the users habits or needs, to the modification of the way to
express instructions in the texts, etc.

- Some background knowledge is needed to perform the tasks. The background
knowledge can be domain specific concepts or information on the structure
of the texts1 . For example, the editor of ETAI [10], an electronic journal,
uses a knowledge base of authors and references to articles from which an
ontology can be built. In this paper we assume the existence of a basic set
of concepts for each task.

Automating the operations on text by establishing a human-computer collab-
oration would save much human effort and material resources. Our work aims
at automating the generation of templates which represent and are used for the
identification of patterns that trigger the same operation. The means to rec-
ognize patterns range from the recognition of syntactic characteristics of the
patterns (e.g. keywords, grammar rules) to the recognition of their semantical
characteristics which implies reasoning about the meaning of words and their
context (e.g. conceptualization, sentence understanding). In this paper we intro-
duce a method for template generation to support the semantical identification
of textual patterns in repetitive tasks. Template generation is performed after
each execution of a given task to incrementally build the set of templates that
identify all patterns triggering an operation.
Given a pattern p, template generation, TO, creates a template t by substituting
specific information in p with less specific information (i.e. concepts). The substi-
tutions are made through a number of rewritings according to the syntactic and
semantical rules of a grammar G. A concept describes a characteristic of a piece
of pattern and can be of different categories like semantic, grammatical role, lan-
guage, etc. Thus, given the (semantic) concepts "<action>", "<device>" and
"<room>", and the pattern p ="turn on the light in the kitchen", TO
can rewrite p into t = "<action> the <device> in the <room>". Notice that
it is possible to generate several templates from a given pattern. For example, TO
can also create the template t' = "<action> the light in the <room>" from
p. Given a pattern p which triggers the operation o, we denote by Tp = tt1 I..
the set of templates that can be created by TO, where each template identifies
a different set of patterns Pt. = R--U P5,. The elements of P+~ trigger o while

1Knowledge acquisition techniques such as data mining or interview of experts can
support the construction of domain specific knowledge.



Template Generation for Identifying Text Patterns 465

the elements of Pý,- do not trigger o. In this paper we consider the case where
p is rewritten into a unique template t such that (1) t identifies only patterns
which trigger o (i.e. Pt = Pt+)', (2) t is more general or equal to the template
that identifies only p (i.e. t E Ti,), and (3) t is one of the most general templates
that satisfy (1) and (2).
In section 2 we describe the characteristics of the ontology of concepts usable
by TG. In section 3, we introduce our solution for template generation: pattern
generalization (PG). In section 4 we give the task scenario that we use to evalu-

pate our method. In section 5 we describe our tests results. In section 6 we relate
template generation to other work. The paper concludes in section 7.

2 An Ontology for Template Generation

TG is based on the possibility to capture the semantics of a pattern. This is
done by substituting pieces of the pattern with relevant concepts. For exam-
ple, given the pattern p = "the article published in IJCAI-99", and the
concept <conference>, "IJCAI-99" can be substituted by <conference> to
produce the template t ="the article published in <conference>". It is
then possible to recognize all the patterns syntactically similar to p which express
a reference to a paper published in any conference. If some of these patterns do
not trigger the creation of a link, the concept maybe too general and has to be
replaced by a more specific one (e.g. <Al-conf erence>). Such substitutions are
possible if there is an ontology which describes the concepts expressed in the
processed texts. In [5] Guarino and Giaretta. point out that the word "ontology"
is ambiguous. We adopt the definition commonly used in knowledge engineering
[1]: an ontology is a set of specifications of conceptualizations, where a conceptu-
alization is a set of definitions of elements (concepts) in a domain. So, to describe
an ontology, we should provide: (1) the descriptions of the concepts, and (2) the
relations between the concepts (examples of common relations are is-a, part-of,
consist-of, etc). The concepts and the relations aim at describing the piece of the
real world that a given application needs to know. The is-a relation is impor-
tant because it allows comparing the concepts in terms of generality. When it
comes to providing definitions of concepts, we notice (1) the existence of distinct
categories of concepts to characterize pieces of text (i.e. semnantic, grammatical
role, presentation, language, etc.) and (2) the possibility to describe concepts
in several ways (i.e. natural language description, value enumeration, grammar,
process, etc.). The existence of several categories of concepts augments the num-
ber of potential substitutions for a given piece of pattern and complicates the
process of the creation of a template. Moreover, to be able to perform the sub-
stitution of a piece of pattern by a concept, TG should be able to understand
the different means of descriptions used by the ontology. This problem is outside
the scope of this paper. Figure 1 gives an example of ontology usable by TG.

2 There is always a solution since the template that only identifies the pattern p fulfills
the requirements.



466 C. Boisson and N. Shahmehri

<grammatical-concept> <semantical-concept>

<part-of-speech> <conference> <author> <editor> <journal>

<AI-conference> <AT-author>
c2 is-aIci

Fig. 1. An example of ontology for a task of journal editing

3 The Process of Pattern Generalization

In this section, we describe the process of pattern generalization (i.e. PG), our
solution for template generation. PG consists of rewriting pieces of a pattern p
into concepts according to the rewrite rules of a grammar.

- Tp is the set of templates that can be created from a pattern p.
- We define the order >, on Tp such that:

VtiVtj : Pt, D Pt, A Pti $ Pt, > ti >g tj.
If ti >9 tj we say that ti is more general than tj and that tj is more specific
than ti.

- The process of PG is the function PG(C, Txt, p, G) return t where
"* C is the ontology (cf. section 2).
"* Txt is the set of texts already processed where the pieces of text that

are not patterns are annotated.
"* p is a pattern which triggers an operation o.
"* t is a more general template of Tp that can be used to recognize only

patterns that trigger o: Pt = P+.
"* G is a grammar (cf. table 3). A pattern is a string which forms either

a sentence (S-struct) or a phrase (P)3 , and a template is a sequence of
strings and concepts. G is composed of three kinds of rules:
1. "SubPart -> Concept" defines the non terminal SubPart as a piece
of pattern that can be substituted by a concept.
2. "X -> XJstruct I SubPart" expresses the possibility of transforming
a piece of pattern X into either a "legal English structure" of X or a

SubPart.
3. "XIstruct -> ... I • • • " describes the possible "legal English struc-
tures" of X.4

The grammar is ambiguous at two levels: (1) it is possible to create
several parse trees (i.e. chains of rewrite rules) for a given pattern p, and
(2) it is possible to associate several concepts to the same SubPart.

3 In the grammar we restrict the patterns to the forms of "legal English structures" of
sentences or phrases to allow the usage of NLP analyzers which require grammatically
correct input. The principle of PG can handle any piece of text.

4 These rules can be completed to parse more legal English structures of sentences,
phrases, noun phrases, and verb phrases.



Template Generation for Identifying Text Patterns 467

S-struct -> P I P PREP P I NP VP I ...
P -> P-struct I SubPart S.struct: sentence, P: phrase,
P-struct -> NP I VP I ... PREP: preposition, ADJ: adjective,
NP -> NP-struct I SubPart ART: article, N: noun, V: Verb.
NP-struct -> N I ADJ N I ART ADJ N .
VP -> VP-struct I SubPart Concept is a terminal.
VP-struct -> V I V NP I ... Its instances belong to C.

N-> N-struct I SubPart
V -> VStruct I SubPart NStruct, VStruct, ADJStruct,
ADJ -> ADJStruct I SubPart ARTStruct are terminals.
ART -> ARTStruct I SubPart Their values are given by a lexicon.
,SubPart -> Concept

Table 1. Ambiguous grammar for rewriting a pattern into a template

The process of computing PG() is composed of the two following steps:
1. BuildGeneralTemplate(p, C) return tg,
where t9 is such that: (tg E Tp) A (Vti E Tp : -(ti >g tg))
Building t9 implies the choice of the derivation which rewrites p into a most
general template. Table 2 gives the rules to make this choice 5.
2. Ref ineTemplate(tg, C, Txt) return t such that (Pt : P+)
Ref ineTemplate() = {For each p- E Pj Do Ref ine(tg, p, p-, C)}.
Refineo) applies on t9 the most specific derivation which provides the most
general template that does not match p-. It is done in three steps.
2.1 DifferentSubparts (t., p, p-) return S, where S is the set of subparts
of t9 such that Vs G S the form of s is a concept in tg, and the form of s in p
and in p- are different6 . E.g. s = "<author>" in t., s - "Harris" in p and s =

"Smith" in p-.
2.2 OrderedDerivations(S, C) return D.
Vs E S, s is a concept and there are two kinds of derivations possible to make
s more specific: (dl) s •* concept where concept is-a s and, (d2) s => X
X-struct = s' = g where g is the most general form of s'.
Table 3 gives the rules to choose the most specific derivations for a given subpart
(i.e. a concept). D is the set of combinations of derivations on s where the
derivations are stored from more general to more specific.
2.3. Enumerate(tg, S, D, C, p-) return t = {For each d in D Do
t +- ApplyDerivation(t., d); If p V Pt then return t}

5 Currently, for the cases 1 and 3 of rule 2, we use the first heuristic. More investigations
need to be done on the second heuristic.

6 This selection limits the space of the derivations to those which focus on the elimi-

nation of p- from Ptg.



468 C. Boisson and N. Shahmehri

1. X -> X-struct I SubPart
Heuristics: the conceptualization of a subpart is more general than the sequence
of conceptualization of its subparts. Thus,
(p 4 A X B ==> A SubPart B =• ti) A (p =• A X B == A X-struct B

St2) =ý tI >9 t2.

E.g. given X ="the Oxford University Press",

(p > A X B = A SubPart B • A <editor> B = ti)A

(p = A X B z A X-struct B 4 A "the <university> Press" B * t2 )

Stl >9 t2 -

2. SubPart -> Concept

Given the set C,, {c=, C2,...,cn} of concepts associated to the subpart s, the
rewrite rule becomes s -> ci I c2 I ... I cn

Case 1: some concepts belong to different categories of s.
E.g. s = "Harris" A el = <author> A c2 = <personal-noun> A

cl is-a <semantic-concept> A c2 is-a <grammatical concept>.
Two heuristics: (1) Defining an order among the categories (E.g.
<semantic-concept> >g <grammatical-concept>), and (2) Consider all pos-
sible orders and generate a template for each.

Case 2: there is an is-a relation between some concepts.
3(ci, cj) E C 2 : (ci is-a cj) A (p =• A Subpart B =;> A c B = ti) A

(p 4 A Subpart B ==> A cj B : t 2 ) => (t 2 >g ti).

E.g. s = "Harris" A ci = <AI-author> A C2 = <author> A
(<AI-author> is-a <author>) A
(p * A s B r= A <AI-author> B =*. ti) A

(p =. A s B ==> A <author> B ==- t2 ) => (t 2 >, t 1 ).

Case 3: some concepts belong to the same category and there is no relation is-a
between them. E.g. s = "Brown", cl = <author> and c2 = <university> A
ci is-a <semantic-concept> A c2 is-a <semantic concept>.
There is only one concept which is true.
Two heuristics: (1) Picking one concept randomly to generate t, and (2) Gen-
erating one template for each concept.

Table 2. Rules to choose a most general derivation

1. Vc G C : ApplyDerivation(c, d2) >9 ApplyDerivation(c, dl).
2. V(ci, cj) E C 2

:

ci is-a cj => ApplyDerivation(c, dl(cj)) >9 ApplyDerivation(c, dl(ci))
where ApplyDerivation(cl, dl(c2)) replace cl with c2.

3. Vc E C: 3s : sl = ApplyDerivation(c, d2) A
BS2 : S2 = ApplyDerivation(c, d2) A (Si ==> S2) • Si >9 S2

E.g. (c = <editor> A si = <university> Press A 82 = <town> university Press

A s3 = Oxford university Press) => (si >, S2 >9 s8)

Table 3. Rules to choose the most specific derivation



Template Generation for Identifying Text Patterns 469

4 Test Platform

We identified the need for support for pattern identification in the task of the
editor of ETAI [10], an electronic journal for artificial intelligence. While our
method is adaptable to other domains, it is on this task that we have performed
the evaluation of our methods of template creation and management (cf. sec-
tion 5). Most of the examples which have illustrated our explanations are also
examples from this task. The policy of the journal includes the public and collab-
orative reviewing of the articles submitted for publication. The task of the editor
is to compile the email messages written by researchers to review a given article,
into a web page. Each message is processed in its order of arrival. The messages
can contain references to articles. One of the operations is to transform the pieces
of text that refer to articles into links to the actual articles. Thus in this task,
the patterns to recognize are the references to articles, and the texts to inspect
are bodies of messages. Example of patterns are "in this paper" and "in the
IJCAI paper of Harris". The ontology for this task, as described in figure 1, is
composed of several <semantical-concept> which appear in references to arti-
cles (i.e. <conference>, <author>, <editor>, <journal>, <university>), and
of one <grammatical-concept>: the <part-of-speech>. Each word of the pat-
terns is associated to a <part-of-speech>. Some words, alone or in sequence,
are also associated to a <semantical concept>.

5 Practical Analysis of Pattern Generalization

Characteristics of the ontology (e.g. the order on the categories of concepts) and
of the patterns (e.g. the similarity between the patterns to identify and the pat-
terns to not identify) influence the granularity of the generated templates, and
thus their performances in terms of precision and recall. Our first test illustrates
these characteristics. In a second test, we evaluate the algorithm in terms of
precision and recall and show that the generalization of templates provides a
better recall than a method which incrementally collects the patterns and does
not perform any generalization.

First test:
We have implemented the algorithm for pattern generalization which assumes the
existence of a predefined order ">9' on the categories of concepts (cf. heuristic 1
for case 1 of the rule 2 given in table 2). In our test ontology, there are two cate-
gories of concepts, <semantic-concept> and <grammatical-concept>, thus
their are two possible orders. The purpose of this test is to observe how the order
of the categories of concepts influences the form of the generated templates. From
the observation we propose heuristics to choose one order that will contribute
to a quicker generation of templates that provide good recall and precision.
Given two sets of patterns P- = {p-, ... ,pl0} and P+ = {pl,...,Pio}, we per-

formed PG and got the set of templates T = {tp1,...,tp10 }. PG was performed
twice with two different biases on the ontology. Since the 10 templates produced



470 C. Boisson and N. Shahmehri

had the same characteristics, we illustrate the generalization for a single pattern:
p = "the results by Hill and Smith".

Bias 1: <grammar-concept> >g <semanticxconcept>.
Result: The elements of T are mainly sequences of part of speech tags.
tbiasl = "<DT> <NNS> <IN> <NNP> <CC> <NNP>".
Bias 2: <semantic-concept> >9 <grammarmconcept>. Result: The elements of
T are sequences of semantical concepts and part of speech. The part of speech
are mostly conceptualizations of articles and verbs.
tbias2 = "<DT> <NNS> <IN> <author> <CC> <author>". The templates
created with Bias 2 are more specific to the task and likely to be more accurate.
This test highlights some new parameters which influence the construction of
the templates:

- The order between the categories of concepts.
- The specificity of the concepts to the task. For example, <grammar-concept>

is less specific to the task than <semantic.concept>.
- The number of refinements performed on the templates which identify pat-

terns that should not be identified.
- The syntactic and semantic similarity between elements of P+ and elements

of P-: the more the elements of P+ look like the elements of P-, the higher
the granularity of the ontology should be.

Given automatic techniques to observe these parameters, one can design an al-
gorithm which adapts PG to the domain of the task.

Second test: evaluation of PG in terms of recall and precision.
Problem description:

- The texts processed are two e-mail discussions. The first discussion contains
14 mails and the second contains 8 mails.

- the order >, on the concepts of the ontology is completed with the bias 1:
<grammar-concept> >g <semantic-concept>.

- The set of templates created during the processing of the first discussion
continues its evolution during the processing of the second discussion.

Evaluation data:

- N+: the number of elements of P+ recognized with the templates while
processing the ith message. In brackets: the number of patterns which are
copies of pattern encountered in previous messages.

- Nf-: the number of elements of P- recognized with the templates.

- Nf: the number of element of P+ that have not been recognized with the
templates.

- N["': the number of new patterns encountered in the ith message.

Results:

- Table 4 gives the evaluation data and the recall and precision rates for each
discussion.



Template Generation for Identifying Text Patterns 471

- For the first discussion, Ni- = 0, thus the templates are never too general.
Recall does not exceed 21.4% because there is a large syntactic difference
between the patterns.

- For the second discussion, the high Recall is not due to the generalization
process but to the high usage of identical patterns in the discussion. For
example, the pattern "the paper" occurs 6 times. The low precision is due
to the high level of generality (sequences of part of speech) of some templates.
For example the template "<DT> <NN>" generated from the pattern "the
paper" after the processing of the 4th message is responsible for most of the

8 wrong recognitions performed in the 5th message. The templates in fault
are immediately adapted: 100% of the wrong recognition on this discussion is
done on the 5th mail of the discussion, but none is done on later processing,
while correct recognitions continue to take place.

- By comparison with a system which incrementally builds a set of patterns
to recognize and perform the automatic recognition of exact copies in new
texts processed, PG does augment the coverage of recognition of 66% in the
first discussion, and of 18% in the second. This difference of performance is

explained by the fact that the semantical concepts are well adapted to the
semantic carried by the pattern of the first discussion, but not to the second.
For the second discussion, the addition of a concept <publication> corre-
sponding to words like "paper", "journal" or "article" would have increased
the performance of the generalization.

Discussion 1 Discussion 2
Messages 012 345678 9 1011 12 13 Total 1234 5 6 7 81Total

N,1ool 0IIooIo 000 3 010100231 3 03 0 11
101 (1) (1) (3) (3) (3) (9)

N[ 0 0 01J0101010 00000 0 0000 80 0 08
NT 130 0 022201 1 0 0 0 1 11 0110 0 1 8 0 11

Niý 130I01313301 1 0 0 0 1 13 0110 0 1 8 0 11

Recall Recall due to PGO Precision Precision due to PGO
Discussion 1 21.4% 14.3% 1100% 66.6%
Discussion 2 50% 4.5% 157.9% 5.26%

Table 4. Tests: Evaluation data, recall and precision for the discussions

To conclude, the experiment shows that the generalization is immediately

useful if some parameters are properly set. The most important settings being (1)
having a fairly complete ontology and (2) having a management of the categories
of concepts adapted to the domain of the task. We believe that these needs can
be met to some reasonable extent.



472 C. Boisson and N. Shahmehri

6 Related Work

Information Extraction [2] systems ([61, [7], [3], etc) are using techniques to col-
lect sets of templates which identify interesting pieces of texts in large corpus.
The creation of the template is done via a training on a part of the corpus. Some
attempts have been made to automate the creation of the templates (Autoslog-
TS [11]). These attempts simplify the training, but do not eliminate it. Moreover
it is not possible to learn new templates on the fly. In our case, a requirement as
having a large number of texts to train on before hand, is not acceptable. While
lB techniques are very inspiring (templates, natural language analysis), they are
not directly applicable to the support for repetitive tasks. In [4], R. Grishman
and J. Sterling describe the generalization of acquired semantic patterns. Their
approach is based on the computation of the frequency of each semantic pat-
tern in a corpus. Once again it is an approach that we cannot adopt since we
do not have any corpus before hand. When it comes to providing support to
repetitive tasks, the APE project [12] describes a technique to learn incremen-
tally the set of recurrent sequences of commands typed or clicked by users in a
programming environment for Smalltalk. This project shows the usefulness of in-
cremental learning in a system which records the actions of the user and analyses
them to identify patterns. However, their domain of command sequences is less
complex to reason about than the domain of natural language. Other projects
explore the domain of personal assistance on repetitive tasks. GAL [8] refines
the principles initiated for [9]: "learning through experience" a set of rules to
manage a calendar. The concepts are predefined, fixed, and limited in number
(we counted 22). We have no limitation on the number of concepts and manage
several granularities and categories.

7 Conclusion and Future Work

We propose a method for template generation to support the identification of
important pieces of texts with respect to a given task. This method learns in-
crementally a set of patterns. The set is completed and refined after each new
execution of the task, thus providing a better support for the next execution.
We described a solution for template generation: pattern generalization. Given a
pattern which triggers the operation o, pattern generalization generates a most
general template that recognizes only patterns that trigger o. We have tested
the pattern generalization on a set of patterns extracted from a real life task.
The results show that the performance depends on the completeness and gran-
ularity of the ontology, and on the relations between the categories of concepts.
As further work, we plan to investigate the management of the templates. The
current system already handles the refinement of templates after each execution
of the task. It should also be able to recognize relations between the templates
to identify inconsistencies or templates that cover the same sets of patterns.
We also plan to investigate methods to incrementally adapt the ontology and
to produce a cooperation between the semantic and grammatical categories of



Template Generation for Identifying Text Patterns 473

concepts. We intend to establish a system to evaluate the performances of tem-
plates. This system would allow the addition of new rules to choose the most
suitable template among the most general templates.

Acknowledgements: This research has been supported by the Swedish Re-
search Council for Engineering Sciences (TFR). The authors would like to thank
Patrick Lambrix and Lena Str6mbdick for their valuable comments on earlier
versions of this paper.

References

1. A. Bernaras, I. Laresgoiti, N. Bartolome, and J. Corera. An ontology for fault
diagnosis in electrical networks. In International Conference on Intelligent Systems
Application to Power Systems, pages 199-203, 1996.

2. J. Cowie and W. Lehnert. Information extraction. CACM, 39(1):80-91, Jan. 1996.
3. R. Gaizauskas, T. Wakao, K. Humphreys, H. Cunningham, and Y. Wilks. De-

scription of the lasie system as used for muc-6. In 6th Message Understanding
Conference (MUC-6), pages 207-220, 1995.

4. R. Grishman and J. Sterling. Generalizing automatically generated selectional pat-
terns. In 15th International Conference on Computational Linguistics (COLING
g94), pages 742-747, 1994.

5. N. Guarino and P. Giaretta. Ontologies and knowledge bases: Toward a termi-
nological clarification. In NJI Mars, editor, Toward Very Large Knowledge Bases:
Knowledge Building and Knowledge Sharing, pages 25-32. 1995.

6. J. Hobbs, D. Appelt, J. Bear, D. Israel, M. Kameyama, M. Stickel, and M. Tyson.
Fastus: a cascaded finite-state transducer for extracting information from natural-
language text. In E. Roche and Y. Schabes, editors, Finite State Devices for Natural
Language Processing. Cambridge MA: MIT Press, 1996.

7. W. Lehnert, J. McCarthy, S. Soderland, E. Riloff, C. Cardie, J. Peterson, F. Feng,
C.Dolan, and S. Goldman. Description of the circus system as used for muc-5. In
5th Message Understanding Conference (MUC-5), pages 277-291, 1993.

8. T. M. Mitchel, R. Caruana, D. Freitag, J. McDermott, and D. Zabowski. Experi-
ence with a learning personal assistant. CACM, 37(7):80-91, July 1994.

9. T. M. Mitchell, S. Mahadevan, and L. I. Steinberg. Leap: A learning apprentice
for vlsi design. In IJCAI-85, pages 573-580, 1985.

10. Electronic Transactions on AI (ETAI). http://www.ida.liu.se/ext/etai/, 1997.
11. E. Riloff. Automatically generating extraction patterns from untagged text. In

AAAI-96, pages 1044-1049, 1996.
12. J-D. Ruvini and C. Dony. Learning users habits: The ape project. In Learning

About Users, IJCAI'99 Workshop, July 1999.



Qualitative Discovery in Medical Databases

David A. Maluf *, Jiming Liu **

Research Institute for Advanced Computer Science, Computational Science
Division, NASA Ames. maluf~ptolemy.arc.nasa.gov

Department of Computing Studies, Hong Kong Baptist University

Abstract. Implication rules have been used in uncertainty reasoning
systems to confirm and draw hypotheses or conclusions. However a ma-
jor bottleneck in developing such systems lies in the elicitation of these
rules. This paper empirically examines the performance of evidential in-
ferencing with implication networks generated using a rule induction tool
called KAT. KAT utilizes an algorithm for the statistical analysis of em-
pirical case data, and hence reduces the knowledge engineering efforts
and biases in subjective implication certainty assignment. The paper de-
scribes several experiments in which real-world diagnostic problems were
investigated; namely, medical diagnostics. In particular, it attempts to
show that (1) with a limited number of case samples, KAT is capable
of inducing implication networks useful for making evidential inferences
based on partial observations, and (2) observation driven by a network
entropy optimization mechanism is effective in reducing the uncertainty
of predicted events.

1 Introduction

One of the important aspects of using expert systems technology to solve real-
world problems lies in the management of domain-knowledge uncertainty. Several
methods of reasoning under uncertainty have been proposed in the past [1] [11]
[13] [15]. All these approaches require a representation of domain knowledge.
Generally speaking, constructing a valid knowledge representation is a time-
consuming task and often subject to opinion biases or semantics invalidity if it is
built purely based on human heuristics. To overcome the difficulties in knowledge
acquisition, several investigations have been carried out in recent years to explore
the effectiveness and validity of automated means such as algorithms to perform
this task.

Pitas et al. [14] have proposed a method of learning general rules from specific
instances based on a minimal entropy criterion. Geiger [7] has formulated a
learning algorithm for uncovering a Bayesian conditional dependence tree. This
algorithm combines entropy optimization with Heckerman's similarity networks
modeling scheme [8]. Cooper and Herskovits [2] have developed an algorithmic
method of empirically inducing probabilistic networks, which utilizes a Bayesian
framework to assess the probability of a network topology given a distribution
of cases. A heuristic technique is provided to optimize the search for probable
topologies. Simulation results have shown that a small 37-node, 46-link network
can be derived with 3,000 cases.

Z.W. Rai and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 474-485, 2000.
© Springer-Verlag Berlin Heidelberg 2000



Qualitative Discovery in Medical Databases 475

In this paper, we present a new rule-learning algorithm for inducing impli-
cation relations based on a small number of empirical data samples. The major
difference between Cooper and llerskovits' approach and ours is that their ap-
proach focuses on topological induction accuracy while ours is concerned with
the accuracy of inferences based on an induced network, without regards to
the topological uniqueness. Our approach to implication network induction has
been implemented in a tool box called KAT, which contains several components;
namely empirical data acquisition, implication rule elicitation module, network
validation module, optimal observation determination module, and embedded
diagnostic inferencing engine which implements uncertainty reasoning schemes.

Our approach to implication induction draws on the previous work on empir-
ical construction of inference networks [4]. The present study further extends the
earlier work by augmenting the implications with certainty measures. Another
related work is the development of a prediction logic based on a contingency-table
of probabilities, as proposed by Hildebrand et al. [9]. In their work, the emphasis
was on the definition and computation of precision and accuracy of propositions
represented. An analogy was made between contingency table based prediction
logic and formal proposition logic. To validate the implication networks gener-
ated from KAT, we have conducted a series of empirical experiments to examine
the performance of evidential inferencing with the induced networks. The chosen
problem domain is medical diagnosis; this task shares many commonalities with
other real-world problems as described in [1] [6] and has been in part inspired by
earlier studies on knowledge space theory (KST) by Doignon and Falmagne [5].
The KST presents an interesting set-theory interpretation of knowledge states as
well as its mathematical foundations. In our present framework, unlike the one
by Doignon and Falmagne, the interdependencies among knowledge units are the
closures under union and intersection, which can be correctly represented with a
directed inference network. Hence, our implication networks representation (i.e.,
an instance of implication networks) can be viewed as a proper subset of the
knowledge space representation.

In this paper, we examine the effectiveness and exactness of inferences with
statistically induced networks. Our claim is that the proposed network induc-
tion method is capable of generating logically and empirically sound implication-
based domain representations useful in predicting unobserved events upon re-
ceiving certain partial information. While validating the networks in several
real-world task domains, we attempt to demonstrate the generality of the al-
gorithmic rule induction and reasoning approach in solving problems where a
complete set of events is too difficult to observe or the diagnostic judgments are
subject to human errors.

2 Implication Network Induction

In the present work, we refer the term implication network to a directed acyclic
graph in which the nodes represent individual event variables or hypotheses, and
the arcs signify the existence of direct implication (e.g., influence) among the



476 D.A. Maluf and J. Liu

nodes. The value taken on by one event variable is dependent on the values taken
on by all variables that influence it. Each value indicates the likelihood of an
unobserved event. The value is updated every time new information is obtained
(e.g., some symptom is observed). The strengths of the event interdependencies
are quantified by functions (e.g., belief functions), as weights associated with the
arcs.

Formally, an implication network can be represented as an ordered quadruple:

Net = (Af, , ac, Pmin), (1)

where Af is a finite set of nodes and - is a finite set of arcs. a, is the network
induction error and Pm n is the minimal conditional probability to be estimated
in the arcs. Furthermore, each induced implication rule can be specified by the
following quadruple:

Imp = (Nant, Nconct, WI, WI), (2)

where W, and WV are weight functions that map the pairs of antecedent-consequent
nodes, i.e., Nant and Nconc,, and their negations to a real number between 0 and
1, respectively. That is,

W : Nat x Ntco,. -+ [0, 1]. (3)

S-conc 0  x -Nant -+ [0, 1]. (4)

B -B

A NAAB NAA-B

-•A N-AAB NA/A^B

Fig. 1. contingency table where cells indicate the number of co-occurrences.

2.1 The Rule-Elicitation Algorithm

The basic idea behind the empirical construction is that in an ideal case, if
there is an implication relation A =# B, then we would never expect to find the
co-occurrences as in Figure 1 that event A is true but not event B, from the
empirical data samples. This translates into the following two conditions:

P(BIA) = 1 (5)

P(-iAI-B) = 1 (6)

In reality, however, due to noise such as sampling errors, we have to relax Condi-
tions 5 and 6. KE takes into account the imprecise/inexact nature of implications
and verifies the above conditions by computing the lower bound of a (1 - aerror)



Qualitative Discovery in Medical Databases 477

confidence interval around the measured conditional probabilities. If the verifi-
cation succeeds, an implication relation between the two events is asserted. Two
weights are associated with the relation1 , which correspond to the relations'
conditional probabilities P(BIA) and P(-iAI-iB). In fact, these weights together
express the degree of certainty in the implication. Once an implication relation
can be determined, another logical operator "- " is readily defined as follows:

(A =:>1) #.((B = A) = (B - A)) (7)

The elicitation of dependences among the nodes requires considering the
existence (or nonexistence) of direct relationships between pairs of random vari-
ables in a domain model. In theory, there exist six possible types of implications
between any two nodes or events.

The implication rule elicitation algorithm can be stated as follows:

The Rule-Elicitation Algorithm

Begin
set an arbitrary level ac and a minimal conditional probability Pmin (this test can be

repeated for different a, and pmin. An example is a,- = 0.05 and pmin = 0.5).
for nodei, i E [0, nmax - 1] and nodej, C e [i + 1, nmax]

for all empirical case samples

compute a contingency table Tij Nil N1 2

N21 NV22

for each rule type k out of the six possible cases.
test the following inequality:

P(X <_ Nerror cel.) < a./ (8)

based on the two lower tails of binomial distributions Bin(N, pmin) and
Bin(N, Pmin), where N and N denote the occurrences of antecedent
satisfactions in the two inferences using a type k implication rule, i.e., in
modus ponens and modus tollens, respectively. a. is the alpha error (or
significance level) of the conditional probability test.

if the test succeeds
return a type k implication rule.
endif, endfor

endfor

endfor
End

Here it is assumed that the conditional probability is p in each sample, and
all n samples are independent. If X is the frequency of the occurrence, then X

1 With respect to the two directions of the inference, i.e. modus ponens vs. modus
tollens.



478 D.A. Maluf and J. Liu

satisfies a binomial distribution, i.e., X - Bin(n,p), whose probability function

Px (k) and distribution function Fx (k) are given below:

px(k) = (n) pkqf-k (9)k 10
Fx (k) = p(X < k) (n) p qn-k; p = I- q (10)

j=0

C1 C 2 C3
A, A B 1 > C2 V C3  A, A B, E
AtAB 2  C1 VC3  AIAB 2  DUO
A2 ABi •C1 VC2 VC3 A2 AB, 000
A2 A B2•=C 2  A2 A B2  MOE

Fig. 2. A contingency table where cells indicate the number of co-occurrences in the
case of multivariate implications.

Thus, the test of hypothesis for A =#> B can be obtained by computing by a
lower tail confidence interval over a binomial function:

NAA-B(•

p(X _ NAA-B) = I: (i) pn-i(1 -p)• (11)
i=O

where n has the same definition as above, and where p is set to the desired
minimal conditional probability. This formula represents the probability that
as small a number as X of unpredicted results would be observed if the true
probability of a predicted result were exactly p. The smaller the probability
given by the formula is, the less likely it is that the true probability of a predicted
result is less than p.

From a theoretical point of view, we could increase the dimensionality of
the distribution to incorporate all variables relevant to the problem in question
and allow the variables to be multivariate as illustrated in Figure 2. In such a
case, the probability function to be considered becomes: Px ,..., x, (k1 ,..., k,) =

n! ki kr
kl!.-kr!Pl '... P . From a practical point of view, this would also introduce ex-
ponential computational complexity. In the present study, we concentrate on
bivariate variables pairwise, which reduces the scope of problem for which prob-
abilities have to be elicited. Often this is known as naive Bayes.

2.2 An Example of Positive Implication Induction

The following section illustrates how the above algorithm is used to verify the
existence of a positive implication rule: A • B.



Qualitative Discovery in Medical Databases 479

In the first step of positive implication rule induction, a two-dimensional
contingency table for variables A and B is compiled. As computed from an
empirical data set, the cells in the contingency table contain the observed joint
occurrences for the respective four possible combinations of values. Table 1 shows
an example of the contingency table with respective co-occurrences of variables
A and B in a hypothetical data set.

B -B

A 20 (NAAB) 1 (NAA-B)

"-A 8 (N-AAB) 1 (N-AA-B)

Table 1. Distribution of observed occurrences

where N.. denotes the occurrences of the respective situations. The total
numbers of A and -ýB can be derived accordingly as follows:

NA = NAAB + NAA-B = 21
N-B = NAA-B + N-AA-B = 2

Statistical Tests for Implication Existence: The second step of our in-
duction method consists of an assessment of the numerical constraints imposed
by A >. B. More specifically, the assessment is based on the lower tails of bino-
mial distributions Bin(NA, Pmin) and Bin(N-B, Pmin) to test measured con-
ditional probabilities P(B I A) and P(-iA I -ýB), where NA = NAAB + NAA-B,

N-B = NAA-B + N-AA^B, and Pmin is an arbitrary number chosen as the
minimal conditional probability for an implication relation. For each of the two
binomial distributions, we check to see whether Inequality 8 can be satisfied.

Suppose that in this example, Prnin --= 0.85; Oa = 0.20. Accordingly the
binomial distribution for testing P(B I A) can be written as: Bin(21, 0.85). The
computation of the lower bound proceeds as follows:

P(x <_ NAA-B) = P(x <_ 1)
= P(x = 0) + P(x = 1)

= (21) 0.8521 0.150+ (21) 0.8520 0.151

= 0.155

hence P(x < NAA-B) <a, where symbol (k) represents the number of com-

binations of k in j. The inference with A =:. B in the modus ponens direction is
significant with confidence level (1 - a,). In a similar way, given Bin(2, 0.85),
the test for P(-A I -B) yields:

P(x < NAA-B) =(2) 0.852 0.150+ (2) 0.851 0.151 = 0.98



480 D.A. Maluf and J. Liu

hence,
P(X <_ NAA-B) -ý a.

Since Inequality 8 for the test of P(-iAI--B) is not satisfied, A =ý> B cannot be
used for modus tollens inference. Hence, the positive implication rule A #> B is
rejected. The overall, worst-case time complexity of inducing an implication
network with the above algorithm is O(nmax2 ) where nmax is the number of
nodes for modeling the domain.

3 Empirical Cases

This section describes the empirical data used in a series of experiments aimed

to investigate the effectiveness and exactness of induced implication networks in
diagnostic reasoning. The selected task domain is medical diagnosis.

In the current study, we model the different possible knowledge states by
a partial order. Although this formalism could not fully represent all possible
knowledge states, it captures a large part of the constraints on the ordering
among KU and can be used for the purpose of automatic knowledge assessment
[3]. The data used to induce implication networks for medical diagnosis consists
of a set of attributes which are continuous variables. In order to build a network,
these attributes were first transformed into bivariate (i.e., binary) values using

thresholds.
The medical diagnostic method developed in this work was first validated

using the empirical cancer data samples collected from 69 healthy people and 31
cancer patients. Each sample contains the information on 22 chemical residues
(i.e., attributes) found in a bioposy. In order to build the network, we first
transformed the ordered continuous variables, i.e., trace element concentrations,
into two-valued Boolean variables, by means of thresholding.

Zn • Mg 0.7826 0.7959 Cd . Zn 0.7096 0.8333 Mg = Ca 0.8823 0.8775
Zn :. Ca 0.8695 0.8775 Cd : Ni 0.8064 0.8846 Mg =. Cu 0.7058 0.7272
Zn =€- Cu 0.6956 0.7454 Cd =#> Co 0.7096 0.8571 V =. Ni 0.7058 0.8076
Co = Ni 0.7297 0.8076 Cd => Cu 0.8064 0.8909 Cu =. Ca 0.7555 0.7755

Table 2. The original trace concentration data samples.

The derived data set was used to induce the network. Tables 3 and 4 show a
few examples of the original and the derived data set samples, respectively. Table
3 presents a subset of the induced implication network in the form of pairwise

gradation relations.

4 Evidential Inferences

To validate the accuracy of the evidential inferences generated from implication
networks, we have conducted a series of experiments in simulated diagnostic task



Qualitative Discovery in Medical Databases 481

Zn Pb Ni Co Cd Mn Cr Mg V Al Ca Cu Ti Se Categ.
237.84 8.50 1.532 1.045 0.590 1.953 1.717 223.62 1.696 0.010 1806.75 8.71 0.732 0.001 1
203.15 12.70 2.362 1.707 0.898 1.347 1.204 46.33 0.811 4.189 405.20 13.92 0.689 0.001 1
266.34 4.44 0.085 1.013 0.382 2.151 0.340 47.73 0.010 13.137 367.92 17.10 2.896 0.003 2

Table 3. The transformed trace concentration data samples (subset).

Zn Pb Ni Co Cd Mn Cr Mg V Al Ca Cu Ti Se Category
01.00 01.00 01.000 01.000 01.000 1.000 1.000 01.00 1.000 0.000 01.00 00.00 1.000 0.000 1
01.00 01.00 01.000 01.000 01.000 1.000 1.000 00.00 1.000 0.000 00.00 01.00 0.000 0.000 1
01.00 01.00 00.000 01.000 01.000 1.000 1.000 00.00 0.000 1.000 00.00 01.00 1.000 0.000 2

Table 4. Examples of the induced positive implication rules (subset).

settings. In particular, we used constructed implication networks as the basis
for evidential inferences. Each simulation run consisted of selecting a portion
of a subject's sample data and propagating evidential supports throughout the
network.

4.1 Experimental Method

There exist various interpretations of the imprecision measure associated with
an implication rule [11]. Each interpretation dictates the way in which inferences
are to be performed. Bayesian inference is based on the mapping of an implica-
tion relation into conditional probabilities [13]. Taking an implication A =ý, B for
example, updating the probability would be based upon P(B I A), which should
approach 1.0 if the implication is strong. The difficulty with this scheme stems
from the fact that if further observation of C is obtained and if there is a relation
C => B, then there is a need to update the value of B based upon P(B I A, C),
and so on. As more observations occurs, the conditional probabilities become
practically impossible to estimate, whether subjectively or from sample data.
To address this difficulty in a Bayesian belief network, the assumption of inde-
pendence is made between individual implication relations. In the present work,
we have applied the Dempster-Shafer (D-S) method of evidential reasoning to
propagate supports (whether confirming or disconfirming) throughout the im-
plication network. The D-S inferencing scheme may be regarded as a complex
theoretical deviation from the Bayesian theory. According to the D-S scheme,
the set of possible outcomes of a node is called the frame of discernment, de-
noted by 0. If the antecedents of a rule confirm a conclusion with degree m, the
rule's effect on belief in the subsets of e can be represented by so-called proba-
bility masses. In our bivariate case of knowledge assessment, there are only two
possible outcomes for each node, qi, that is, 0 = {known, -known}.

The D-S scheme provides a means for combining beliefs from distinct sources,
known as Dempster's rule of combination. This rule states that two assignments,
corresponding to two independent sources of evidence, may be combined to yield
a new one, that is,

m(X) = k E ml(Xi)m 2 (Xj) (12)
xinxj=X



482 D.A. Maluf and J. Liu

where k is a normalization factor. Another evidential inference methodology,
called Certainty Factors (CF) as previously implemented in MYCIN [1], was
also applied in this study. This approach may be viewed as a special case of
the D-S evidential reasoning. The two approaches differ from each other only in
combining two opposite beliefs (i.e., one confirming and the other disconfirming).

4.2 Results in Medical Diagnosis

This section presents the empirical results of evidential inferences using the
databases of cancer diagnosis instances as mentioned in Section 3. In each of
the two experiments, the numeric-valued attributes were first discretized into
binary values which were then used for both network induction and inferencing
validation.

In the case of cancer diagnosis, 40 patient samples were compiled to induce
the implication network with Pmin > 0.5 and a, < 0.30. The generated network
contains 87 implication relations. Another set of 60 patient samples was used to
validate the evidential inferencing.

During the validation, a certain percentage of attributes in each test cases
were randomly sampled, and the rest of the attributes were inferred from the
implications. Upon the completion of inferencing, a pair of thresholds (u, v) (i.e.,
bi-directional thresholds) was defined to filter the numeric-valued weights. That
is, if a specific node has a weight w > v, then the node is believed to be TRUE. On
the other hand, if w < u, the node is believed to be FALSE (i.e., the corresponding
attribute does not exist). The resulting filtered predictions were compared with
the actual values in the test samples.

4.3 Experiment E-51 Cancer Diagnosis

Globally speaking, given the distributions of evidentially predicted weights and
initial weights with respect to various bi-directional thresholds, it can be ob-
served that in the guessing case, both the correctly predicted nodes and the
errors were almost the linear functions of the observation rate. However, in the
evidential inferencing case, the shapes of these two rate profiles were changed,
indicating that as the observation increased, additional nodes were added to
both the correct predictions and the errors. It should also be noted that the
error rates in the inferencing case were quickly stablized after the amount of
observation exceeded a certain percentage.

To further compare the results of inference-based prediction and initial weight-
based guessing, a pair of bi-directional thresholds was picked up from each of
the two figures such that the selected two cases would have similar error rates.
At 0% sampling, the inferencing case predicted about 45% due to its conser-
vative thresholding. However, as the observation increased, correct predictions
were quickly added along with some wrong predictions. The evidential inferenc-
ing resulted in a consistently better performance in evaluating the unobserved
nodes when the observation sampling exceeded 18%, as compared to the pure



Qualitative Discovery in Medical Databases 483

initial weight based guessing. For instance, at 45% observation, the inferencing
method correctly predicted 4% more attributes than the guessing method.

5 Entropy-Driven (ED) Diagnosis Based on Induced
Networks

In diagnostic reasoning, various rules may be applied to determine which node is
to be observed next. One approach is to randomly choose symptom nodes from a
complete symptom set that spans all the symptoms in the diagnostic structure,
as studied in the previous section. Another approach is to apply entropy opti-
mization and choose the most informative node. This section investigates the
performance of entropy-driven (ED) evidential inferences based on the induced
implication networks.

In the following experiments, the expected information yield of each indi-
vidual node over all the possible outcomes is computed and weighted by the
likelihood of each outcome. The node that has the maximum expected infor-
mation yield is chosen as the potentially most informative one, which is to be
observed next. Formally, the expected information yield of an observation is
defined as follows:

AlIj = Ecr(2net) - Ee.p(net)

= Ec,,(net) - [piE(net I node1 = TRUE) + (1 -pi)E(net I nodeo = FALSE)]

= piST ( z4 logpk + pk'logp) - 5 (pk logpk + pj'logpk)
k=1 k=l

where Ecurrent(net) denotes the current network entropy. E(net I e) denotes the
updated network entropy having observed nodei. pi is the current probability
of node1 = TRUE. pk and p" are the updated probabilities of a network nodek,
having observed that node1 = TRUE and node1 = FALSE, respectively.

In what follows, we examine the diagnostic performance at the level of in-
dividual nodes. The performance is analyzed with respect to three observation
modes, which are:

(I) inferences based on the E.D. observation: nodes are given initial probabilities
(i.e., averaged weights). If a node is observed to be TRUE, it is assigned 0.9
and 0.1 otherwise, taking into account the random error in the original data.
Inference propagation is performed based on that observed node;

(II) inferences based on random observation (as in the previous section) : same
as (I) but nodes are chosen at random; and,

(III) no inference condition (or guessing): same as (II) but no inference propaga-
tion is performed.

Since the comparison between the D-S and Certainty-Factors approaches, as
presented in the preceding section, does not reveal any significant performance
difference, here we shall focus on the methods of observation with the D-S evi-
dential inferencing only.



484 D.A. Maluf and J. Liu

5.1 Experiment E-11 I Cancer Diagnosis

This section examines the performance of evidential inferences under E.D. ob-
servation mode. The networks to be tested in the following two experiments
are the same as the ones used in the random mode observation as described in
Section 4.2. During the validation, the inferred attributes were accepted based
upon a pair of thresholds (u, v) for filtering the numeric-valued weights, and then
compared with the actual discretized attribute values in the samples.

Unlike the distribution in experiment E-5, the distributions of the weight-
based-guessing-only mode have become non-linear to the observation rate. This
indicates that the E.D. observation tends to pick up the nodes with relatively
higher uncertainty. At the same time, the inferences with E.D. observation added
more information than the purely weight-based guessing with the same obser-
vation mode, revealing that the selection of the nodes was not based purely on
the present weights of the nodes but also their connectivities in the network.

A main result may be stated that if the E.D. observation sampling is more
than 13%, the performance of inferencing is consistently better than that of
guessing. For instance, at 45% observation, the inferencing scheme produces
11% additional correct predictions as compared to the pure guesses.

For evidential inferencing with two different observation modes, i.e., E.D. vs.
random, the results are significantly different. In the former observation mode,
the correctly predicted nodes at 45% observation can reach up to 87%, whereas
the latter produces around 81% given the same amount of observation. In the
random mode, it requires at least 18% observation in order for the inferencing
scheme to show better performance. In the present E.D. mode, this percentage
is further lowered to 13%.

6 Conclusion

In this paper, we have described a series of empirical validation experiments
which examined the performance of evidential inferences based on implication
networks that were induced by a rule learning tool (KAT). In the experiments,
building implication networks for evidential inferencing in various real-world
diagnostic task domains (as shown in the experiments, some may have less strong
implications than the others) is translated into the task of statistically induction,
from a small number of individual instances or empirical data samples (e.g., the
sizes of the samples for the experiments are respectively 47, 20, 40, and 153).
Generally speaking, evidential inferencing with such induced networks is effective
in generating valid predictions about unobserved events such as knowledge units
and diagnostic attribute values.

This study also explored an E.D. diagnostic method and compared its per-
formance with a random sampling method. The result of comparisons has shown
that while both the random and the minimum-entropy-based methods are de-
sirable, the latter is in general far better for reducing uncertainties, especially
when the observation rate is more than 13% (e.g., as shown in Experiments 7,
11, and 14).



Qualitative Discovery in Medical Databases 485

As validated in the cancer experiments, the binary representation of diag-
nostic attributes enables the induction of valid implication networks, which are
useful not only in the predictions of unobserved attributes but also in patient
diagnostic classification. The conducted experiments also reveal that the impli-
cation network is less sensitive to the particular inferencing scheme performed.
In addition to the D-S and Certainty Factors schemes of evidential inferenc-
ing, we have also implemented and applied other schemes such as the Bayesian
approach, with very little variation in the performance.

References

1. B. G. Buchanan and E. H. Shortliffe, Rule-Based Expert Systems: The MYCIN Ex-
periments of the Stanford Heuristic Programming Project, Addison-Wesley, Read-
ing, MA, 1984.

2. G. Cooper and E. Herskovits, A Bayesian method for the induction of probabilistic
networks from data, Machine Learning, 9 1992, pp. 309-347.

3. E. Degreef, J.-P. Doignon, A. Ducamp, and J.-C. Falmagne, Languages for the
assessment of knowledge, Journal of Mathematical Psychology, 30 1986, pp. 243-
256.

4. M. C. Desmarais and J. Liu, Experimental results on user knowledge assesment with
an evidential reasoning methodology, in Proceedings of International Workshop on
Intelligent User Interfaces, Orlando, FL 1993.

5. J.-P. Doignon and J.-C. Falmagne, Spaces for the assessment of knowledge, In ter-
national Journal of Man-Machine Studies, 23 1985, pp. 175-196.

6. T. D. Garvey, J. D. Lowrance, and M. A. Fischler, An inference technique for
integrating knowledge from disparate sources, in Proceedings of IJCAI, 1981, pp.
319-325.

7. D. Geiger, An entropy-based learning algorithm of bayesian conditional trees, in Pro-
ceedings of the Eighth Conference on Uncertainty in Artificial Intelligence, Stanford
University, July 17-19 1992, pp. 92-97.

8. D. Heckerman, Probabilistic Similarity Networks, The MIT Press, Cambrige, MA,
1991.

9. D. K. Hildebrand, J. D. Laing, and H. Rosenthal, Prediction Analysis of Cross
Classications, John Wiley and Sons, New York, NY, 1977.

10. K. G. Joreskog and H. Wold, Systems Under Indirect Observation, North Holland,
Amsterdam, 1982.

11. H. E. Kyburg, Bayesian and non-bayesian evidential updating, Artificial Intelli-
gence, 1987, pp. 271-293.

12. S. K. Murthy, S. Kasif, and S. Salzberg, A system for induction of oblique decision
trees, Journal of Artificial Intelligence Research, 2 1994, pp. 1-32.

13. J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference, Morgan Kaufmann, San Mateo, CA, 1988.

14. I. Pitas, E. Milios, and A. N. Venetsanopoulos, A minimum entropy approach to
rule learning from examples, IEEE Transactions on Systems, Man, and Cybernetics,
pp. 621-635.

15. G. Shafer, A Mathematical Theory of Evidence, Princeton University Press, Prince-
ton, N. J., 1976.



Finding Association Rules Using Fast Bit
Computation: Machine-Oriented Modeling

Eric Louie1 and Tsau Young Lin', 2

1 Department of Mathematics and Computer Science

San Jose State University, San Jose, California 95192
2 Berkeley Initiative in Soft Computing

Department of Electrical Engineering and Computer Science
University of California,Berkeley, California 94720

tylin~cs .sjsu. edu; tylinacs .berkely.edu

Abstract. This paper continue the study of machine oriented models
initiated by the second author. An attribute value is regarded as a name
of the collection (called granule) of the entities that have the same pro-
perty (specified by the attribute value). The relational model uses these
granules (e.g., bit representation of subsets) as attribute values is called
machine oriented data model. The model transforms data mining, par-
ticularly finding association rules, into Boolean operations. This paper
show that this approach speed up data mining process tremendously; in
the experiments, it is approximately 50 times faster, the pre-processing
time was included).
Keywords: data mining, association rules, Boolean operation, machine
oriented model, granular computing

1 Introduction

Data mining is the search for hidden information from the stored data. Typically,
it investigates the relationship of attribute values among tuples by machine. In
other words, the meaning (to human) of attribute values plays no role in the
processing. So we replace meaningful attribute value by granules (the set of
entities that has the property specified by the attribute value). Let U be the set
of entities and R the relation (representing U) under consideration. Each granule
(as a subset of the universe U) is represented by bit patterns. This paper is a
continuations of [4], [5]. We will explain how this data model is represented
and how this model can be applied to speed up data mining. The fundamental
techniques here is the computing of granules-granular computing. In this paper,
the granulation is partition; So it is an extended rough set theory. We will discuss
the technique to implement a database using equivalence classes (granules) and
how is applicable in mining association rules.

2 Representations and Equivalence Classes (Granules)

Let U be the universe of discourse, a classical set. Its elements will be referred to
as entities or objects. In relational database theory, U is the set of entities that are

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 486-494, 2000.
© Springer-Verlag Berlin Heidelberg 2000



Finding Association Rules Using Fast Bit Computation 487

represented faithfully by a relation (not a relation scheme) [2]. Attribute values
correspond to the properties of entities. We will refer to them as elementary
concepts. The collection of elementary concepts will be denoted by C. Since the
correspondence between entities and tuples is one to one in both directions. So
we can also regard U as the relation (= the set of tuples), or more precisely, the
set of tuple-ids or tuple-names.

A binary relation is an equivalence relation if it satisfies the three properties,
reflexivity, symmetry, and transitivity. Values of the attribute A will be abbre-
viated as A-values. The attribute A induces an equivalence relation on U as
follows: Two tuples (entities) are equivalent iff the corresponding A-values (pro-
perty) are the same. The equivalence relation, by abuse of notation, denoted by
A again, partitions U into mutually disjoint equivalence classes; we may refer
to them as granules for short. Mathematically, the attribute A induces a projec-
tion from the relation to A-component. The projection induces an isomorphism
U/A -_ Dom(A). One can regard each attribute value as the "meaningful name
or id" of the granule via this isomorphism. A granule is a subset of U, at the
same time, it is an element of U/A. We will regard the latter as the canonical
name of the former. The canonical name of a granule may be represented by an
explicit list of tuple-ids or binary representation of the granule as a subset of
U. In binary form, the value, 1 or 0 at certain position indicates whether the
certain tuple holds the particular attribute value or not.

Table 1. A Two Column Relation

Car Ids Car Type
ID 1  Sedan
ID 2  Sport Utility
ID 3  Sedan
ID 4  Mini Van
ID 5  Coupe
ID 6  Mini Van
ID 7  Sport Utility
IDs Sedan
ID 9  Sedan
IDlo Sport Utility
ID 11 Station Wagon
ID 1 2  Sedan

An example relation on vehicles consists of two columns, vehicle ID and vehicle
type, is used to illustrate the idea; see Table 1. The values in the ID-column,
identify uniquely the tuples (entities). This characteristic of the column, where
attribute values are all unique, is not useful in data mining since the column
values has the one-to-one correspondence to the tuple itself. But it will be used
here to reference tuples (as names) in the relation. The vehicle type, however, is



488 E. Louie and T.Y. Lin

not unique. This column is refer to certain property of vehicles, a potentially use-
ful attribute for data mining algorithms. Table 1 contains the following vehicles:
six sedans, two mini vans, three sport utility, one coupe, and one station wagon.
The quotient set is {Sedan, Sport Utility, Mini Van, Coupe, Station Wagon }
Each element is the meaningful name of a granule (equivalence class). Table 2
displays the partition in two forms, list and binary representations. Both forms
represent the elements in the quotient set (or subsets of U). Its first column
contains the name of each element in quotient set, on the second column, the
binary representation, and on the third column, the list representation.

Note that each element in the quotient set is a subset of U. The number of
elements in the quotient set is much more smaller than the number of rows; the
quotient set is the domain, to be precise, the active domain [2]. Roughly, we
have reduced the problem from the universe to the quotient sets (the domain);
this is an essential idea in granular computing. A table of multiple columns then
is a family of partitions. In the next section, we will discuss how data mining
algorithm can run faster using these binary representations.

Table 2. Partition by Attribute Values; list representation

Meaningful Names List Representation Binary Representation
of Granules of Granules of Granules
Sedan = {IDI, ID3, ID8, IDg,ID 12} = 101000011001
Sport Utility = f{1D2, IDr, IDio} = 010000100100
Mini Van = {1D4 , IDr,} = 000101000000
Coupe j= {1D 5} 000010000000
IStation Wagon 1= {ID11} = 00000010

3 Using Equivalence Relations in Data Mining
Algorithms

One common data mining question is to find all association rules in a given
relation. Let X and Y be two elementary concepts (attribute values) in the
relation. An association rule, (X, Y), exists if it appears in the s% of a given
relation. In other words, s% of the tuples contains (X, Y) as sub-tuples.

There are many papers reporting various algorithms to discover association
rules [6], [7]. In general, the procedure to find association rule is, first, to generate
possible combinations (patterns) of attribute values, second, to count the number
of times each possible patterns appears in the relation, and finally to declare the
ones that meet or exceed the s% of tuples in the relation an association rule.
Generally, the goal of these algorithms lies in reducing the number of checking the
possible combinations in the relation. Below we will demonstrate the use of the
granules (equivalence classes) to find the association rules. In terms of granules,



Finding Association Rules Using Fast Bit Computation 489

the pattern, (X, Y), is an association rule if the bit count of the intersection
X n Y is equal or greater than the percentage, s%, of the relation [4] The bit
count is the number of l's appearing in the bit stream that represents the granule
as a subset of U. For simplicity, we will use X n Y to mean the association rule
(X, Y). The pattern X n Y can be generalized to the form of intersecting multiple
granules: X 1 n X 2 nX 3 n ...... Xn Y 1 f n Y2 n Y 3 n ... y.

Table 3. A Car Relation

Car Ids Car Type Color Type Cost Type
ID 1  Sedan Red Moderate
ID 2  Sport Utility Blue Expensive
ID 3  Sedan Green Expensive
ID 4  Mini Van White Moderate
ID 5  Coupe Red Cheap
ID 6  Mini Van Red Expensive
ID 7  Sport Utility Black Moderate
ID 8  Sedan Blue Expensive
ID 9  Sedan Green Expensive
IDlo Sport Utility Black Moderate
ID 11 Station Wagon Green Moderate
ID 12  Sedan Blue Expensive

Table 3 is an extension from the previous vehicle relation. Two more columns,
Color Type and Cost Type, are added. Each column has its own domain of
attribute values as well as its own granules. The quotient sets for the last two
columns are displayed on Figure 1.

* Color Type Quotient Set

1. Red= {IDl, ID5, ID6}
2. Blue = {ID2, ID8, ID12}
3. Green= {ID3, ID9, IDll}
4. White = {ID4}
5. Black = {ID7, ID10}

* Cost Type Quotient Set
1. Cheap = {ID5}
2. Moderate {ID1, ID4, ID7, ID1O, ID11}
3. Expensive = {ID2, ID3, ID6, ID8, ID9, ID12}

Figure 1 Quotient Sets

From this small Table 3, one could conjecture that almost all mini vans are white,
or 66% of the expensive vehicles are sedans. Or, one could ask the question what
type of expensive vehicle exists in more than 10% of the data. To answer this
last question, each granule of the quotient set, car type, must be checked with
the granule, expensive, from the quotient set, cost type, to determine which



490 E. Louie and T.Y. Lin

these combinations (sub-tuples of the Cartesian product of quotient sets) are
an association rule. Each combinations requires the Boolean AND operation
between the two class types. There are five combinations. Table 4 shows the
operations on those five combinations, the results on the intersection, and the
bit counts on the results.

Table 4. AND operation of granules

Combination Binary Form Result Count
Sport utility AND {010000100100} n {011001011001} {010000000000} 1

expensive
Mini van AND {000101000000} n {011001011001} {000001000000} 1

expensive
Coupe AND {000010000000} n {011001011001} {000000000000} 0

expensive
Station wagon AND {000000000010} n {011001011001} {000000000000} 0

expensive
Sedan AND {101000011001} n {011001011001} {001000011001} 4

expensive

The combination, sedan and expensive, is the only one that meet or exceed
10% of the rows in the table, vehicle. So, there is only one association rule out of
those five combinations. The number of combinations to check is small compared
to the more general question of finding all combinations between the car type and
cost type that represents 10% of data. For this case, there are 25 combinations
to check, (5-car type times 5-color type).

Determining association rules can be a very computational process when
there are many quotient sets to consider. For two columns, the combinations
are the pairs (2-tuples) of Cartesian product of the two quotient sets, Q, x Q2.
The number of combinations is the product, Card (Q1 )Card (Q2), of the two
cardinal numbers. In general, the number of combinations is huge if the question
touches on many columns (quotient sets) and each column has many elements in
it. Below, we explain the methods in conjunction with the granules to lessen the
number of possible combinations and to reduce the computation in determining
whether a particular combination is an association rule.

4 The Algorithms and Comparisons

Let Ai, i= 1, 2,... be the attributes of a relation R. Each column Ai gives rise
to a quotient set Qi = U/Ai. Each tuple in R induces a tuple in the Cartesian
product of Q, x Q2 For simplicity and clarity, the term tuple will be reserved
for the relation R, and the tuple and its sub-tuples in the Cartesian product
of quotient sets will be referred to as combinations of granules from Qi, i =
1,2,.... A A combination of length q is called q-combination. A granules is said



Finding Association Rules Using Fast Bit Computation 491

to be large, if it meets s% percentage, that is, Card(Qj)/Card(U) > s%. A q-

combination (of granules) is said to be large, if the intersection of the granules

in the combination is large.

- A large q-combination forms an association rule (of length q).

The task in this section is to develop an efficient algorithms to determine which
combinations are association rules. The task involves two issues: First is to select
the combination, which we treat at Section 4.1. The second issue is how to
evaluate if the combination is large; this is treated at Section 4.2 We consider

both together at Section 4.3.

4.1 The Outer Loop: Generating Potential Combinations to Test
for Association Rules

One obvious way to reduce the complexity is to remove those granules in the
quotient set, Q,, that do not meet the percentage, s%. These granules will be
called lean granules. It should be clear any removal of those lean granules, L, also
means the removal of any combinations that include those lean granules, L. With
that in mind, generated large combinations must have all its sub-combinations

large too.

- q-combinations should be generated by large q - 1-combinations.
- All sub (q - 1)combinations of q-combination are large.

This step is essential the same as Apriori Algorithms.

4.2 The Inner Loop: The Computation Cost of Determining a
Generated Combination Is an Association Rule

In this section, we will explain how to identify a q-combination is large; and we
will compare our approach with Apriori.

Counting bits. We will explain the logarithmic approach, counts the bits by
partitioning the word. For each word, it does the count by every 2 bits, then by
every 4 bits, next by every 8 bits, and finally by every 16 bits. Here is the sample
(we use pseudo C syntax).

1. 2 bits count: odd bits are added to the preceding even bits: Let B be the bit
pattern and Count32 is a variable holding the "new" bit pattern.

Count32 = (B&0x55555555) + ((B >> 1)&0x55555555);

2. 4 bits count: odd 2-bits are added to even 2-bits (each 2-bit represents the
sum of even and odd bits)

Count32 = (Count32&Ox33333333) + ((Count32 >> 2)&0x33333333);



492 E. Louie and T.Y. Lin

3. 8 bits count: odd 4-bits are added to even 4-bits ( each 4-bit represents the
sum of even and odd 2-bits)

Count32 = (Count32&OxOFOFOFOF) + ((Count32 >> 4)&OxOFOFOFOF);

4. 16 bits count; odd 8-bits are add to even 8-bits

Count32 = (Count32&OxOOFFOOFF) + ((Count32 >> 8)&OxOOFFOOFF);

5. 32 bits count; odd 16-bits are add to the even 16-bits

TotalCount = (Count32&OxOOOOFFFF) + (Count32 >> 16);

The first four statements take 28 instructions, 4 * (3 move + 2 and + 1 add
+ 1 shr), and the last statement takes 7 instructions, (3 move + 1 add + 2 add,
± 1 shr). The total for this approach is 35 instructions to count one 32-bit word.
This can be faster than the usual shift method in the order of magnitude.

The Instructions Counts. The instruction count in computing a q-combina-
tion being large is simply the AND instructions between elements of quotient
sets in binary form and the instructions to count the number of l's in the result.
Since computers process the size of a word at a time, the number of instructions
is approximately the following:

1. Set length = The length of the bit string representing a granule. This is the
cardinality of the universe, Card(U).

2. Set w = Number of bits in a word; in this paper, w is 32.
3. Set count = Number of instructions per word =

length/w * ((q - 1)AND operations + cost of counting bits.)
4. The total instruction count to determine, in the worst case, whether a q-

combination is large is the following:
count = Number of instructions per word = length/w * ((q - 1) + 35) in-
structions

For example, for a combination of length 10 with 220 tuples (a "million"
tuples)in the relation, 1,441,792 instructions will be executed.

(220/32) * ((10 - 1) + 35) = 215 * (44) = 1,441,792 instructions.

Note: We may stop once the count meets s% of the data.

4.3 Inner and Outer Loop: Grouping Combinations

As explained in Section 4.1, there are two strategies in carrying out the compu-
tations: one is the full computations of the intersection; the other stop at the
s% condition.



Finding Association Rules Using Fast Bit Computation 493

1. For q = 1, the inner loop identifies large granules, say 11, 12,... , l, by coun-
ting the bits using the method of Section 4.2; note that the counting will
stop at s%. For uniformity in terminology, they will be referred to as large
1-combination.

2. For q = 2, the inner loop computes the 2-combination by ANDing two 1-
combinations and counting bit patterns of the result, say, 11 n 12. There are
three approach in this computations:
a) full computation: We compute the intersection and save the results. One

needs memory and storage management, since the intersection can not
be kept in main memory.

b) partial computation: The computation of the intersection stop at the
point s% reaches. No intersections of bit patterns are saved. The disad-
vantage is we may do some computations repeatedly. But in the case that
s is well smaller than the length of bit strings, this is right approach.

c) partial computation and partial save: Compute at s% and save the par-
tial intersections. This could delay the storage management to a much
later stage, so one might be able to avoid it in not extremely large data-
bases.

3. For general q, the loop computes the q-combination by ANDing two q - 1-
combinations and counting the bit pattern of the result. Again, we can use
one of the three approaches.

5 Computational Data

The relation consists of 128K rows = 131072, 16 Columns, the support requires
8192, and memory is 10 megabytes:

STable 5. Experimental Results

Length of # of Association Granule(Full Granule Apriori Apriori Apriori
combi- Candidates rules Computation Partial Hybrid 199 Tid
nation

1 101 90 1.000s 0.968s 1.110s 1.110s 3.813s
2 3694 381 2.610s 2.547s 26.078s 25.765s 36.671s
3 1419 246 1.187s 1.172s 46.609s 37.938s 362.657s
4 137 39 0.141s 0.141s 25.938s 30.187s 26.312s
5 1 1 0.000s 0.000s 0.343s 74.094s 0.360s
6 0 0 0.000s 0.000s 0.000s 0.000s 0.000s

F _ 4.938 4.828s 100.078s 169.094s 429.813

The program for Apriori, AporiTid and AprioriHybrid are our honest im-
plementations of the algorithms in [6], [7]. In the implementation, we use some
buffer scheme to speedup read/write for all algorithms.



494 E. Louie and T.Y. Lin

Comparison with Apriori. In the outer loop, Apriori and granular approach
is the same. For outer loop, Apriori goes through each transaction and use subset
function to verify, if a q-combination belongs to that transaction (for a fixed q
and fixed combination). It takes more than one instruction to hash through the
hash tree. For granular approach, it involves only AND-operations, computed q
times, which takes only q/32 (32=wordsize) instruction(s). So our computation
is much faster. This is from computational point of view. From I/O point of
view, the machine model often transforms database to a more compact form, so
the reading of total databases takes less time too. We should like to point out
that if attribute values are continuous or too many values one has to perform
discretization, partitioning, granulation on the (active) attribute domain first.
The so called concept hierarchy method can be applied [1].

6 Conclusions

It is clear why granular approach is faster than Apriori in our experiments. It is
less clear why it is still faster than AprioriTid and AprioriHybrid; it may be due
to the fact that the "Tid and Hybrid" algorithms only improve the Apriori at
the latter phases and those phases do not play the decisive role. Further analysis
and experiments are necessary.

References

1. Y.D. Cai, N. Cercone, and J. Han. "Attribute-oriented induction in relational da-
tabases," in Knowledge Discovery in Databases, pages 213-228. AAAI/MIT Press,
Cambridge, MA, 1991.

2. Maier,D.: The Theory of Relational Databases. Computer Science Press, 1983 (6th
printing 1988).

3. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer
Academic, Dordrecht (1991)

4. T. Y. Lin.," Data Mining and Machine Oriented Modeling: A Granular Computing
Approach," Journal of Applied Intelligence, Kluwer, in print

5. Eric Louie and T.Y. Lin, "A Data Mining Approach using Machine Oriented
Modeling: Finding Association Rules using Canonical Names.". In: Proceeding
of 14th Annual International Symposium Aerospace/Defense Sensing, Simulation,
and Controls , SPIE Vol 4057, Orlando, April 24-28, 2000

6. Agrawal, R., T. Imielinski, and A. Swami, "Mining Association Rules Between
Sets of Items in Large Databases," in Proceeding of ACM-SIGMOD International
Conference on Management of Data, pp. 207-216, Washington, DC, June, 1993.

7. Agrawal, R., R. Srikant, "Fast Algorithms for Mining Association Rules," in Pro-
ceeding of 20th VLDB Conference San Tiago, Chile, 1994.



Using Closed Itemsets for Discovering
Representative Association Rules *

Jamil Saquer1 and Jitender S. Deogun 2

1 Computer Science Department,
Southwest Missouri State University,

Springfield, MO 65804, USA
jms481f mail. smsu. edu,

2 Computer Science & Engineering Department,
University of Nebraska, Lincoln, NE 68588, USA

deoguntcse .unl. edu

Abstract. A set of association rules is called representative if it is a
minimal set of rules from which all association rules can be generated.
The existing algorithms for generating representative association rules
use all the frequent itemsets as input. In this paper, we present a new
approach for generating representative association rules that uses only
a subset of the set of frequent itemsets called frequent closed itemsets.
This results in a big reduction in the input size and, therefore, faster
algorithms for generating representative association rules. Our approach
uses ideas from formal concept analysis to find frequent closed itemsets.

1 Introduction

Mining association rules is an important data mining problem that was intro-
duced in [1]. The problem was first defined in the context of the market basket
data to identify customers' buying habits. For example, it is of interest to a su-
permarket manager to find out that 80% of the customers who buy bagels also
buy cream-cheese and 5% of all customers buy both bagels and cream-cheese.
Here the association rule is the rule baggies •. cream-cheese, 80% is the confi-
dence of the rule and 5% is its support. There has been a great deal of research
in developing efficient algorithms for discovering association rules that satisfy
user-specified constraints such as minimum support and minimum confidence [2,
3,12,14].

The number of discovered association rules is usually huge which makes it
very difficult for an expert to analyse the rules and identify the interesting ones.
Lately, there has been an interest in identifying the association rules that are of
special importance to a user and in decreasing the number of discovered asso-
ciation rules [4,9,10,13]. Most of these approaches introduce additional measures
• This research was supported in part by the Army Research Office, Grant No.

DAAH04-96-1-0325, under DEPSCoR program of Advanced Research Projects
Agency, Department of Defense and by the U.S. Department of Energy, Grant No.
DE-FG02-9 7ER1220.

Z.W, Ra4 and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 495-504, 2000.
Q Springer-Verlag Berlin Heidelberg 2000



496 J. Saquer and J.S. Deogun

for interestingness of a rule and prune the rules that do not satisfy the addi-
tional measures. A set of representative association rules, on the other hand, is
a minimal set of rules from which all association rules can be generated. The
number of representative association rules is much smaller than the number of
all association rules. Furthermore, we do not need any additional measure for
determining the representative association rules.

Algorithms for discovering representative association rules are given in [7,
8]. These algorithms use all the frequent itemsets to find the representative as-
sociation rules. In this paper, we present a different approach for generating
representative association rules. Our approach uses only a subset of the set of
frequent itemsets which we call frequent closed itemsets. This results in reducing
the input size and, therefore, results in faster algorithms for generating repre-
sentative association rules. We use ideas from formal concept analysis to find
the frequent closed itemsets.

2 Association Rules and Representative Association Rule

The problem of discovering association rules was first introduced in [1]. It can be
described formally as follows [1,2]. Let I = {il, i 2 ,... , im} be a set of m literals,
called items. Let D = {It, t2 , "". , t.} be a database of n transactions where
each transaction is a subset of 1. Any subset of items X is called a k-itemset if
the number of items in X equals k. The support of an itemset X, denoted by
sup(X), is the percentage of transactions in the database D that contain X. An
itemset is called frequent if its support is greater than or equal to a user specified
threshold value.

An association rule r is a rule of the form X => Y where both X and Y
are nonempty subsets of IT and X n Y = 0. X is called the antecedent of r and
Y is called its consequent. The support and confidence of the association rule
r: X •ý Y are denoted by sup(r) and conf (r), respectively, and defined as

sup(r) = sup(X U Y) and conf(r) = sup(X U Y)/sup(X).

Support of r : X =:zi Y is simply a measure of its statistical significance and
confidence of r is a measure of the conditional probability that a transaction
contains Y given that it contains X.

The task of the association data mining problem is to find all association
rules with support and confidence greater than user specified minimum support
and minimum confidence threshold values. Throughout this paper, we will use
the notation AR(s, c) to denote the set of all association rules with minimum
support s and minimum confidence c. We also write AR instead of AR(s, c),
when s and c are understood.

The number of association rules is usually huge. Representative association
rules (RAR) were introduced in [7] to overcome this problem and to reduce the
number of rules presented to a user. The user can mine around the RAR. For
example, the user may ask to be presented with all the rules that are covered
(or represented) by a certain rule of interest to him/her. Informally, the cover



Using Closed Itemsets for Discovering Representative Association Rules 497

of a rule r : X =z* Y, denoted by C(r), is the set of association rules that can be
generated from r. Formally,

C(r:Xz•Y)= {XUU= VIU,VCY, UnV=O, and V40}.

An important property of the cover operator is that if an association rule r
has support s and confidence c, then every rule r' E C(r) has support at least
s and confidence at least c [7]. This property means that C is a well defined
inference operator for association rules.

Using the cover operator, a set of representative association rules with mini-
mum support s and minimum confidence c, RAR(s, c), is defined as follows:

RAR(s,c) = {r G AR(s, c) I ir' E AR(s, c), r 7 r' and r E C(r')}.

That is, a set of representative association rules is a least set of association rules
that cover all the association rules and from which all association rules can be
generated. Clearly, AR(s, c) = U{C(r) Ir E RAR(s, c)}.

Let length of X •' Y be the number of items in X U Y. The following are
important properties of RAR [7,8]:

Property 1. Let r : X =• Y and r' : X' => Y' be two different association rules,
then

1. If r is longer than r', then r V C(r').
2. If r is shorter than r', then r E C(r') iff X U Y C X'U Y' and X : X1.
3. If r and r' are of the same length, then r E C(r') iff X U Y = X' U Y' and

X D X'.

Property 2. Let r : X •; Z\X E AR(s, c) and let maxSup
max({sup(Z') I Z C Z' c I} U {O}). Then, r C RAR(s, c) if the following two
conditions are satisfied:

i. maxSup < s or maxSup/sup(X) < c.
ii. AiX', 0 C X' c X such that X' =ý Z\X' c AR(s, c).

The first condition guarantees that r does not belong in the cover of any as-
sociation rule with length greater than the length of r. The second condition
guarantee that r does not belong in the cover of any association rule that has
the same length as r.

Property 3. Let 0 4 X C Z C Z' C I and sup(Z) = sup(Z'). Then, there is no
rule r : X => Z\X c AR(s, c) such that r C RAR(s,c).

Property 3 holds because r C C(X •' Z'\X). The above properties led to the
development of the algorithms GenAllRepresentatives and FastGenAllRepresen-
tatives for discovering representative association rules [7,8]. Both algorithms use
all frequent itemsets generated from applying the Apriori algorithm to the da-
tabase D [2]. Our approach is different; we use only a subset of the frequent
itemsets which we call frequent closed itemsets. Frequent closed itemsets are
found by using methods from formal concept analysis. In the next section we
develop the necessary theory for that.



498 J. Saquer and J.S. Deogun

3 Closed Itemsets

In this section, we develop theoretical results that lead to the development of
our algorithm for RAR generation. These results are directly related to formal
concept analysis [15]. Our notion of a closed itemset is similar to that of a
concept. Informally, a concept is a pair of two sets: set of objects (transactions
or itemsets) and set of features (items) common to all the objects. Using the
framework of formal concept analysis, concepts are structured in the form of a
lattice called the concept lattice. The concept lattice has proved to be a useful
tool for knowledge representation and knowledge discovery [6].

Definition 1. A data mining context is defined as a triple (T, I, R) where T is
a set of transactions, Y is a set of items and R C T x -.

A data mining context is a formal definition of a database. The set T is the set
of all transactions in the database and the set 1 is the set of all items in the
database. For t c T and i E I we write (t, i) E R to mean that the transaction
t contains the item i. An example of a data mining context is shown in Table 1
where an X is placed in the tth row and ith column to indicate that (t, i) c R.
This example is generated from the database given in [7] which we use in this
paper for comparison.

Table 1. Example of a Data Mining Context

-- ABCDEFFCH
t, XXXXX
t2 XXXXXX
t3 XXXXX XX
t4 XX X
t5  X X X X X X

Two dual mappings a and 03 are defined between the power sets of T and 1
as follows.

Definition 2. Let (T, 1, R) be a data mining context, X C T, and Y C 1.
Define the mappings a, 0 as follows:

,8:2 T-421, !3(X) = {i Ell (t,i) G R V tG•X},

a: 2-1 --ý 2 T, a(y) = It E T I (t, i) c R V i cz Y}.

The mapping /(X) associates with X the set of items that are common to all
the transactions in X. Similarly, the mapping a(Y) associates with Y the set
of all transactions having all the items in Y. Intuitively, O3(X) is the maximum
set of items shared by all transactions in X and a(Y) is the maximum set of
transactions possessing all the attributes in Y.



Using Closed Itemsets for Discovering Representative Association Rules 499

Example 1. Consider the database presented in Table 1. Let X = {t 1 ,t 2 } and
Y = {A, B, C}. Then, /3(X) = {A, B, C, D, E}, a(Y) = {tl, t 2 , t3}, ao(3(X)) =
a({A, B, C, D, E}) = {tl, t2 , t 3}, and f3(a(Y)) = 3({ti, t2 , t 3}) = {A, B, C, D,
E}.

It is clear from this example that, in general, /3(a(Y)) # Y where Y is an itemset.
This leads to the following definition.

Definition 3. An itemset Y that satisfies the condition 3(a(Y)) = Y is called
a closed itemset.

Closed itemsets are important because all members of the concept lattice of
a data mining context satisfy the condition 3(ce(Y)) = Y [15]. This step of
considering only closed itemsets can be considered as a first step in pruning the
itemset lattice.

Example 2. Let Y = {A, B, C, D, E}. 03(a(Y)) = Y. Therefore, Y is a closed
itemset. On the other hand, the itemset {A, B, C} given in Example 1 is not
closed because 3(af({A, B, C})) = {A, B, C, D, E} $ {A, B, C}.

The concept lattice can be pruned more by considering only closed itemsets with
support greater than minimum support which we call frequent closed itemsets.
This leads to the following definition.

Definition 4. A frequent closed itemset is a closed itemset which is also fre-
quent. That is, it has support greater than or equals to user-specified value for
minimum support.

4 Algorithms

Our approach is to first generate the set of all frequent closed itemsets, FCI,
and then to use FCI to generate the set of all representative association rules.

4.1 Generating Frequent Closed Itemsets

Let D = (T, I, R) be a database mining context. The algorithm we use to gene-
rate FCI is a slight modification of the Close algorithm mentioned in [11] which
we call Close-FCI. Both algorithms are similar to the Apriori algorithm [2].

Assume that the items in 1 are sorted in lexicographic order. The data struc-

ture used consists of two sets. Set of candidate frequent closed itemsets, FCC,
and set of frequent closed itemsets, FC. The notations FCC, and FC, are used
to indicate candidate frequent closed itemsets and frequent closed itemsets of
size i, respectively. Each element in FCC, and FCj has three components. An
itemset component, a closure component and a support component.

Closure of an itemset X C I, denoted by closure(X), is the smallest closed
itemset containing X and is equal to the intersection of all itemsets containing X.
It is also shown in [11] that Support(X) = Support(Closure(X)). The Close-FCI
algorithm is given below.



500 J. Saquer and J.S. Deogun

Algorithm 1 Close-FCI(D)
1) FCCl.itemsets ={1-itemsets};
2) for (k = 1; FCCk # 0; k++) do begin
3) forall X c FCCk do begin
4) X.closure = 0;
5) X.support = 0;
6) end forall
7) FCCk = Generate-Closures(FCCk );
8) forall candidate closed itemset X E FCCk do begin
9) if ( (X.support > minSupport) and (X.closure V FCk) ) then
10) FCk <- FCk U {X};
11) end if
12) FCCk+I = Generate-Candidates(FCk);
13) endfor
14) return Uk§-1{FCi.closure and FCi.support};

First, the algorithm initializes the itemsets in FCC1 to the items in the database
which does not require any database pass. Then in iteration k of the main for
loop of the algorithm, the closure and support of each itemset in FCCk are
initialized. The algorithm then finds candidate frequent closed itemsets of size
k, FCCk, in line 7. Frequent closed itemsets, FCk, are found in the next step
where the minimum support threshold, minSupport, is used to prune out the
infrequent itemsets. Finally, in line 14 the algorithm generate candidates FCI
of size k + 1, FCCk+,.

Closure of an itemset X C 1, is by definition the smallest closed itemset
containing X which is equal to the intersection of all frequent itemsets containing
X. Therefore, closure(X) is found using the following formula

closure(X) = fl {fo(t) I X C (t)}
tET

which is incorporated in the following algorithm. This algorithm requires one
database pass to find closure of all elements in FCCk.

Algorithm 2 Generate- Closures(FCCk)
1) forall transactions t G T do begin
2) 3it = {X e FCCk I X C O(t)}; //all itemsets that are contained in /3(t)

3) forall itemsets X E 3(t) do begin
4) if ( X.closure = 0) then
5) X.closure 0(t);
6) else
7) X.closure -- X.closure n 03(t);

8) end if
9) X.Support++;
10) end forall
11) end forall
12) Return U{X E FCCk I X.closure =, 0};



Using Closed Itemsets for Discovering Representative Association Rules 501

The algorithm Generate-Candidates(FCk) that finds candidate closed item-
sets of size k + 1 uses the result of the following property [11].

Property 4. Let X be an itemset of length k and X = {X1,X 2 ,.. ,Xm} be a
set of (k - 1)-subsets of X where Uxx = X. If ]Xi E X such that X C
closure(Xi), then closure(X) = closure(Xi).

This property means that the itemset X results in redundant computations of
frequent closed itemsets because closure(X) which is equal to closure(X,) is
already generated. Therefore, X can be removed from FCCk+1. The Generate-
Candidates(FCk) is similar to the AprioriGen algorithm that was first given in
[2] except for the second pruning step at line 6.

Algorithm 3 Generate- Candidates(FCk)

1) insert into FCC(k+l).itemset
2) select X.itemseti, X.itemset 2 , ... , X.itemsetk, Y.itemsetk
3) from FCk.itemset X, FCk.itemset Y
4) where X.itemsetl=Y.itemset, A X.itemset 2 =Y.itemset 2 A ... A

X.itemsetk.l=Y.itemsetk-l A X.itemsetk <Y.itemsetk;
//prune all supersets of infrequent itemsets

5) delete all itemsets X E FCC(k+l).itemset where some k-subset of X is
not in FCk;
//prune all itemsets with closures already generated

6) delete all itemsets X C FCC(k+l).itemset where the closure of some
k-subset of X contains X;

7) Return U{X G FCC(k+1)};

The Close-FCI algorithm requires one database pass in each iteration. That
pass is needed in the Generate-Closure algorithm.

Example 3. Applying the Close-FCI on the database represented in Table 1 for
minimum support s = 3/5 = 0.6 and minimum confidence c = 0.75, the following
frequent closed itemsets are found:

FC = {ABCDE, BCDE, ABE, BE}

with support 3/5, 4/5, 4/5, and 5/5, respectively. On the other hand, the Apri-
ori algorithm produced 31 different frequent itemsets (the nonempty subsets of
ABCDE) for the same values of s and c.

4.2 Generating Representative Association Rules

In this section, we present an algorithm for generating representative association
rules which we call Generate-RAR. Generate-RAR takes as input the set of all
FCI and produces the set of all RAR. Generate-RAR is a modification of the
FastGenAllRepresentatives given in [8] and it uses Properties 1-3 from Section
2. It also uses the result that for an itemset X, sup(X) = sup(closure(X)) which
was mentioned in Section 4.1. The Generate-RAR algorithm is given below.



502 J. Saquer and J.S. Deogun

Algorithm 4 Generate-RAR(all frequent closed itemsets FC)
1) c +- minConfidence; //user specified value for minimum confidence
2) RAR +-- 0; //initialize set of RAR
3) k÷-0

//split frequent closed itemsets according to size
4) forall X E FC do begin
5) FCxI <-- U {X};
6) if (k < IXI) then k - IX];
7) end forall
8) for (i--k;i>l;i--) do
9) forall Z G FCi do begin
10) maxSup = max({sup(Z') I Z C Z' G FC} U {0});
11) if (Z.support $7 maxSup) then begin //see Property 3
12) A 1 = {{Z[1]}, {Z[2]},... , {Z[i]}}; //create 1-antecedents

//start loop2
13) for (j = 1; (Aj 0 0) and (j <i);j + +) do begin
14) forall X E Aj do begin
15) Y +-- smallest closed itemset containing X;
16) X.support = Y.support;
17) //check if X •' Z\X is a representative association rule
18) if (Z.support/X.support > c and

maxSup/X.support < c) then

19) RAR +- RAR U {X =* Z\X};
20) Aj = Aj \ {X};
21) end if
22) end forall
23) A3. +-- AprioriGen(Aj);
24) end for //end loop2
25) end if
26) end forall
27) Return RAR;

First, RAR is initialized to be empty. Then, each frequent closed itemset X
of length i is added to FCj and the length of the maximal closed itemsets k is
found. Line 8 controls the generation of representative association rules. First,
the largest rules (of size k) are generated and added to RAR. Next, representative
association rules of size (k - 1) are generated and added to RAR and so on.
Finally, representative association rules of size 2 are generated and added to
RAR. The generation of association rules of size i is controlled in lines 9 through
26 as follows:

Let Z be a frequent closed itemset of size i. First, maxSup is found in line
10. If there is no superset of Z, maxSup will be assigned the value zero. If
maxSup has the same value as Z.support, then according to Property 3, no
representative association rule will be generated from Z. Otherwise, the process
of generating representative association rules from Z starts. First, the set A 1 is
assigned all possible 1-itemset antecedents of Z. The loop in lines 13 through



Using Closed Itemsets for Discovering Representative Association Rules 503

24 controls the generation of representative association rules with antecedents

of length j. All possible antecedents X G Aj are considered. Support of X

(which is equal to support(closure(X))) is found. X -* Z\X is a valid represen-

tative association rule if its confidence is greater then or equal to c and if it

satisfies the second condition of property 2.i in which case X will be removed

from Aj. After all representative association rules with antecedents of length j

are generated from Z, Aj may not be empty. The AprioriGen function is called

with argument Aj to find antecedents of length j + 1. The AprioriGen function

is given in [2] and it consists of lines 1 through 5 of Algorithm 3. Condition ii

of Property 2 is satisfied by making sure that no itemset in Aj+j is a superset
of an antecedent of an already generated representative association rule which
is taking care of in line 20.

Example 4. Running the Generate-RAR algorithm using as input the frequent

closed itemsets produced in the previous example, the following representative
association rules are generated:

RAR = {A -- BCDE, C -ABDE, D -+ ABCE, B -+ CDE,
E -* BCD, B - AE, E -+ AB}.

They are the same rules generated from the FastGenAllRepresentatives in [8].

5 Conclusion

This paper presents a new approach for generating representative association
rules using frequent closed itemsets which constitute only a subset of the set of all
frequent itemsets. Our approach results in a big reduction in the input size and

thus faster algorithms for generating representative association rules. We also
presented a new algorithm, called Generate-RAR for generating representative
association rules.

Traditional association mining algorithms first generate all frequent itemsets
and then use frequent itemsets to generate all the association rules. For future

work, we will investigate if FCI can be used directly to generate all the associa-
tion rules. We will also investigate if our approach for finding RAR using FCI
can result in faster generation of all the association rules than the traditional

algorithms.

References

1. R. Agrawal, T. Imielinski, and A. Swami, "Mining Association Rules Between Sets
of Items in Large Databases," Proceedings of the ACM SIGMOD Conference on
Management of Data, Washington, D.C. 207-216, 1993.

2. R. Agrawal and R. Srikant, "Fast Algorithms for Mining Association Rules," Pro-
ceedings of the 20th VLDB Conference, Santiago, Chile, 478-499, 1994.

3. S. Brin, R. Motwani, J. Ullman, and S. Tsur, "Dynamic Itemset Counting and
Implication Rules for Market Basket Data," Proceedings of the ACM SIGMOD
international conference on Management of Data, 255-264, 1997.



504 J. Saquer and J.S. Deogun

4. R. Bayardo, R. Agrawal, and D. Cunopupulos, "Constraint-based rule mining in
large, dense databases," in ICDE-99, 1999.

5. B. Canter and R. Wille, "Formal Concept Analysis: Mathematical Foundations,"
(Springer, Berlin, 1999).

6. R. Codin and R. Missaoui, "An Incremental Concept Formation for Learning from
Databases," Theoretical Computer Science, 133, 387-419, 1994.

7. M. Kryszkiewicz, "Representative Association Rules," in Proc. PAKDD '98, Lec-
ture Notes in Artificial Intelligence, vol. 1394, (Springer-Verlag 1998), 198-209.

8. M. Kryszkiewicz, "Fast Discovery of Representative Association Rules," in Proc.
RSCTC '98, Lecture Notes in Artificial Intelligence, vol. 1424, (Springer-Verlag
1998), 214-221.

9. Ng. R. T. Lakshmanan, and L. Han, "Exploratory Mining and Pruning Optimiza-
tion of Constrained Association Rules," in SIGMOD-98, 1998.

10. B. Liu, W. Hsu, and Y. Ma, "Pruning and Summarizing the Discovered Associa-
tions," in ACM SICKDD'99, 1999.

11. N. Pasquier, Y. Bastide, R. Taouil, and L Lakhal, "Efficient Mining of Association
Rules Using Closed Itemset Lattices," Information Systems 24 (1999) 25-46.

12. A. Savasere, E. Omiencinsky, and S. Navathe. "An Efficient Algorithm for Mining
Mining Association Rules in Large Databases," Proceedings of the 21st VLDB
Conference, Zurich, Switzerland, 1995.

13. R. Srikant, Q. Vu, and R. Agrawal, "Mining Association Rules with Item Con-
straints," KDD-97, pp. 67-73, 1997.

14. H. Toivonen, "Sampling Large Databases for Association Rules," Proceedings of
the 22nd VLDB Conference, Bombay, India, 134-145, 1996.

15. R. Wille 1982, "Restructuring Lattice Theory: an Approach Based on Hierarchies
of Concepts," in: Ivan Rivali, ed., Ordered sets, 445-470, 1982.



Legitimate Approach to Association Rules
under Incompleteness

Marzena Kryszkiewicz and Henryk Rybinski
Institute of Computer Science, Warsaw University of Technology,

Nowowiejska 15/19, 00-665 Warsaw, Poland
mkr@ii.pw.edu.pl, hrb@ii.pw.edu.pl

Abstract. A notion of legitimate definitions of support and confidence under in-
completeness is defined. Properties of generic legitimate definitions of support
and confidence are investigated. We show that in the case of incompleteness le-
gitimate association rules can be derived from legitimate representative rules by
the cover operator. It is proved that the minimum condition maximum conse-
quence association rules under incompleteness constitute a subset of representa-
tive rules of the same type. Algorithms for generating association rules under
incompleteness are offered.

1 Introduction

The problem of association rules discovery was introduced in [1] for sales transaction
database. The problem of data incompleteness did not occur for a transaction database,
however, it is often unavoidable in relational databases. Missing data may result from
errors, measurement failures, changes in the database schema etc.

Incompleteness of the data in the database introduces a confusion of how to treat
requests for a given user-specified support and confidence of rules. We cannot evalu-
ate exact values of support and confidence. Instead, we can evaluate optimistic and
pessimistic support and confidence of a rule. For a marginal incompleteness we could
expect that the difference between optimistic and pessimistic parameters is not essen-
tial. If however the incompleteness grows, the gap between optimistic and pessimistic
parameters will also grow. We could therefore foresee that the user is also interested
in "expected" support and confidence.

Data incompleteness in the context of association rules was addressed in [5]. It was
offered in [5] how to compute pessimistic and optimistic estimations of support and
confidence of an association rule. In [6] a set of properties that characterize a legiti-
mate approach to incompleteness has been proposed. An example of a legitimate
probabilistic approach was presented in [6] as well as examples of popular approaches
ignoring missing values that turn out not to be legitimate.

In this paper, we investigate properties of generic legitimate definitions of support
and confidence in the case of incomplete databases. We will show that in case of in-
completeness legitimate association rules can be derived from legitimate representa-
tive rules by the cover operator [3]. We also prove that the minimum condition maxi-
mum consequence association rules of any type constitute a subset of representative
rules of the same type. Finally, we offer the algorithms generating association rules
from incomplete databases.

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 505-514, 2000.
© Springer-Verlag Berlin Heidelberg 2000



506 M. Kryszkiewicz and H. Rybinski

2 Association Rules in Complete Relational Databases

Let us consider a table D = (0, AT), where 0 is a non-empty finite set of tuples and
AT is a non-empty finite set of attributes, such that a: 0 -> V for any acAT, where V
denotes the domain of a. Any attribute-value pair (a,v), where acAT and ve V will be
called an item. A set of items will be called itemset. Support of an itemset X is denoted
by sup(X) and defined as the number (or the percentage) of tuples in D that contain X.

An association rule is an expression of the form: X = Y, where X and Y are items
and X r) Y = 0. Support of a rule X => Y is denoted by sup(X == Y) and is defined as
sup(X u Y). Confidence of the rule X =* Y is denoted by conf(X => r) and defined as
sup(X u 1) / sup(X). Usually, one is interested in discovering rules that have support
greater than a specified minimum support s and confidence not less than a user speci-
fied minimum confidence c. Such set of rules will be denoted by AR(s,c), i.e. AR(s,c)
- {rl sup(r) > s A confir) >_ c}). If s and c are understood we will write briefly AR.

Usually ARs are too numerous for practical use. One of the most popular methods
of restricting the number of rules is to generate only those with the minimum condi-
tion part. Those rules are in particular useful in classification procedures. It was shown
in [9] that for any rule with minimum antecedent one can reduce its consequent with-
out any loss of support and confidence; instead, it may even lead to the rule with better
parameters. This observation justifies generating the rules with minimum antecedents
and maximum consequents [10]. A set of minimum condition maximum consequence
association rules wrt. support s and confidence c (MMR(s,c)) is defined as follows:

MMR(s,c) = {r: (X =• Y)EAR(sc)I -- ]r': (X' =* Y')cAR(s,c), r'•r A X'CX A Y'rDY}.

Recently another way of reducing the size of the set of generated rules was pro-
posed in [3]. Let us recall the notion of representative association rules and cover
operator. Informally speaking, a set of all representative association rules is a least set
of rules that covers all association rules by means of a cover operator. The cover C of
the rule X => Y, Y # 0, is defined as follows:

C(Xr= 1) = {XuZ= Z VJZVC YA ZnV= 0 A V# 0}.

Each rule in C(X => Y) consists of a subset of items occurring in the rule X => Y.
The antecedent of any rule r covered by X => Y contains X and perhaps some items in
Y, whereas r's consequent is a non-empty subset of the remaining items in Y. For the
cover C the following property holds:
Property 1. Let r: (X = 1Y) and r': (X' => Y) be association rules. Then:

r'c C(r) iffX'uY' C XUYAX' D X iff X'UY C XUYAX' D X Y' C Y.

As proved in [3], for an association rule r having support s and confidence c, each
rule in the cover C(r) belongs to AR(s,c). Hence, if rcAR(s,c), then every rule in C(r)
also belongs to AR(s,c). This property can be applied for looking for a base of rules
covering all others. In the sequel, such a minimal base of rules will be called a set of
representative association rules and will be denoted by RR. Formally, a set of repre-
sentative association rules wrt. support s and confidence c is defined as follows:

RR(s,c) = {rGAR(s,c)I -,r'EAR(s,c), r'•r A re C(r')}.



Legitimate Approach to Association Rules under Incompleteness 507

Each rule in RR is called a representative association rule. From the definition of
RR it results that no representative association rule belongs to the cover of another

association rule and AR(sc) = R1R(,,,)C(r). It was proved in [4] that MMR c RR and

MMR can be derived from RR.

3 Support and Confidence in Incomplete Databases

Computation of a real support of itemsets and real confidence of association rules is
not feasible in the case of databases with missing attribute values. However, one can
always calculate possible least and greatest values of support and confidence, as well
as, try to predict their "expected" values. In order to express the properties of data
incompleteness we will apply the following notions:
"* Missing values will be denoted by "*",
"* The maximal set of tuples that certainly match an itemset X is denoted by n(X) and

is defined as follows: n(X) = {tEDI V(a,v)eX: a(t)=v} ,
"* By m(X) we denote the maximal set of tuples that possibly match the itemset X in D,

i.e. m(X) = {teDI V(a,v)EX: a(t)e {v,* I} ,
"* The set-theoretical difference m(X) \ n(X) is denoted by d(X),
"* By n(-X) we denote the maximal set of tuples that certainly do not match the item-

set X in D, i.e. n(-X) = D \ m(X),
"* By m(-X) we denote the maximal set of tuples that possibly do not match the item-

set X in D, i.e. m(-X) = D \ n(X).
Example 1. Given the incomplete database D presented in Fig. 1, Fig. 2 illustrates the
notions of certainly and possibly matching an itemset.

Id X1 X2
I * C

2 a *

3 a e Itemset X )(X1,a),(X2,c))
4 a c n(X) 13,4)
5 * d rn(S) (1,2,3,4)
6 b * d(X) 11,2)
7 b * n(-X) (5,6,7,8)
8 b * m(-X) (1,2,5,6,7,8)

Fig. 1. Example incomplete database Fig. 2. Tuples matching itemset X

Let least possible support of an itemset X be denoted by pSup(X) (pessimistic case)
and greatest possible support be denoted by oSup(X) (optimistic case). Clearly,

pSup(X) = In(X)I and oSup(X) = Im(X)I.

Let XcY. It is easy to observe that pSup(X) > pSup(Y) and oSup(X) > oSup(Y).
Let pConf(X=>Y) and oConf(X=*Y) denote least possible confidence and greatest

possible confidence of X='Y, respectively. These values can be computed according
the following equations (see [5] for proof):

pConf(X=zý'Y) = In(X)nn(Y') [/n(X)nn(Y)I + Im(X)nm(-Y)I], (1)

oConf(X='Y) = Im(X)nm(Y) /[Im(X)nm(O)[ + In(X)r-n(-1)1]. (2)



508 M. Kryszkiewicz and H. Rybinski

The differences between optimistic and pessimistic estimations for rules can be
high. It would be desirable to have a method of predicting support and confidence
close to real (though unknown) values. There were proposed in the literature several
definitions of expected support and expected confidence. One can argue which defini-
tion is better or when it should be applied. Whatever is the definition of expected sup-
port and confidence in an incomplete database, we do not accept it if anyone of the
postulates below is not satisfied:
Postulates. Let X and Y be itemsets, iSup(X) denote support under incompleteness,
and iConf(X) denote confidence under incompleteness, AcAT, and Instances(A) de-
note the set of all possible tuples over the set of attributes A.

iSup(X) e [pSup(X), oSup(X)], (P1)

iSup(X) > iSup(Y) for XcY, (P2)

iConf(X=Y) = iSup(XuY) / iSup(X) , (P3)

iConfAX=>Y) G [pConfiX= Y), oConfAX==Y)] , (P4)

ZXX1 ..... a)' iSup(X) = 1 for any AAT. (P5)

The definitions of support under incompleteness and confidence under incomplete-
ness that satisfy all postulates P1-P5 will be called legitimate. Below we will show an
example of legitimate approach to incompleteness (see [6] for proof).
Example 2. Let/j: ATxV->[0,1] denote a frequency with which value vE V. occurs for
the attribute acAT in D, defined as u(a,v) = jn(a,v)l / ID - d(a,v)j). Based on the notion
of A', the probability probSup, of supporting an item (a,v) by the tuple tc D is defined:

Ia if a(t) = v

probSup,(a,v) = (v) a(t) = *

otherwise.

The probability (probSup,) of supporting an itemset X={(al,v,),..,(avk) I by a tuple
tc D is defined as follows:

probSup,(X) = probSup,(a, v1 ) * * probSup,(a vk) .

Probable support (probSup) of an itemset X in the database D is defined below:

probSup(X) = [Y-,.,, probSup,(X)] .

Probable confidence (probConj) of a rule X='Y is defined in usual way:

probConf(X= Y) = probSup(X•uY) / probSup(X) .

Incompleteness of the data introduces a confusion of how to treat requests for a
given user-specified support and confidence of rules. One can imagine that a user is
interested in the rules whose pessimistic support and expected confidence are above
requested thresholds, or in the rules whose pessimistic support and pessimistic confi-
dence are above the thresholds. Other variations of user requirements are also likely.
To this end we proposed in [7] a generic definition of types of association rules:

ARap(s,c) = {rj c&Sup(r) > s A fiConfir) > c},



Legitimate Approach to Association Rules under Incompleteness 509

where l //3 could be substituted by either p (pessimistic), or o (optimistic) sup-
port / confidence. For instance, ARpo(s,c) = {rl pSup(r) > S A oConf(r) >_ c).

In the sequel, we investigate properties of generic legitimate definitions of support
and confidence under incompleteness, therefore, we presume that ai//3 can be also
substituted by i (legitimate support / confidence under incompleteness). Obviously, the
most natural combinations of requests for support and confidence of rules are:
AR?,(s,c), ARoj(s,c), ARj(s,c). Please note that for the complete database all these defi-
nitions are equivalent.

Analogously to RR for a complete database, we introduced the notion of represen-
tative rules for incomplete databases in [7]. Here we apply the same generic notation
as we did for AR,6 above. A set of representative association rules wrt. minimum
support s and minimum confidence c is denoted by RRAj(s,c) and defined as follows:

RRaij(s,c) = { rEARp(s,c)I -iVr'E ARa(s,c), r'#r A rE C(r') }.

Property 2 [7]. Let r, r' be rules and r'e C(r). Then:
a) pSup(r) > pSup(r) and oSup(r) > oSup(r) ,
b) pConflr) > pConflr) and oConf(r) > oConfJr) .

By analogy we introduce here the same generic a/3 notation for MMR as we did for
AR and RR. A set of minimum condition maximum consequence association rules wrt.
support s and confidence c will be denoted by MMRap(s,c) and defined as follows:

MMRp(s,c)={ r:(X= Y)EARarj(s,c)I-3r' :(X'= >Y')ARap(s,c), r'•r AX'CXA Y'DY}.

In the next sections we will investigate relationships among legitimate AR•A, RRaf
and MMRafi, in the case of an incomplete database.

4 Legitimate Representative Rules

In this section we will show that legitimate ARap(sc) can be derived syntactically
from legitimate RRaO(s,c). Let us start with examining properties of rules related by
the cover operator.
Property 3. Let r, r' be some rules and r'e C(r). Then:
a) iSup(r) > iSup(r) ,
b) iConf(r) > iConflr).
Proof: Let r: X==Y, r': X==Y and r'e C(r).
Ad. a) Follows immediately from Property 1 and Postulate P2.
Ad. b) iConf(X=*Y) = iSup(XuY) / iSup(X) and iConf(X=i>Y) = iSup(XuY) / iSup(X).
It follows from Property 1 and Postulate P2 that iSup(XuY) > iSup(XuY) and
iSup(X) < iSup(X). Hence, iConflX=(• Y) > iConf(XK=Y).

Properties 2-3 allow us to conclude with the following property:

Property 4. Let r, r' be rules and r'e C(r). If reARp(s,c), then r'EAR,,(s,c).



510 M. Kryszkiewicz and H. Rybinski

By definition of RRaj and from Property 4 one can infer that all association rules of
any cr/3 type can be derived by means of cover operator from representative rules of
the same type, which is stated by Property 5.

Property 5. ARap(sc) = ,,RR~f~)C(r).

5 Legitimate Minimum Condition Maximum Consequence Rules

In Section 5, we investigate how incompleteness influences the relationship between
RR and MMR. In particular, we prove, that the minimum condition maximum conse-
quence rules of a,8 type constitute a subset of representative rules of the same type.

Property 6. MMRp(s,c) g; RRaj(s,c).

Proof: We will write shortly RRap, and MMRap instead of RRaP(s,c), and MMRaij(s,c),
respectively. Property 1 allows us to express RR.,g as follows:
RRa=ff{ r: (X=>Y)eARa,,I -i3r': (X' Y')cAR,,p, r'•r A XU YCX'UY' A X'CX A Y'DY}.

On the other hand, MMRfl is defined as follows:
MMRap= {r: (X ==> Y)EARapj# -3r': (X' = Y')eARa,, r'r TAX'CX A Y'DY}.

Using the two formulae above one can easily observe that each rule in MMR,, be-
longs also to RRap, but not necessarily vice versa. •

Next, we prove that the minimum condition maximum consequence rules of any oa8
type can be extracted from representative rules of the same type.
Property 7.

MMRa,(s,c)={ r:(X• Y)E RRa,8(s, c) -,3r':(X' = Y')e RRa(s, c), r'•r A X'CX A Y'AIYJ.

Proof: We will write shortly RRap, and MMRap instead of RRa((sc), and MMRj(sc),

respectively. By Property 6, MMRafi are contained in RRap. So, MMRaf =
{r: (X= Y)e RRa,6j-i3r': (X' * Y')cARa6, r'Tr A X'CXA Y'AY}. Now, we have only

to prove that for any r: (X => Y)EARap, the expression (3) is equivalent to (4).

3r': (X' =: Y')eARlf, r'/r A X'cX^ Y'A Y (3)

3r": (X" )= Y')E RRap, r"•r A X"CX A Y'DY. (4)

Let r': (X' = Y')eARap and r'#r and X'cX and Y'DY. Each association rule be-
longs to the cover of some representative rule, so there is some r": (X" )== Y') in RRap,
such that r'e C(r"). Hence, X"_cX'cX and Y'DY'Y and thus, (3) implies (4). The
inverse implication is trivial (any representative rule is association one).

6 The Algorithms

In this section, we will present the algorithms of generating AR., AR., and ARi. Other
ARafl combinations can be computed similarly. The problem of generating association
rules is usually decomposed into two subproblems:



Legitimate Approach to Association Rules under Incompleteness 511

1. Generate all itemsets whose support exceeds the minimum support minSup. The
itemsets of this property are called frequent (large).

2. Generate association rules from frequent itemsets. Let X be a frequent itemset and
0 • Y c X. Then any rule X \ Y m=' Y holds if (sup(X) / sup(X \ Y)) > minConf.

Step (1) of our algorithms is based on the algorithm in [8], in that we use the lists of
transaction identifiers. Step (2) is performed with the ap-genrules algorithm [2], ex-
cept for computing confidence, which we show below. Further on, we will use the
following auxiliary notions: k-itemset is a set of size k, a regular itemset is an itemset
without missing values.

6.1 Generation of Frequent Itemsets under Incompleteness

First, let us remind briefly the main idea of the gen-largeitemsets algorithm (see
Fig. 3) computing frequent itemsets [8]. Then, we will offer modifications of this
algorithm allowing to compute frequent itemsets for given threshold of supports: pes-
simistic, optimistic, and under incompleteness as defined in Example 2. The following
notation is used in the genjlarge-itemsets function:
* Fk - set of frequent k-itemsets;
* [11 "J[2] . ... .r[k] - k-itemset consisting from items[1],f[2], ... flk];

* tIdList - a list of transaction identifiers;
Associated with each itemset is a support field to store the support for this itemset

and tldList to store identifiers of transactions containing the itemset.
function gen large itemsets(D: database);
1) compute the family F1 of frequent 1-itemsets and their tIdLists;
2) for (k = 2; Fk # 0; k++) do {
3) forall f, E Fk-i do (
4) forall f 2 C Fk-1 do {
5) if f 1 [l]=f 2 [l] A.. .A f 1 k-2]=f 2 [k-2] A f 1 [k-l]<f 2 [k-l] then
6) c = f 1 [l] - fi[3] * ... * fl[k-l] f2[k-l];
7) if c has k subsets in Fk- 1 then
8) c.tIdList = fl.tldList r) f;.tIdList;
9) c.support = lc.tIdListI;
10) if c.support > minSup then Fk = Fk u c); }}(}}

11) return Uk Fs;

Fig. 3. Function genjargejtemsets

The gen-large-itemsets function reads the database only once in order to create
lists of transaction identifiers for each item occurring in the database. F, is assigned
those 1-itemsets that have support not less than minSup. Next, each k-th iteration,
k > 2, generates candidate k-itemsets from the pairs of frequent (k-1)-itemsets (see [8]
for details). To avoid unnecessary computations of tIdLists, the candidate k-itemsets
that do not have some subset in frequent (k-1)-itemsets are pruned. The tIdList for
each remaining candidate c is computed as the intersection of tldLists of (k- 1)-itemsets
that were used for constructing c. Its length determines the support for c. The k-
itemsets with support greater than minSup are included into Fk.



512 M. Kryszkiewicz and H. Rybinski

Now, we will present necessary modification of gen-largeitemsets for computing
frequent itemsets in the case when the database is incomplete.
The Generate-P-Frequentltemsets Function
It computes all frequent itemsets X such that pSup(X) > minSup. It differs from
genjlarge-itemsets only in line 1 that initializes 1-itemsets. The appropriate code
corresponding to line 1 of genjlarge-itemsets is as follows:

compute frequent regular 1-itemsets F1 and their tidLists, where tIdList for
each c in F, is the list of identifiers of transactions that certainly contain c.

The Generate-O-Frequentltemsets Function
It computes all frequent itemsets X such that oSup(X) > minSup. It differs from
gen-large-itemsets only in line 1 that initializes 1-itemsets. The appropriate code
corresponding to line 1 of gen-largejitemsets is as follows:

compute frequent regular 1-itemsets F, and their tldLists, where tldList for
each c in F, is the list of identifiers of transactions that possibly contain c.

The Generate-I-Frequentltemsets Function
It computes all frequent itemsets X such that probSup(X) > minSup. The function uses
a modified tIdList structure:
Let c be a candidate k-itemset. The elements of c.tldList will be pairs (tid, iVec)
where, tid is the transaction identifier and iVec is a Boolean vector of size k that for
each item cU]G c, j=1, ..., k, indicates if the transaction identified by tId contains the
item certainly. If so, iVecU] is assigned 1, otherwise it is equal 0. In addition,
1-itemsets have a component/u that stores information on frequencies of the items.

The function differs from gen largejtemsets in line 1 (that initializes 1-itemsets)
and in lines 8-9 (that compute tIdList and support, respectively). The appropriate code
corresponding to line 1 of genlargejitemsets is as follows:

compute frequent regular l-itemsets F, as well as their frequency p and tldLists
keeping information on transactions that possibly contain c;

The code corresponding to lines 8-9 should be as follows:

forall t e fl-.tIdlist do

forall t 2 E f 2 .tIdList do
if tj. tld = t 2 . trd then

add (tl.tId, tl.iVec a t 2 .iVec[k-l]) to c.t~dList;
c.support = 0;

forall t E c.tIdList do (
probSub, = 0;
for j=l to k do {

probSub, = probSub, * max(iVec[j], ju(c[j]); ;
c.support = c.support + probSubt; );

The expression max(iVecU], At(cU])) returns 1 if the j-th item of c is contained by
the respective transaction certainly, otherwise it returns the frequency of this item.



Legitimate Approach to Association Rules under Incompleteness 513

6.2 Computing Confidence of Association Rules under Incompleteness

The problem of finding A]?,, AR_ and AR, consists in computing pConf, oConf and
probConf for candidate rules, respectively.
Computing ARp?
Rules ARpp are computed from frequent itemsets F generated by Generate-P-

Frequentltemsets. Let ZeFk, k>2, and XuY=Z. Then X=>YeARýp if pConf(X=Y) >
minConf. In order to compute pConf(X=='Y), we have to know support of both
n(X)r)n(Y) and m(X)rcm(-Y) (see Eq. (1)). Clearly, ln(X)r•n(Y)l = In(XuY)l = pSup(Z),
which was computed when looking for frequent itemsets. Still, jm(X)rm(-Y)j (equal to
Im(X)\n(Y)I) must be computed. Assume, the computation of ARpp was preceded by
generating nTldLists and mTldLists for each fi F,. These lists consist of identifiers of
transactions containing f certainly and possibly, respectively. The nTldList and
mTldList of X and Y, can be computed by intersecting nTldLists and mTldLists of all
items in these itemsets, respectively. Then, pConf(X=*Y) can be computed as follows:

X. mTXdList = X[I] .mTIdList r) X[2] .mTIdList r) ... r) X[ IX ] .mTIdList;

Y.nTldList = Y[lI.nTIdList r) Y[21.nTIdList n ... 0• Y[IYI ].nTIdList;
pConf = sup(Z) / [sup(Z) + IX.mTIdList \ Y.nTIdList I];

Computing AR.,
Rules AR., are computed from frequent itemsets F generated by Generate-O-
Frequentltemsets. Let ZE F and XuY=Z. Then X=*YEARo if oConflX=*Y) > minConf.
By analogy to pConf, oConf(X=*Y) will be computed as follows (see Eq. (2)):

X.nTXdList = X1] .nTldList n X[2].nTldList r) ... 0 X[/X/].nTIdList;
Y.mTldList = Y[11. mTldList n Y[2] .mTIdList n• ... nl Y[/YJ] .mTldList;
oConf = sup(Z) / [sup(Z) + IX.nTIdList \ Y.mTIdList I];

Computing ARU1
Rules AR,, are computed from frequent itemsets F generated by Generate-I-
Frequentltemsets. Let Ze F and XuY=Z. Then X=>YEAR,, if probConflX=*Y) _ mrin-
Conf. Fortunately, probConf can be computed as usual conf of rules.

7 Conclusions

We investigated the notion of legitimate definition of support and confidence under
incompleteness. It was shown that for incomplete datasets legitimate ARaB can be
derived from legitimate RRa6 by the cover operator. We also proved that MMR ,8p un-
der incompleteness constitute a subset of RRa,8 of the same type. Algorithms for gen-
erating ARa,8 under incompleteness were offered.



514 M. Kryszkiewicz and H. Rybinski

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining Associations Rules between Sets of Items
in Large Databases. In: Proc. of the ACM SIGMOD Conference on Management of Data.
Washington, D.C. (1993) 207-216

2. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo A.I.: Fast Discovery of
Association Rules. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R.
(eds.): Advances in Knowledge Discovery and Data Mining. AAAI, CA (1996) 307-328

3. Kryszkiewicz, M.: Representative Association Rules. In: Proc. of PAKDD '98. Melbourne,
Australia. LNAI 1394. Springer-Verlag (1998) 198-209

4. Kryszkiewicz M.: Representative Association Rules and Minimum Condition Maximum
Consequence Association Rules. In: Proc. of PKDD '98. Nantes, France. LNAI 1510.
Springer-Verlag (1998) 361-369

5. Kryszkiewicz, M.: Association Rules in Incomplete Databases: In: Proc. of PAKDD '99.
Beijing, China. LNAI 1574. Springer-Verlag (1999) 84-93

6. Kryszkiewicz, M.: Probabilistic Approach to Association Rules in Incomplete Databases,
Proc. of WAIM '2000. Shanghai, Chiny. LNCS 1846. Springer-Verlag (2000), 133-138

7. Kryszkiewicz M., Rybioski H.: Incomplete Database Issues for Representative Association
Rules. In: Proc. ISMIS '99. Warsaw, Poland. LNAI 1609. Springer (1999) 583-5916

8. Savasere, A, Omiecinski, E., Navathe, S.: An Efficient Algorithm for Mining Association
Rules in Large Databases. In: Proc. of the 21st VLDB Conference. Zurich, Swizerland
(1995) 432-444

9. Toivonen H., Klemettinen M., Ronkainen P., HaItonen K., and H. Mannila H.: Pruning and
grouping discovered association rules. In: MLnet Workshop on Statistics, Machine Learn-
ing, and Discovery in Databases. Heraklion, Crete, Greece (1995) 47-52

10. Washio, T., Matsuura, H., Motoda, H.: Mining Association Rules for Estimation and
Prediction. In: Proc. of PAKDD '98. Melbourne, Australia. LNAI 1394. Springer-Verlag
(1998) 417-419



A Simple and Tractable Extension of Situation
Calculus to Epistemic Logic

Robert Demolombe and Maria del Pilar Pozos Parra *

ONERA Toulouse, France

1 Introduction

The frame problem and the representation of knowledge change have deserved a
lot of works. In particular, at the Cognitive Robotics Group, at Toronto, several
researchers in the last ten years have produced quite interesting papers in a uni-
form logical framework based on Situation Calulus [Rei9l, SL93, LR94, LL98]. In
[Rei9l] Reiter has proposed a simple solution to the frame problem. Scherl and
Levesque in [SL93] have defined an extension to Epistemic Logic to represent
knowledge dynamics in contexts where some actions may produce knowledge,
like, for instance, sensing actions for a robot. This approach has been extended
by Lakemeyer and Levesque in [LL98] to modal operators of the kind "I know
and only know". Also, they have given a formal semantics and axiomatics, and
they proved soundness and completeness of the axiomatics.

These extensions to Epistemic Logic offer a large expressive power. Indeed,
there is no restriction on formulas in the scope of modal operators. However, they
have lost the simplicity of the solution to the frame problem initially proposed in
[Rei91], and the possibility to find a tractable implementation of these extensions
is far to be obvious. As far as we know, at the present time there is no such
implementation.

In this paper a simple extension to Epistemic Logic of Reiter's initial solution
is presented that could easily be implemented. In exchange we have to accept
strong restrictions on the expressive power of the epistemic part of the logical
framework. However, we believe that for a large class of applications these re-
strictions are not real limitations. In the following intuitive ideas of the proposed
solution are presented with a simple example. Then, we give the general logical
framework, and, finally a comparison is made with the solutions that we have
mentioned before.

2 The frame problem in the context of extended situation
calculus: an example

Situation Calculus [McC68, Rei99] is a sort of classical first order logic where
predicates may have an argument (the last argument) of a particular sort, which

• ONERA/CERT, 2 Avenue E. Belin B.P. 4025, 31055 Toulouse Cedex, France. e-mail:

{demolomb,pozos}@cert.fr.

Z.W. Ra9 and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 515-524, 2000.
© Springer-Verlag Berlin Heidelberg 2000



516 R. Demolombe and M. del Pilar Pozos Parra

is called a "situation"; these predicates are called "fluents". This argument is
intended to represent the sequence of actions which have been performed from
the initial state to the current state. A situation is syntactically represented by
a term of the form do(a, s) where a denotes an action, and s denotes a situation.
The initial situation is denoted by SO.

For instance, position(x, s) represents the fact that a given object is at
the position x in the situation s. Action variables and situation variables can
be quantified. For instance, -3s(position(2, s)) represents the fact that in no
situation a given object is at the position 2. Action quantification is an es-
sential feature in the solution to the frame problem proposed by Reiter. In-
deed, the fact that, for example, there is no other possibility to change the
position of an object than to perform the action move can be represented
by: VsVaVx(position(x, s) A -'position(x, do(a, s)) -* a = move). To intuitively
present how the solution to the frame problem can be extended to epistemic
logic, we use the following scenario.

Let's consider a simple robot that can move forward (action adv) or back-
ward (action rev) along a railtrack. Performance of actions adv or rev changes
his position of one distance unit. There may be obstacles on the railtrack, like
branches of trees that have fallen. Suppose the robot is moving during the night
and there is a pilot in the robot. The pilot can recognise obstacles, provided he
has switched on a spotlight (action obs.obstacle), and the obstacle is not beyond
the visibility distance d. The spotlight is not always on because it consumes
battery ressources, which are limited. When the robot moves he computes his
new position, and this position is indicated on a screen which can be seen by
the pilot (action inf.position(x)). The pilot performs the action inf.position(x)
before the action obs.obstacle in order to know his position and to determine the
position of visible obstacles, if there are. The pilot can inform the robot about
the existence of an obstacle at x (action inf.obstacle(x)), and the robot stops if
he knows that there is an obstacle in a short distance sd.

We see that the description of this scenario involves evolution of the world
and evolution of what the pilot and the robot believe 2. We first show how the
frame problem can be solved if we only consider evolution of the world.

For each fluent, two axioms define the positive effects or the negative effects of
the actions. For instance, for the fluent position(x, s), the effect of performing the
action adv (respectively rev) when the robot is at the position x- 1 (respectively
x + 1) in the situation s, is that it is at the position x in the situation do(a, s) 3:

(1) (a = adv A position(x - 1, s) V a = rev A position(x + 1, s)) --
position(x, do(a, s))

The negative effect axiom expresses that if the robot is at the position x in
the situation s and he performs either the action adv or the action rev, then in
the situation do(a, s) he is no more at the position x:

2 We have no room here to give a complete formal description of this scenario. Also,

some assumptions are not perfectly realistic, but we mainly want to show how such
scenarios can be formalised.

3 All the variables are implicitly universally quantified.



A Simple and Tractable Extension of Situation Calculus 517

(2) (a = adv V a = rev) A position(x, s) -+ -'position(x, do(a, s))

One of the most important features to solve the frame problem in the ap-
proach presented in [Rei99] is the "causal completeness assumption". This as-
sumption expresses that the positive effect axioms and the negative effect axioms
"characterize all the conditions underwhich action a can cause the fluent position
to become true (respectively false) in the successor situation". If, in addition to
(1) and (2), we accept this assumption, then we have (see axiom (G2) for the
general form):

(3) position(x, do(a, s)) +- [a = advAposition(x-1, s)Va = revAposition(x+
1, s)] V position(x, s) A -'[(a adv V a = rev) A position(x, s)]

This axiom defines the objective representation of the evolution of the world.
If we want to define the subjective representation of the evolution of the world,
we can extend the language with epistemic modal operators. For that purpose,
we introduce modal operators like Br, such that Br, is intended to mean that the

robot r believes that 0 holds in the present situation. To represent, in a similar
approach, the evolution of what the robot believes, we have to consider four
effect axioms for each fluent. For example, for the fluent position(x, s), there are
four distinct possible attitudes of the robot which are formally represented by:

Brposition(x, s), -'Brposition(x, s), B,-'position(x, s) and 'Br-position(x, s).
The corresponding axioms (4), (5), (6) and (7) are given below.

The effect of performing action adv (respectively rev) when the robot believes
that he is at the position x - 1 (respectively x + 1) in the situation s is that he
believes that he is at the position x in the situation do(a, s):

(4) (a = adv A BrpOsition(x - 1, s) V a = rev A Brposition(x + 1, s))
Brposition(x, do(a, s))

The effect of performing either action adv or rev when the robot believes
that he is at the position x in the situation s is that he does not believe that he
is at the position x in the situation do(a, s):

(5) (a = adv V a = rev) A Brposition(x, s) -+ -Brposition(x, do(a, s))

We have two similar axioms to define the attitude of the robot with respect
to the fact that he believes that he is not at the position x in the situation
do(a, s):

(6) (a adv V a = rev) A Brposition(x, s) --+ Br-position(x, do(a, s))

(7) (a adv A Brposition(x - 1, s) V a = rev A Brposition(x + 1, s))
-iBr -position(x, do(a, s))

If we extend the causal completeness assumptions to the robot's beliefs, we
get, after some simplifications, the two axioms (8) and (9) (see axioms (G3) and
(G4) for the general form):

(8) Brposition(x, do(a, s)) ÷-+ [a = adv A Brposition(x - 1, s) V a = rev A
Brposition(x + 1, s)]V Brposition(x, s)A--[(a = advVa = rev) ABrposition(x, s)]

(9) Br•position(x, do(a, s)) +-+ [(a = adv V a = rev) A Brposition(x, s)] V
Br-position(x, s) A -'[a = adv A Brposition(x - 1, s) V a = rev A Brposition(x +
1, s)]

Notice that in the definition of these axioms we have implicitly assumed that
if the robot performs either the action adv or the action rev, he believes that he



518 R. Demolombe and M. del Pilar Pozos Parra

has performed these actions. However, if some action is performed by the pilot,
like the action obs.obstacle, the robot is not necessarily informed about this fact.

It is interesting to see with this example how the pilot's beliefs and the robot's
beliefs about the fluent obstacle may evolve in two different way. We have the

following effect axioms (10), (11), (12) and (13) for this fluent.
If the pilot has switched on the spot light, and there is an obstacle at some

position x which is visible by the pilot, then the pilot believes that there is an
obstacle at x 4 .

(10) a = obs.obstacle A obstacle(x, s) A position(y, s) A y 5 x < y + d -4

Bpobstacle(x, do(a, s))

If the pilot has switched on the spot light, and there is no obstacle at some
position x which is visible by the pilot, then the pilot does not believe that there
is an obstacle at x:

(11) a = obs.obstacle A -,obstacle(x, s) A position(y, s) A y < x < y + d -4

-.Bpobstacle(x, do(a, s))

We have two similar effect axioms for -iobstacle(x, do(a, s)).

(12) a = obs.obstacle A -iobstacle(x, s) A position(y, s) A y : x < y + d -4

Bp-iobstacle(x, do(a, s))

(13) a = obs.obstacle A obstacle(x, s) A position(y, s) A y < x < y + d -4
-. Bp -obstacle (x, do(a, s) )

Then, from the causal completion assumption we have the axioms (14) and
(15).

(14) Bpobstacle(x, do(a, s)) <-+ [a = obs.obstacleAobstacle(x, s)Aposition(y, s)
A y <_ x <_ y + d] V Bpobstacle(x, s) A -'[a = obs.obstacle A -,obstacle(x, s) A
position(y, s) A y < x < y + d]

(15) Bp-,obstacle(x, do(a, s)) <+ [a = obs.obstacleA-nobstacle(x, s)Aposition
(y, s) A y < x < y + d] V B-•-obstacle(x, s) A -[a = obs.obstacle A obstacle(x, s) A

position(y, s) A y • x < y + d]

If the only way for the robot to be informed about the fact that there is an
obstacle at x is to perform the action inf.obstacle(x), then we have the axioms
(16) and (17) below.

(16) Brobstacle(x, do(a, s)) <-+ a = inf.obstacle(x) V Bobstacle(x, s)

(17) Br-,obstacle(x, do(a, s)) --* Br-'obstacle(x, s) A -'(a = inf.obstacle(x))

Let's assume that in the initial situation SO the pilot and the robot both
ignore whether there are obstacles in any places. This is formally represented
by: -i3xBrobstacle(x, SO), -,3xBr-,obstacle(x, SO), -,3xBpobstacle(x, SO) and
-3xBp-,obstacle(x, SO). If in the situation SO there is an obstacle at the position
3, the pilot and the robot have wrong beliefs. If the distance d is equal to 10, after
performance of the action al = obs.obstacle, the pilot believes that there is an ob-
stacle at the position 3, while the robot ignores that there this an obstacle at the
position 3, i.e. we have: Bpobstacle(3, do(ai, SO)) and -Brobstacle(3, do(ai, SO)).

Finally, if after action a, the pilot performs the action a 2 = inf.obstacle(3),

4 As a matter of simplification, it is assumed here that the pilot only looks at obstacles
that are foreward.



A Simple and Tractable Extension of Situation Calculus 519

the robot and the pilot have the same beliefs about this obstacle. We have:
Bpobstaclc(3, do(a 2 , do(al, SO))) and Brobstacle(3, do(a 2, do(ai, SO))).

In fact these actions can be performed only if some preconditions are satisfied.
These preconditions are expressed with a particular predicate Poss (see [Rei99]).
The formula Poss(a, s) means that in the situation s it is possible to perform
the action a. For example, a precondition to perform the action adv is that the
robot does not believe that there is an obstacle in a short distance sd, and there
is no obstacle in front of him.

(18) Poss(adv, s) k4 -Elxly(Brposition (x, s) A Brobstacle(y, s) A y - x <
sd) A -]3x~y(position(x, s) A obstacle(y, s) A y = x + 1)

3 General framework

Now we present the general framework of the extended Situation Calculus. Let L
be a first order language with equality with the constant symbol SO, the function
symbol do, and the predicate symbol Poss. Let LM be an extension of language
L with modal operators denoted by B 1 ,..., Bj,..., where modal operators can
only occur in modal literals. Modal literals are of the form Bil, where I is a literal
of L, and I is not formed with equality predicate. Let's consider the theory
T which contains the following axioms.

Action precondition axioms.

For each action a there is in T an axiom of the form 5:

(G1) Poss(a, s) -+ 7ra(s)

where 7r,, is a formula in LM.

Successor state axioms.
For each fluent F there is in T an axiom of the form:

(G2) F(do(a, s)) ý-++ P(a, s) V F(s) A -^PF(a, s)
where F+ and _W are formulas in L.

Successor belief state axioms.

For each modal operator Bi and each fluent F 5 ,there are in T two axioms
of the form:

(G3) Bi(F(do(a, s))) <-+ Fjil,F (a, s) V Bi(F(s)) A -1Fi,,F(a, s)

(G4) Bi(-iF(do(a, s))) <+ 2+, F(a, s) V Bi(-iF(s)) A -IFj2,F(a, s)

where !+F, 2, ,F, and Pi,,F are formulas in LM.

We also have in T unique name axioms for actions and for situations, and
we assume that modal operators obey the (KD) logic (see [Che88]).

5 As a matter of simplification the arguments of function symbols are not explicited,

and, for fluents, the only argument which is explicited is the situation. For instance,
we could have a(xi) and F(xi, x 2 , s). Also, it is assumed that all the free variables
are universally quantified.

6 To avoid to have equality in the scope of modal operators, we assume that fluent
functions are expressed via fluent predicates, i.e. y = f(x, s) is expressed by F(y, x, s).



520 R. Demolombe and M. del Pilar Pozos Parra

Moreover, it is assumed that for each fluent F we have 7:

(Hi) 1 T-4 VW(F+ AF)
(H2) I- T ÷ V(r d7,F A tiT,F)
(H3) I- T-* V-'(rF A T.

(H4) f- T-+ V-'(f F A &+,F)

(H5) T T -÷ V(B (F(s)) A FZF _+ Ti1,F)

(H6) I T -4 V(Bi(-'F(s)) A rtF -F+ T,F)

The three assumptions (H4), (115) and (H6) guarantee that if agents' beliefs
are consistent in the intial state, they are consistent in all the successor states.

It can easily be shown that, if we have (H1), in the context of the theory T,
successor state axioms like (G2) are equivalent to the conjunction of properties
(Al), (A2), (A3), and (A4).
(A1) F+(a, s) -4 F(do(a, s))
(A2) FF(a,s) -+- F(do(a, s))
(A3) -iFF(a, s) -+ [F(s) -+ F(do(a, s))]
(A4) -- 7F+ (a, s) --* [--F(s) -+ - F(do(a, s))]

In a similar way we have shown that, if we have (112) and (H3), in the context
of the theory T, successor belief state axioms of the form (03) (resp. (04)) are
equivalent to the conjunction of properties (B1), (B2), (B3) and (B4) (resp. (Cl),
(C2), (C3) and (C4)).
(B1) r+,F(a, s) -* Bi(F(do(a, s)))

(B2) pi,,F(a, s) -4-iBi (F(do(a, s)))

(B3) -Fi-,F(a, s) -* [Bi(F(s)) -+ Bi(F(do(a, s)))]

(B4) -ý+,IF(a, s) - [- Bi (F(s)) -+ - BiB(F(do(a, s)))]

(Cl) +,F (a, s) -- Bi(-ýF(do(a, s)))

(C2) 'i,,F(a, s) - B -B (-ýF(do(a, s)))
(C3) -i 2 F,(a, s) -+ [Bi(--iF(s)) -+ Bi(-iF(do(a, s)))]

(C4) -- F+,F(a, s) -+ [-iBi(-iF(s)) --+ 'iB(-ýF(do(a, s)))]
Properties (B3) and (C3) show that positive beliefs remain unchanged after

performance of an action as long as -ýi,,(a, s) and -- i-,(a, s) holds. Prop-
erties (B4) and (C4) show that negative beliefs remain unchanged after perfor-
mance of an action as long as -ir+,(a, s) and -+,F (a, s) holds.

Definition 1. Regression operator. We define a regression operator RT from
formulas in LM to formulas in LM.

1. When W is a non fluent atom, including equality atoms, or when W is a
fluent atom whose situation argument is the constant SO, RT[W] = W.

2. When W is an atom formed with fluent F of the form F(t, do(ce, o-)) whose
successor state axiom in T is 8 VaVsVx[F(x, do(a, s)) 14 OF] then:

7 Here, we use the symbol V to denote the universal closure of all the free variables in
the scope of V.

s We use the notation x for the tuple of variables x,... , x , and Vx for VxI ... Vx,;

OPF.{x/t,a/a,s/a} denotes the result of the application of the substitution
{x/t, a/a, s/la} to formula OF



A Simple and Tractable Extension of Situation Calculus 521

RT [F(t, do(a, o-))] = RT [OF.{Jx/t, ala, s/o-}]

3. When W is an atom of the form Poss(a(t), o-), whose action precondition
axiom is VsVxPoss(a(x), o-) -+ H,(x, s) then:R[OSat,) = RT1,XS-XtSl0y}

4. When W is a modal literal of the form Bi(F(t, do(a, o-))) or Bi(- F(t,
do(a, o-))) whose successor belief state axioms in T are VaVsVx[Bi (F(x, do(a, s)))

<-* Oi l ,p] and VaVsVx[Bi(-,F(x, do(a, s))) ++ qOi,F] then:
RT[Bi(F(t, do(a, f)))] = RT[Oi 1,F.{x/t, a/c, sik}1] and
RT[Bi(-•F(t, do(a, o-)))] = RT[O~i,,F.{xlt, a/a, s/,7}]

5. When W is a formula in LM 9, RT[-'W] = -RT[W] and RT[3xW]
3xRT[W].

6. When W 1 and W2 are formulas in LM, RT[W1 V W2] = RT[W1] V RT[W 2].

Theorem 2. Let To be a set of closed sentences in LM, without Poss predicate,
and whose situation argument in fluents is SO. Let T,, be the set of precondition
axioms and of successor axioms for the fluents of a given application. Let T"
be the set of unique name axioms. We use notations T = T, U T,, U To and
T' = T, U To. Let Rý, (q) be the result of repeated applications of RT until the
result is unchanged. Let Sgr be a ground situation term.

We have F- T -+ W(sgr) iff F- T' -+ P4[W(sgr)]

For the proof we can use the same technique as Scherl and Levesque in [SL93],
but the proof is much more simple because we do not have explicit accessibility
relation to represent modal operators (see next section).

This theorem shows that to prove W in situation sgr comes to prove RP[W]
in situation SO, droping axioms of the kind (GI), (G2), (G3) and (G4).

Theorem 2 can be used for different purposes. The most important of them,
as mentioned by Reiter in [Rei99], is to check whether a given sequence of ac-
tions is executable, in the sense that after performing any of these actions, the
preconditions to perform the next action are satisfied. Another one, is to check
whether some property holds after performance of a given sequence of actions.
These two features are essential for plan generation.

We also have the following theorem.

Theorem3. Let A be a formula of the form F, BiF or Bi-F, where F is
an atom formed with a fluent predicate. Let T be a theory such that for every
successor axiom of the form: A(x, do(a, s)) <-+ FA+(x, a, s)VA(x, s)A-IPF (x, a, s),
there is no other variable that occurs in F+ or FA than the variables in x, or a

or s. Let 0(s) be a formula in LM such that the only variable that occurs in ¢
is s.

If for every ground formula A(SO) we have either H- T -+ A(SO) or V- T -4

-ýA(SO), then, for every ground situation term Sgr, which is a successor situation
of SO, we have either F T -4 ¢0(sg,) or H T - -¢(sgr).

' The definition of RT for universal quantifier V, conjunction A, implication -+ and
equivalence ++, is directly obtained from the usual definitions of these quantifier and
logical connectives in function of 3, -, and V.



522 R. Demolombe and M. del Pilar Pozos Parra

The proof is by induction on the complexity of the formula 0 in SO, and by
induction on the depth of the term Sgr. Theorem 3 intuitively says that if we
have a complete description of what the agents believe in SO, then we have a
complete description of their beliefs in every successor situation.

4 Related works

In [SL93] Scherl and Levesque have defined an extension of Situation Calculus to
Epistemic Logic for a unique modal operator, but without any restriction about
formulas that are in the scope of the modal operator.

In their approach, the first idea is to define the modal operator Knows in
terms of an accessibility relation K which is explicitly represented in the ax-

iomatics. Formally, they have: Knows(O, s) d+ef Vs'(K (s', s) --+ 0(s')). The sec-
ond idea is to define knowledge change by defining accessibility relation change.
Moreover, two kinds of actions are distinguished: knowledge-producing actions,
denoted by a,,..., a,, and non-knowledge-producing actions. Each action ai
informs the agent in the situation do(cai, s) about the fact that some formula pi
is true or false in the situation s. It is assumed that the action ai does not change
the state of the world. From a technical point of view, after the performance of
action aj, relation K selects, in the situation do(ai, s), those situations where pi
has the same truth value as it has in the situation s. For instance, if pi is true
in s, then situations s', which are accessible from s and where pi is false, are
no more accessible from do(ai, s). Notice that if pi is false in all the situations
which are accessible from s, there is no situation accessible from do(ci, s). That

means that the agent believes any formula.
This problem disappear in the logical framework presented by Shapiro et al.

in [SPLOO], where a plausibility degree pl(s) is assigned to all the situations. From
the accessibility relation B(s', s), an accessibility relation Ba, (s', s) between s

and the most plausible situations can be defined by Bma,(s', s) '-ef B(s', s) A
Vs"(B(s",s) -+ pl(s') < pl(s")). Then, the fact that an agent believes 0 in s

is defined as Bel(0, s) =Y Vs'(Bma (s', s) -4 ¢(s')). Here, an agent can consis-
tently believe 0 in do(a, s), while he believed -¢ in s, provided there exists at
least one most plausible situation related to do(a, s) where 0 holds.

For a non-knowledge-producing action a, it is assumed that knowledge changes
in the same way as the world does. That is, if a situation s' is accessible from
s, the situation do(a, s') is accessible from do(a, s) as well. In formal terms, the
evolution of relation K is defined by the following axiom 10:
Poss(a, s) ---
[K(s", do(a, s)) -+ 3s'K(s', s) A s" = do(a, s') A Poss(a, s')A
((-'(a = al) A ... A -(a = an))V

a al A (Pn(s) +4 Pn(S')))]

iG In fact, condition Poss(a, s') is not present in [SL93], it was added in [LL98].



A Simple and Tractable Extension of Situation Calculus 523

This successor axiom does not explicitly define which formulas are true or
false in do(a, s'). From the examples presented in their paper we understand
that the truth value of formulas in situations like s" is defined by the successor
state axioms of the type (G2). That implicitly means that: i) whenever some
action has been performed the agent knows that this action has been performed,
ii) the agents knows the effects of all the actions, iLe he knows all the successor
state axioms, and iii) when the agent get information through a knowledge-
producing action, this information is always true information, in the sense that
this information is true in the situation s where he is.

How this formalisation could be extended to the context of multi-agents? The
fact i) cannot be accepted in general. We can accept that an agent knows that
an action has been performed when it has been performed by himself, but not
necessarily when it has been performed by another agent. This problem could
be solved by defining as many accessibility relations Ki as there are distinct
agents, and by distinguishing for each agent those actions fl1, . . ., On, which are
performed by the agent i. For an action a which is neither of the sort Pinor
ak, the fact that knowledge does not change can be represented by the fact that
accessible situations from do(a, s) are the same as accessible situations from a.
That could lead to successor axioms for each relation Ki of the form:

Posa(a,as) -+
[KIC(s", do(a,as))½

(Ba'Ki (s, a) A a" do(a, a') A Poaa (a, s') A
(awi1uV ... V a 3flV
a a,1 A(p1 (S) +*pi (S'))V

a an~ A (P. (S) <- Pn (S')))

However, even with this extension there are still the problems related to ii)
and iii). For ii), the problems is that in real situations agents may have wrong
beliefs about the the evolution of the world. For instance, an agent may believe
that droping a fragile object make it broken, while another agent may believe
that the object is not necessarily broken, depending on his weight or on other
particular circumstances. This raises the question of how to represent in this
framework different evolutions of the world in the context of different agents
beliefs? May be a possible answer is to have different successor state axioms, for
the same fluent, to represent the "true" evolution of the world, and to represent
the evolution of the world in the context of each agent's beliefs. That is, more or
less, the idea we have proposed in this paper with the axioms of the type (G3)
and (G4).

For iii), the problem is that there are applications where agents may receive
information from different sensors, or from other agents, some of them are not
necessarily reliable and may communicate wrong information. Here again, we
believe that axioms like (G3) and (G4) are a possible solution, because they
allow us to represent communication actions whose consequences are to generate
wrong agents beliefs.



524 R. Demolombe and M. del Pilar Pozos Parra

5 Conclusion

In conclusion, we have presented a general framework to solve the frame problem
in the context of a limited extension of Situation Calculus to Epistemic logic.
Even if for this solution strong restrictions are imposed on the language LM, we
can express non trivial properties like: VisVx(Bposition (x, s) -+ position(x, s)),
which means that in every situation the robot has true beliefs about his position,
or VsVx(Brobstacle(x, s) -+ Bpobstacle(x, s)), which means that the robot's be-

liefs about obstacles are a subset of the pilot's beliefs about obstacles. Also, since
in the (KD) logics we have B(l A P') ý-+ Bl A Bil', it would be a trivial extension
to LM to allow conjunction of literals in the scope of modal operators. Finally,
the regression operator RT allows us to check whether these kinds of properties
can be derived from To. The implementation of a modal theorem prover for the
restricted language LM should not be a big issue. We are currently working on
this aspect.

References

[Che88] B. F. Chellas. Modal Logic: An introduction. Cambridge University Press,

1988.
[LL98] G. Lakemeyer and H. Levesque. AOL: a logic of acting, sensing, knowing and

only knowing. In Proc. of the 6th Int. Conf. on Principles of Knowledge Represen-
tation and Reasoning. 1998.

[LR94] F. Lin and R. Reiter. State constraints revisited. Journal of Logic and Com-
putation, 4:655-678, 1994.

[McC68] J. McCarthy. Programs with Common Sense. In M. Minski, editor, Semantic
Information Processing. The MIT press, 1968.

[Rei9l] R. Reiter. The frame problem in the situation calculus: a simple solution
(sometimes) and a completeness result for goal regression. In V. Lifschitz, editor,
Artificial Intelligence and Mathematical Theory of Computation: Papers in Honor
of John McCarthy, pages 359-380. Academic Press, 1991.

[Rei99] R. Reiter. Knowledge in Action: Logical Foundations for Describing and Im-

plementing Dynamical Systems. Technical report, University of Toronto, 1999.
[SL93] R. Scherl and H. Levesque. The Frame Problem and Knowledge Producing

Actions. In Proc. of the National Conference of Artificial Intelligence. AAAI Press,
1993.

[SPLOO] S. Shapiro and M. Pagnucco and Y. Lesp6rance and H. Levesque. Iterated
Belief Change in the Situation Calculus. In Proc. of the 7th Conference on Prin-
ciple on Knowledge Representation and Reasoning (KR2000). Morgan Kaufman
Publishers, 2000.



Rule Based Abduction

Sai Kiran Lakkaraju and Yan Zhang

School of Computing and Information Technology
University of Western Sydney, Nepean

Kingswood, NSW 2747, Australia
E-mail: {slakkara,yan}lOcit .nepean.uws. edu.au

Abstract. This paper introduces a procedural approach to perform rule
based abduction in a knowledge base. In this context a knowledge base
is realised as a normal abductive logic program, and an observation can
be either a literal or a rule. A SLDNF resolution based proof procedure
is employed to achieve this rule based abduction. It is shown that using
this algorithm, one can always find a minimal explanation for the obser-
vation if there exists such an explanation.
Key words: Abduction, knowledge representation, nonmonotonic rea-
soning.

1 Introduction

Abduction plays a vital role in commonsence reasoning, knowledge representa-
tion, and database update. Basically, if the set of abducibles is constructed not
only with the facts/rules from the knowledge base but also from the beliefs of
other agents regarding the observations, then there is always a chance of making
the knowledge base more consistent and flexible. In nonmonotonic reasoning a
knowledge base always changes when ever a new observation is provided. In such
a situation there are three possible effects on the existing knowledge base.

1. The observation is already deducible from the knowledge base, i.e. the ob-
servation can be explained with the help of the existing knowledge.

2. A part of the knowledge base with the new observation is able to derive the
other part of the knowledge base. if so the size of the existing knowledge
base can be reduced.

3. Some facts/rules must be added to the existing knowledge base to explain
the observation.

An observation can be a fact, rule or a program. By finding the explanation to
the observation and by adding it to the knowledge base we eventually change
the knowledge base from an old state to a new state.
In this paper we mainly concentrate on such situations where observations are
rules. When an observation is a rule, we propose that the body part of the rule
must be explained first to form a new knowledge base which intern explains
the head of the rule. Then the union of the explanations gives the complete
explanation for the observation (the rule).

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 525-533, 2000.
(©) Springer-Verlag Berlin Heidelberg 2000



526 S.K. Lakkaraju and Y. Zhang

We will provide a SLDNF resolution approach, to update the knowledge base
when an observation is either a literal or a rule. The paper is organized as
follows. In the next section we introduce basic definitions and concepts about
abductive logic programs. In section 3 we outline the basic approach for our rule
based abduction through different examples. In section 4, based on the basic
idea presented in section 3, we formalize the procedures of abduction. Finally,
in section 5 we discuss related work and conclude the paper.

2 Definitions and Concepts

We first briefly explain the SLDNF proof procedure that we will use throughout
this paper. The linear resolution with selection function (or SL-resolution ) is a
restricted form of linear resolution. The main restriction is effected by a selection
function which chooses from each clause one single literal to be resolved upon
in that clause. SL-resolution operates on chains rather than clauses and hence
strictly is not a form of resolution. It does, however employ ideas of unification
and resolution. SLD resolution ( SL resolution for definite clauses ) is described
as follows, Let P be a definite program and G be a goal. An unrestricted SLD
derivation of P U g consists of a sequence Go = G, G1 ,."- of goals, a sequence
C1, C2 , ..- of variants of clauses in program P (called the input clauses of the
derivation), and a sequence 0(1), 0(2),'"" of substitutions. Each non-empty goal
Gi contains one atom, which is selected atom of Gi. The clause Gj+l is said to
be derived from Gi and Ci with substitutions O0 and is carried out as follows.
Suppose Gi is +- AI,.. . , Ak,...,Am and Ak is the selected atom. Let Ci =
A +- B 1,.-' , B,, by any clause in P such that A and Ak are unifiable with any
unifier 0. Then Gj+l is +-- (AI,,-" , Ak-1, B1,'", Bn, Ak+1, '"", Am)O and Oj±+
is 0. An unrestricted SLD-refutation is a derivation ending at an empty clause.
SLDNF resolution is essentially SLD-resolution scheme augmented by negation
as failure inference rule. The completeness and soundness are discussed by Lloyd
[4].
A rule is of form

Ao +- A&, ,Am, notBm+l, 1, notBn, (1)

where A0 ,'.. ,Am, Bm+i, .. ' , B,, are atoms of language £. A normal logic pro-
gram is a finite set of rules of form (1). A rule of form ÷-- & .. ', Am, notAm+l,
.. , notAn is called a normal goal. In a logic program P, a rule without body

A -- is called a fact. A term,atom,literal , rule or program is ground if no variable
occurs in it. It should be also noted that any free variable in a rule is assumed
to be universally quantified. If P does not contain any constant symbols, we will
assume one in P.
Now we define a normal abductive logic program to be a pair < P, A >, where
P is a normal Logic Program and A is the set of Abducibles. An abducibles is a
rule. Let < P, A > be a normal abductive logic program and g is a goal (obser-
vation). Note that g can be a literal or a rule. We first consider the case that g
is a literal. If g is a ground atom (we also call g is a positive observation), then



Rule Based Abduction 527

proper hypothesis is introduced to or removed form the current knowledge base
to explain the observation by showing that g can be derived from the resulting
knowledge base. If g is a negative ground atom (we also call g is a negative ob-
servation), then proper hypothesis is introduced to or removed form the current
knowledge base to explain the observation by showing that the corresponding
ground atom of g cannot be derived from the resulting knowledge base.

Definition 1. A pair (8, F) is an explanation of a positive observation (or
negative observation, resp.) g with respect to an abductive logic program < P, A >
if
1. (Pu S) -Y:G (or (PUUE) - YV ?7, resp.);
2. (P U 8) - J7 is consistent; and
3. & C A andY C A n P.

An explanation (9, Y-) of an observation ! is minimal if for any explanation
(S', J) of g, V' C and F7' C Y imply S' = S and Y' = Y.

3 The Approach

In this section we describe the basic idea of our approach of abductive reasoning
by illustrating several examples.

Example 1. Let < P, A > be an abductive program such that

P:

Bird(tweety) +-,

Bird(opus) ÷--,

Broken-Wing(tweety) --,
Ab(x) <-- Broken-Wing(x),
Flies(x) <-- Bird(x), notAb(x),

A:
Broken-Wing(x) +-.

The explanation for a positive observation g = Flies(tweety) can be deri-
ved from the SLDNF tree showed in Figure 1. That is, the observation g =

Flies(tweety) has an explanation (9, YF) = (0, {Broken-Wing(tweety) +-}).
On the other hand, an explanation (8, YF) for the negative observation 9 =

notFlies(opus) is ({Broken-Wing(opus) --}, 0) and can be derived from the
SLDNF tree showed in Figure 2. Note that to explain the fact notFlies(opus)
we have to add the fact Broken-wing(opus) +-- to the logic program P 0

Now we consider the case that the observation is a rule. An observation rule
is a rule of the form

Ao +- A,, A,, notBm+i, -, notBn, (2)
1 Here we use U to denote the complementary literal of g. For instance, if g is notF,

then g is F.



528 S.K. Lakkaraju and Y. Zhang

- Flies ( tweety) -Ab ( tweety)I
-Broken-wing(tweety)

Bird (tweety), not Ab (tweety)
"delete Broken-wing (tweety)

cD Failed

Fig. 1. The SLDNF tree for P U {+- Flies(tweety)}.

"Flies (opus)

-. Ab (opus)

-Bird ( opus), not Ab (opus) -- Broken Wing (opus)

"...Add Broken- Wing(opus)

failed

Fig. 2. The SLDNF tree for P U {+- Flies(opus)}.

or of the form

notAo <-- &1 A.•, notB.+ , ..., notB,. (3)

The former is called a positive observation rule, while the latter is called a ne-
gative observation rule.

Definition 2. Given an abductive program < 7P, A >, a pair (S, Y) is an ex-
planation of the observation rule g if there exist £1, .'", F, and Y1,... , Fn such
that

1. (P U 1) - 1 Ai,, (P. U -m) m - Am,(7m+1U m+)-Fm+l V
B.+l, " - •, (P U -In) -L n V B.;

2. (-P U S) - Y F- Ao (or -P U E) -. F V Ao if the head of g is notAo), where
9 1 U ... U E_ C E, and.U1U ... U Yn C_ ;

3. £ n . = 0 and (P U 8) - Y is consistent;

4. 9 C A•andYF C A nP.

(, .F) is a minimal explanation for g as there does not exist another explanation
($', Ut) of g such that S' C E and P c .F.

Now let us see how we can use the SLDNF resolution proof to achieve ab-
ductive reasoning in which an observation is a rule.



Rule Based Abduction 529

Example 2. Consider an abductive program < P, A> where

P:
Sci(Kiran) -

Math(Kiran) *-,

Crazy(x) Sci(x), notCs(x),
Happy(x) -- Crazy(x), Math(x),

Crazy(x) ÷- Phi(x).

A:
Happy(x) <- Crazy(x), Math(x),
Phi(Kiran) +--.

Consider the observation 9:

notHappy(kiran) *- Crazy(kiran), notCs(kiran).

According to our definition, we need to find Ej, £2 and Yl, F2 such that (P U
E1) - J1 F- Crazy(Kiran), (P U E2) - Y 2 V Cs(Kiran), and (P U S1 U E2)

-(T 1 U T 2) V Happy(Kiran).
Note any finitely failed SLDNF tree of P U {+- Q} implies that notQ is

derived from P. The detailed discussion is referred to in [2]. Now we have the
following revised SLDNF trees for deriving Crazy(Kiran) and notCs(Kiran)
respectively.

-Crazy (kiran) - Cs(kiran)

Sci (kiran),not nCskir Phi (kiran)

" •--c Ij krn 
failed

0 failed

Fig. 3. The SLDNF tree for P U {+- Crazy(Kiran)}.

According to our previous discussion, from Figure 3 we can see that a minimal
explanation for Crazy(Kiran) is (0,0). Since P V CS(Kiran), the minimal
explanation for notCs(Kiran) is (0, 0).

From Figure 4 we can see that to achieve (PUE) - Y V Happy(Kiran), there
are four possible explanations:

1. (£, )= (0, { Happy(Kiran) +-- Crazy(Kiran), Math(Kiran)}),
2. (E,F) = (0, {Sci(Kiran) +-}),
3. (E, Y) = (0, {Math(kiran) +-}),
4. (E, F) = ({Cs(Kiran) <-}, 0).

However,explanations 2 and 3 are not satisfying our definition F C An 'P,
explanation 4 is not satisfying our definition that £ C A . Also, as explanati-
ons for both Crazy(Kiran) and notCs(kiran) is (0,0), we can conclude that
explanation 1 is the only and final minimal explanation for g a



530 S.K. Lakkaraju and Y. Zhang

1-Happy(ki ran )

"" -. remove Happy(x)-- Crazy(X)
,Math(X)

Crazy(kiran),Math(kiran) "".
Failed

Sci(kiran), not C i), Math(kiranhi(kiraii), Math(kiran)

Remove ," Add, , Rethove

Sci(Kiran/)- " Cs(ki ranV. Math(Kiran

Fa',led Failed Faled

Failed

Fig. 4. The SLDNF tree for (P U {Phi(kiran) +--}) U {+-- Happy(Kiran)}.

4 Formal Descriptions

Based on the ideas presented previously, in this section we describe the formal
procedures for our rule based abduction. As it has been described in section 3,
our approach is based on the SLDNF resolution. In the SLDNF resolution proof,
the negation is proved from a logic program by finite failure. However, it is well
known that it is possible that a SLDNF tree may include infinite branch. In this
case, no result can be proved from the SLDNF resolution proof. For instance,
given a logic program P = {A +-- notB, B +-- notA}, no finite SLDNF tree exists
for P U {I-- Al. To avoid this problem, in this context, we assume that during
the abduction process, each SLDNF tree is finite in the sense that each branch
in the SLDNF tree is finite.

To simplify our following description, we also introduce some useful notions
about SLDNF trees. Observing a SLDNF tree described previously, e.g. figure
Fig.3 on page 6, if we use no,-. , ni, .. to denote all nodes in a SLDNF tree,
a SLDNF tree can be actually presented by a set of branches no -- n1  ý - ... ,
S.. , no -4 nk -ý - -.. Each branch in the SLDNF tree starts from the root node no.
Consider the SLDNF tree in Fig.3, it is quite clear that it can be described as two
branches no -÷ nl -ý n2 -- 0 and no -4 n 3 -4 Failed, where nodes no, n1 , n 2 , n 3

are ÷-- Crazy(Kiran), +- Sci(Kiran),notCs(Kiran), *- notCs(Kiran) and
+- Phi(Kiran) respectively. Node <0 indicates the end of a successful branch,
and Failed indicates the end of a finitely failed branch. We also call a segment
of a branch starting from the root node a path in a SLDNF tree.

Algorithm 1. Main(< P,A >, 9)
Function: Explain the observation g in logic program < P,A >
Input: A logic program (knowledge base) < P,A > and an observation g, where
the body of G consists of P 1,"', Pm, notPm+,..., notPn, Q is the head of the
observation
Output: < 9,.t > , P,
Begin

S= ;" = 0;
For each i (1 < i < m) Do Insert Hypothesis ( <P,A>,Pi);



Rule Based Abduction 531

For each i (m + 1 < i < n) Do Delete Hypothesis ( <P,A>,Pj);
If the observation is a positive observation

Then Insert Hypothesis( <P,A>,Q)
If the observation is a negative observation

Then Delete Hypothesis ( < P,A >,Q)
Print (P', < ,.F >);

End.

The function of algorithm Main (< P,A >,g) is to split the observation,
which is a rule, into a set of literals, deriving the explanation for each literal and
updating the program with the explanations starting from the body part of the
observation. Once the body part is explained and program is updated, the up-
dated program is used. It should be noted that we do not restrict an observation
to be ground. For a non-ground observation, as we mentioned earlier, we need to
consider all its ground forms which are obtained by substituting variables in the
observation with elements of program universe U (P)). This consideration will be
adopted in our following algorithms.

Algorithm 2. Insert Hypothesis(< P,A >,!)
Function: Explain the observation g WRT < P,A >
Input: A logic program < P,A > and an observation
Output: An explanation < S,5Y > such that ( P U E ) - 9 =)
Begin

Let P = P and Path = 0;
Loop

T = a finite SLDNF tree for P' U {+- g};
If there is a successful branch
no -+ nj --+ ... - - ni + in T and ni E A

then En= ni , S = EU S, P' = P'U E;
Return (< $,8 j>, ').
Select a finitely failed branch B in T such that Path C B:
no -- -. -+ ni --+ Failed;

(1) If ni has form +-- Pil, [not]Pi2 ,.
thenIf Pi _Athen£ = Pil, E = UE, P' = (P'UE);
Return (< Sj >, P');

(2) If ni has form +- notPi1 , [not]PA2 ,...,
P' =DeleteHypothesis(P', notPil --);

EndLoop
End.

The detailed explanation of the above algorithm is referred to our full paper
due to the space limit of this paper. Here it is sufficient to highlight some key
ideas embedded in this algorithm.
The algorithm Main splits the observation into a set of literals and passes
them to the algorithm Insert hypothesis. If there is a successful branch in
the SLDNF tree, then the process stops. Otherwise, we need to add or remove
some rules from P so that the goal <-- Q can be achieved. It is worth noting that
if a sub goal +- notP fails in some branch of the SLDNF tree, we need to call



532 S.K. Lakkaraju and Y. Zhang

algorithm DeleteHypothesis(P', notP +-), which will be described below, in
order to achieve the sub goal +- notP. Finally, after change P to P)' such that
P' F- g. First, the body of the observation is explained using this algorithm by
SLDNF tree for P U{+- G} where G is an atom from the body of the observation.
Once the body of the observation is explained completely and a new program

P = (P U 9) - T is formed to explain the head of the observation, thereafter

from the SLDNF tree for P' U {+- g} where g is the head of the observation we
will get another set of explanation which combined gives the explanation for the

observation.

Algorithm 3. Delete Hypothesis(< P,A >,G)
Function: Explain the observation g WRT < P,A >
Input: A logic program < P,A > and an observation g
Output: An explanation < ,.F > such that (P U £ ) - . V G)
Begin

T = a finite SLDNF tree for P' U {+- g};
Loop

Let T = a finite SLDNF tree for P' Uf {+- G};
For each successful branch B in T,

(1) If there exist two nodes ni and ni+j in B such that ni -+ ni+1,
where ni and ni+j have forms +- Pil, [not]Pi2 ,... and s-

[not]Pi2,... respectively, then T, = Pil;
If Tn C A n P Then T = .F U n, P = P - F;
Return (P' , < 9,.F > );

(2) If there exist two nodes ni and nj+l in B such that ni -+ ,
where ni and ni+1 have forms ÷- notPi1 , [not]Pi2 ,... and 4-

[not]Pi2 ,... respectively, then S, = Pi;
if n _C A then E = E U $n,P' = P, U'6;
Return (P', < E, i >);

(3) If there exist two nodes ni and nj+l in B such that ni - ni+l,
where ni and nj+j have forms +- Pil, [not]PA2,... and
+-- [not]Pill,. .-, [not]Pilq, [not]Pi2,. ..-

respectively in which a rule r: Pil <- [not]Pil,..., [not]Pilq
is used to derive node ni+1 , then T,- = r;

IfFn 9 A An P ThenY= Y U J, 'P' = P' -
Return (P' , < , .F >)

T = a finite SLDNF tree for <'{-- G};
EndLoop

End.

Theorem 1. Given-an abductive logic program < P, A > and an observation
rule G. If there exists an explanation for g, then the algorithm Main(< P, A >
,G) will always return an explanation ($, .F) for g, and this explanation is mi-
nimal.



Rule Based Abduction 533

This theorem ensures that our procedure only finds the minimal explanation for
an observation with respect to an abductive logic program if there exists some
explanations for this observation.

5 Concluding Remarks

In this paper, we propose a SLDNF proof approach for abductive reasoning.

Differently from previous approaches, our approach allow the observation to
be a rule. Since within our framework, an abductive reasoning is translated
into a SLDNF proof, our approach can be easily implemented based on the
revision of traditional SLDNF proof procedure. Finally, we should mention that
the system implementation based on the framework proposed in this paper is
being undertaken currently.

References

1. A.C.Kakas, F. Toni and R.A. Kowalski, Abductive logic programming, Journal of
Logic and Computation (1993) PP 719-770.

2. A.C. Kakas and P. Mancarella, Database updates through abduction. In Proceedings
of the 16th VLDB Conference, pp 650-661, 1990.

3. S. Lakkaraju and Y. Zhang, A Procedural Approach for Rule Based Update In
Proceedings of AI-99.

4. J.W. Lloyd, Foundations of Logic Programming, 2nd edition. Springer-Verlag, 1987.
5. C. Sakama and K. Inoue, Updating extended logic programs through abduction. In

Proceedings of LPNMR-99, pp 147-161, 1999.
6. Y. Zhang and N.Y. Foo, Updating logic programs. In Proceedings of the 13th Eu-

ropen Conference on Artificial Intelligence (ECAI'98), pp 403-407. John Wiley
Sons, Inc., 1998.



An Efficient Proof Method for Non-clausal
Reasoning

E. Altamirano, G. Escalada-Imaz

Artificial Intelligence Research Institute (IIIA)
Spanish Scientific Research Council (CSIC)

Campus UAB, s/n
08193 Bellaterra, Barcelona (Spain)
{ea1tamir,gonza1o}Jiiia. csic. es

Abstract Enlarging the class of tractable SAT problems is a relevant
topic because of the repercussions in both practical applications and the-
oretical grounds. In this paper, it is proved that some non-clausal Horn-
like formulas can be solved in linear time. In addition to its theoretical
importance, this result has a special practical interest because Knowl-
edge Based Systems could benefit of it due to the Horn-like structure
of the formulas. In order to prove such linearity a correct refutational
calculi is first provided and second, a linear algorithm is described.

1 Introduction

To represent knowledge and to reason with non-clausal formulas is a matter
of high importance in Artificial Intelligence and more generally in Computer
Science. However, most of the existing methods have been designed for clausal
reasoning. Thus, the two main methods to solve problems in non-clausal formulas
transform the original non-clausal formula to a clausal formula. Both transfor-
mations have severe drawbacks because either the number of propositions of the
transformed formula increases exponentially as a consequence of the V/A distri-
bution or a certain number of artificial literals are introduced in the transformed
formula losing the logical equivalence relation which could be invalid for certain
applications.

In this paper, we identify Negation Normal Form (NNF) formulas F1 A F2 A
A F, having a Horn-like structure. Each Fi is a disjunction of two optional

terms, i.e. F1 = NNFi- V C+: the first one is a NNF formula with only negated
propositions, noted NNF-, and the second one is a conjunction of non-negated
atomic propositions, noted C+.

The kind of formulas we deal with in this paper can arise from an original
non-clausal representation of the problem. They are compact representations of
Horn formulas given that they require less symbols than Horn formulas to codify
identical problems; this reduction can be in an exponential rate.

This paper is structured as follows. In the next section we briefly review the
research about non-clausal tractable reasoning and related issues. After having

Z.W. Rai and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 534-542, 2000.
© Springer-Verlag Berlin Heidelberg 2000



An Efficient Proof Method for Non-clausal Reasoning 535

done the formal definition of the mentioned formulas, we define a sound and
refutational complete logical calculi and finally, we detail an algorithm in pseudo-
code with suitable data structures to resolve SAT-problems expressed in this
kind of specified formulas. This algorithm is showed to be sound, refutational
complete and it runs in strictly linear time.

2 Related Work

Several methods have been developed to infer with non-clausal formulas. This
is the case of Matings [2], Matrix Connection [3], Dissolution [9], and TAS [7].
However, no studies relative to NNF tractability employing one of these methods
have been carried out.

As far as we know, the first published results concerning non-clausal tractabil-
ity comes from [4-6] where a strictly linear forward chaining algorithm to test
for the satisfiability of certain NNF formulas subclass is detailed. Such a class
embeds the Horn case as a particular case. In [8] a linear backward algorithm is
given for the same NNF subclass of formulas. Following this research line, very
recently a preliminary version of this article has been presented in [1].

New results concerning NNF tractability are reported in [11] where a method
called Restricted Fact Propagation is presented which is a quadratic, incomplete
non-clausal inference procedure. More recently, in [12, 13] a significant advance
has been accomplished. The author defines a class of formulas by extending Horn
formulas to the field of the NNF formulas. Such extension relies on the concept
of polarity. A method to make inferences and potentially to detect refutational
formulas is designed. In [12], a SLD-resolution variant with the property of be-
ing refutationally complete is showed but its computational complexity is not
studied. In [13] a method for propositional NNF Horn-like formulas is described
and it is stated that the method is sound, incomplete and linear.

However, concerning the last issue, no algorithm is specified, indeed the steps
of the method are described as different propagations of some truth values in
a sparse tree. Then, although it seems that the number of inferences of the
proposed method is linear, it is not proved the resulting complexity (w.r.t. the
number of computer instructions) of a linear number of truth value propagations
on the employed sparse trees.

3 Our formulas

Firstly, we introduce our class of non normal formulas.

Definition 1. A literal L is either an atomic proposition p e P, noted L+ or
its negation -'p, noted L-.

Notation From now on, D stands for a disjunction of literals (L1 V ... V Lk)
and C denotes a conjunction of literals (L1 A ... A Lk). D+ and C+ (D- and
C-) include only positive (negative) literals.



536 E. Altamirano and G. Escalada-Imaz

Definition 2. A CNF formula is a conjunction of disjunctions of literals (D1 A
... A Din) and DNF is a disjunction of conjunction of literals (Cl V ... V Ci).
Also, CNF+ and DNF+ (resp. CNF- and DNF-) includes only positive
(resp. negative) literals.

Definition 3. A clause CF is a disjunction of three optional terms CF =

DNF- V CNF- V C+. Clauses with only the DNF- V CNF- (resp. C+) term
are said negative (resp. positive) clauses. We denote the empty clause by ZI.
A formula F is a finite conjunction of clauses CF. We note Fo any formula
containing the empty clause El.

Example 1. An example of the kind of the defined formulas is F = {(pi), (P3),

(P6), (((-p' A -'P2) V -'P3) V ((-'p4 V -P5) A -"P6) V (p7 AP 8 )), (-'P8)}. For the non
unitary clause we have DNF- = ((-pi A -'P2) V -'PM), CNF- = ((-'pa V -,p5) A
-'PG). This non unitary clause is equivalent to eight clauses, for instance two of
them are: ('PI V -'P3 V -P4 V -P 5 V P7 ) and (-'P2 V -'P3 V -p6 V Ps).

Definition 4. An interpretation I assigns to each formula F one value in the
set {0, 1} and it satisfies:

- A literal p (-ip) if] I(p) = 1 (1(p) = 0).
- A disjunction D L1 V ... V Lk, iff I(Li) = 1, for at least one Li.
- A conjunction C = L1 A ... A Lk, iff I(Li) = 1 for every Li.
- A clause CF = DNF- V CNF- V C+, iff I(DNF-) = 1 or I(CNF-) = 1

or I(C+) = 1.
- A formula F if I satisfies all clauses CF of the formula.

An interpretation I is a model of a formula F if satisfies the formula. We say
that F is satisfiable if it has at least one model, otherwise, it is unsatisfiable.

Definition 5. Variable Truth Assignment (VTA) If (p) G F then VTA
derives a new formula F' resulting of removing from F the unit clause (p), the
conjunctions (-'pA-'pi A.. .A--pk), (-pAD2 A. .. ADM), and all the occurrences
of- p.

Definition 6. And-Elimination (AE) Inference rule AE derives from a posi-
tive conjunction clause (piA... .ApiA.. .Apn), the unit clauses (pl),... (Pi), , (pn).

Definition 7. Clause Proof A refutation of a formula F, is a finite succession
of formulas < F 1 ,F 2,...,Fn > such that F1 = F, Fn = Fo and for each 1 < i <
n - 1, either Fi+1 = VTA(Fi) or Fi+1 = AE(Fi).

Example 2. A proof of the unsatisfiability of F in the previous example is:

{(Pl), (P3), (P6), (((-'P1 A -P2) V -P3) V ((-iP4 V -iP5) A -P6) V (P7 A P8 )), (-'P8)}
[-VTA {(P3), (P), (-"P3 V ((-'P4 V -p5) A"-P 6 ) V (P7 Ap8)), (-p8)}

F-VTA {(P6), (((-P4 V -'P5) A -P6) V (P7 Ap8)), (-P8)}

FVTA {(P7 A P 8 ), (-'P8)}

[-AE {(P,), ), (-P8)1
-VTA f (P7), E'1} = F7O



An Efficient Proof Method for Non-clausal Reasoning 537

Theorem 1. Soundness F [-(VTA+AE) F' • F = F'.

The proofs of the soundness of each rule are trivial and the proof of the
theorem follows straightforwardly from those proofs.

Theorem 2. Refutational Completeness Let F be an unsatisfiable formula;
then F 1

-(VTA+AE) Fr.

The proof is by induction on the length of F, i.e. the number of occurrences
of literals in F. The following theorem extends completeness to atomic clauses.

Theorem 3. Literal Completeness F z (L) > F 1-(VTA+AE) (L).

Comparing VTA/AE proofs with known automated deduction approaches
as for instance Analytic Tableau, Path Dissolution, Matrix Connection, etc. is
beyond the scope of this article. For a discussion about complexity of Tableau
proofs and resolution approaches the reader can see [10,14].

4 Algorithm Description

The principle of the algorithm is the application of the VTA and AE inference
rules until one of the following facts arise: (1) the empty clause is derived, or
(2) no more new unit clauses can be derived. In case (1) the original formula
is detected to be unsatisfiable meanwhile in case (2) the formula results to be
satisfiable.

Brief description of the algorithm We describe roughly the steps of the
algorithm. Initially, it tests whether F has positive unit clauses. In the negative
case, it returns "satisfiable" because all the clauses have at least one negative
literal. So, assume that (p) c F. Thus F is satisfiable iff F.{p +- 1} is satisfiable.
In other words F is satisfiable iff the formula F' resulting of removing from F the
unit clause (p), the conjunctions (-,p A -,Pl A... A -'pk) and (-ip A D- A... A DM)
and all the remaining occurrences of the literal -'p, is satisfiable. Thus, whenever
(p) E F the algorithm removes from F the mentioned elements, i.e. it applies
the VTA inference rule. This operation is performed by the algorithm for each
positive unit clause in F. Now, observe that some clauses in the initial formula
can become positives (CF = C+) because of the removals of some negative parts.
Also due to these removals, a pure negative clause (CF = DNF- V CNF-) can
become empty. Thus, at this point, three algorithmic states can arise:
1) An empty clause is produced. The algorithm ends by determining that the
original formula is unsatisfiable; 2) No positive clauses have emerged. The al-
gorithm ends by determining that the formula is satisfiable; and 3) A positive
clause is produced. Then, the algorithm applies the And-Elimination rule and
adds new unit clauses to the formula. Thus, a new iteration of the described
operations above are carried out with these new unit clauses.

We begin the description of the algorithm by a very simple recursive version
in order to help the reader to understand it: each inference rule is implemented



538 E. Altamirano and G. Escalada-Imaz

by one procedure. Thus, procedures VTA and AE must perform the following
operations according to the definition of their corresponding inference rules:

(VTA F p): It applies the VTA rule returning the formula FP resulting of
removing from F the clause (p) and the the conjunctions (-1p A -'Pl A... A -'Pk),
(-,p A D- A ... A D.) and all the remaining occurrences of -,p.

(AE F C+): It applies the And-Elimination rule returning the formula F'
resulting of removing C+ from F and adding the unit clauses (p) for each con-
junct p in C+.

We note F+ the set of positive clauses in F which can be empty. The main
procedure is configured by the simple next code.

VTA-AE-Propagation(F)
If F+ = {} then return(sat)
If El C F then return(unsat)

If (p) C F then return(VTA-AE-Propagation (VTA F p))
If C+ E F then return(VTA-AE-Propagation (AE F C+))

Theorem 4. This algorithm returns sat iff the input formula F is satisfiable.

Theorem 5. The maximal number of recursions is at most in 0(size(F)).

The previous algorithm is correct but not very efficient. Its efficiency is similar
to that of the methods proposed in [11-13]. Although the number of recursions is
bounded by O(n), the complexity of each line is clearly not constant and so, the
algorithm's complexity measured in computer instructions number is not linear.
One can check that searching for the clauses including some occurrence of -'p
without a suitable data structure has O(size(F)) computational cost. Hence, the
real complexity of the algorithm in number of computer instructions is at least
in 0(n 2 ).

Optimal algorithm description. Next, we proceed introducing suitable
data structures to bound the worst-case complexity and we shall do it progres-
sively in order to facilitate the understanding of the whole algorithm since its
complete definition in pseudo-code contains many details. Thus first we shall
discuss the VTA operations relative to the CNF- term, second to the DNF-
and finally to both together. So, the structure of (VTA F p) is as follows:

(VTA F p)

(VTA-CNF p)
(VTA-DNF p)
(VTA-DNF-CNF p)

The function in the last line potentially returns conjunctions C+ if both neg-
ative terms of their respective clauses CNF7- and DNFi- have been falsified.
Now let us focus in each one of these three parts of VTA.



An Efficient Proof Method for Non-clausal Reasoning 539

CNF- processing. A CNF- = Di A ... A D. is falsified when all the
propositions in the negative literals of at least one disjunction D- in the CNF-
are derived. According to the VTA inference for each (p) E F the negatives
occurrences -'p must be removed. To perform this step, we should search the
--p occurrences and remove them from the CNF term. But this search has an
0(n) overhead. To render this cost constant we use a counter Neg.Counter(D7)
associated to each disjunction Di E CNF-. Thus the physical removal is sub-
stituted by the decrement operation. Each decrement, done in 0(1) time, is
equivalent to one removal. In this way, the counter associated with a disjunction
indicates the number of literals whose proposition has not been deduced yet.
Whenever a counter is set to zero a flag flag(CF, ONF) is turned on and this
will be used in the conjunct processing of the CNF- and DNF- terms.

Therefore, to handle the CNF- term we require two data structures:
Neg.D(p): Set of pointers to couples (D-, CF) such that -'p E D- C CF; and
Neg.Counter(D-): Counter of negated propositions -'p in the disjunction D-
such that p has not been deduced yet.
Notation. Henceforth, [X] denotes a pointer to the object X. For example [CF]

is a pointer to the clause CF.
The algorithmic application of VTA over the CNF term is as follows:

VTA-CNF (p)
Remove (p) from F
for V([D-], [CF]) E Neg.D(p) do:

Decrement Neg.Counter(D-)
if Neg.Counter(D-) = 0 then flag(CF, CNF) +- 1

DNF- processing. The processing of the DNF by the VTA when a clause
(p) is deduced is based also in the adequate handling of counters. However,
these counters operate differently that in the CNF case. Indeed for each DNF a
unique counter is associated. Thus each decrement must correspond to one and
only one conjunction C- C DNF. So, the counter is set to zero when at least
one proposition p for each conjunction is deduced and each of these propositions
falsifies each conjunction C- C DNF-, because -'p E C-.

But, notice that further deduced propositions whose complements belong
to the same negative conjunction must not provoke decrements of the counter.
Indeed, only one decrement for each conjunction can be enabled. Otherwise, the
counter could be set to 0 without having falsified the whole DNF-. Indeed that
could happen if DNF- = CT V C• V ... V C7 V ... V C• and the propositions
deduced are not distributed in all the k negative conjunctions.

To ensure that the counter is decremented only once per each negative con-
junction, we require a flag First(C7) which indicates whether any proposition
whose negation is in C,- has been already derived. Thus, the meaning of the
aforementioned flag is First(C7) = 0 (false) if no proposition in C0- has been
deduced. Once the first proposition is deduced First(C7) is set to 1 (true).

Similarly, to the CNF case, if the DNF part of a clause is falsified then a flag
flag(CF, DNF) is turned on. With the two new data structures the algorithm
corresponding to the execution of the VTA over the DNF term is the following



540 E. Altamirano and G. Escalada-Imaz

VTA-DNF (p)
for V([C-], [CF]) E Neg.C(p) do:

if First(C-) = 0 then do:
Decrement Neg.Counter(CF)
First(C-) ý- 1;
if Neg.Counter(CF) = 0 then flag(CF, DNF) ý- 1

CNF- and DNF- conjunct processing.
Both algorithmic operations above have been done independently, now we re-
quire to joint the effect of the algorithms by considering the state of both flags
flag(CF, CNF) and flag(CF, DNF). Thus, if both flags are turned on means
that the disjunction CNF- V DNF- of CF has been falsified and then the con-
junction C+ of CF is deduced since CF = CNF- V DNF- V C+. If C+ is the
empty conjunction, the initial formula is unsatisfiable, otherwise the procedure
AE will be launched. Thus the algorithmic steps are:

VTA-DNF-CNF (F p)
for V[CF] E Neg.C(p) U Neg.D(p) do:

if flag(CF, CNF) = flag(CF, DNF) = 1 then:
if 3C+ = 11 E Cf then return (unsat)
else C+ = (p, A... A pn)

AE algorithm. We will now describe the application of the AE(C+) pro-
cedure, i.e. the And-Elimination inference rule. We observe first that a same
proposition p can be deduced in more than one conjunction C+, and then the
counters could be decremented more than once. To disallow these multiple decre-
ments, we use a boolean variable as follows: Val(p) = 1 iff p has already been
derived from F. So, the truth propagation of variable p is allowed only when
the flag Val(p) is set to 0, and once the propagation has been performed, the
flag is set to 1 disallowing further propagations. Also, a list C+ of non-negated
propositions in CF is required. Thus, the procedure AE becomes:

AE (C+)
for Vp E C+ do:

if Val(p) = 0 then do:
Add (p) to F
Val(p) -- 1

Complete algorithm. Finally, we present the definitive version of the whole
algorithm. By lack of space we omit the procedure to initialise all data structures
employed by the algorithm. To improve the search of unitary clauses (p) and
conjunctions (C+) these are placed, when they are deduced, into two respective
stacks stack.p and stack.C with the purpose of avoiding searching them inside
the formula. Thus, the complete algorithm is given below.



An Efficient Proof Method for Non-clausal Reasoning 541

while stack@p € {} do:

p +- pull(stack.p)
;VTA-CNF (p)

for V[D-, CF] G Neg.D(p) do:
Decrement Neg.Counter(D-)
if Neg.Counter(D-) = 0 then flag(CF, CNF) +- 1

;VTA-DNF (p)
for V[C-, CF] E Neg.C(p) do:

if First(C-) = 0 then do:
Decrement Neg.Counter(CF);
First(C-) +- 1;
if Neg.Counter(CF) = 0 then flag(CF, DNF) I- 1

;VTA-DNF-CNF (p)
for V(CF) E Neg.D(p) U Neg.C(p) do:

if flag(CF, CNF) = flag(CF, DNF) = 1 then:

if 3C+ = El E Cf then return (unsat)
Else push(C+, stack.C)

;AE (C+)
while stack.C $ {} do:

C-4 +- pull(stack.C)

for Vp E C+ do:
if Val(p) = 0 then do:

push(p , stack.p)
Val(p) +- 1

return (sat)

Theorem 6. Correctness. The algorithm described in the above lines returns
"unsat" iff F is unsatisfiable.

The proof follows from the correctness of the Logical Calculi given that the
algorithm is an implementation step by step of the inference rules. Each one
of the operations performed by the algorithm has its counterpart in the pure
inference process as it has been described.

Theorem 7. The complexity of this algorithm is strictly in O(size(F)).

The proof of this theorem basically resides in the fact that each proposition
is introduced at most once in stack.p and each conjunction C+ at most once in
stack.C. Hence, the total cost of the "for" loops is bounded by the number of
occurrences of literals in the initial formula.

5 Conclusions

We have defined a new class of non-clausal formulas having a Horn-like shape.
This class includes Horn formulas as a particular case. Secondly, we have pre-
sented a calculus and showed its soundness and completeness. And, finally, we



542 E. Altamirano and G. Escalada-Imaz

have designed a strictly linear algorithm to solve the SAT problem in this class.

Our formulas are of relevant interest in many applications as for instance those
based on Rule Based Systems where they can benefit of the use of a richer lan-
guage than Horn classical formalisms. The proposed formulas represent logically
equivalent pure Horn problems but with exponentially less symbols. Hence, as
the described algorithm runs in linear time, the gain of time can be of an expo-
nential order with respect to the known linear algorithms running on the Horn
formulas.

Acknowledgements This research was developed under a bilateral collabora-
tion between the IIIA-CSIC and the CINVESTAV-CONACyT and was partially
financed by the Universidad Aut6noma de Guerrero (Mexico).

References

1. E. Altamirano and G. Escalada-Imaz. Two efficient algorithms for factorized Horn
theories (in Spanish). In V Conferencia de Ingenieria Elctrica, CIE'1999, Mexico,
D.F., september 1999.

2. P.B. Andrews. Theorem proving via general matings. Journal of Association
Computing Machinery, 28, 1981.

3. W. Bibel. Automated theorem proving. Fiedr, Vieweg and Sohn, 1982.
4. G. Escalada-Imaz. Linear forward inferences engines for a class of rule based

systems (in French). Technical Report LAAS-89172, Laboratoire D'Automatique
et Analyse des Systemes, Toulouse, France, 1989.

5. G. Escalada-Imaz. Optimisation d'algorithmes d'inference monotone en logique des
propositions et du premier ordre. PhD thesis, Universit6 Paul Sabatier, Toulouse,
France, 1989.

6. G. Escalada-Imaz and A.M. Martinez-Enriquez. Forward chaining inference en-
gines of optimal complexity for several classes of rule based systems (in Spanish).
Informdtica y Automdtica, 27(3):23-30, 1994.

7. G.Aguilera, I.P. de Guzman, and M. Ojeda. Increasing the efficiency of automated
theorem proving. Journal of Applied Non-classical Logics, 5(1):9-29, 1995.

8. M. Ghallab and G. Escalada-Imaz. A linear control algorithm for a class of rule-
based systems. Journal of Logic Programming, (11):117-132, 1991.

9. N.V. Murray and E. Rosenthal. Dissolution: making paths vanish. Journal of the
ACM, 3:504-535, 1993.

10. N.V. Murray and E. Rosenthal. On the computational intractability of analytic
tableau methods. Bulletin of the IGPL, 2(2):205-228, September 1994.

11. R. Roy-Chowdhury-Dalal. Model theoretic semantics and tractable algorithm for
CNF-BCP. In Proc. of the AAAI-97, pages 227-232, 1997.

12. Z. Stachniak. Non-clausal reasoning with propositional definite theories. In Inter-
national Conferences on Artificial Intelligence and Symbolic Computation, volume
1476 of Lecture Notes in Computer Science, pages 296-307. Springer Verlag, 1998.

13. Z. Stachniak. Polarity guided tractable reasoning. In International American
Association on Artificial Intelligence, AAAI-99, pages 751-758, 1999.

14. A. Urquhart. The complexity of propositional proofs. The Bulletin of Symbolic
Logic, 1(4):425-467, 1995.



An Intelligent System Dealing with Complex
Nuanced Information within a Statistical

Context

D. Pacholczyk, F. Dupin de Saint Cyr

LERIA, University of Angers, 2, Bd Lavoisier, F-49045, Angers CEDEX 01, FRANCE

Abstract. The main object of this paper is to propose an intelligent
system dealing with affirmative or negative information. We do not refer
to a logical negation but to a linguistic one. Moreover, not only atomic
but also complex nuances can be denied. Among the intended meanings
of a linguistic negation, the choice is made by using the strength of the
user negation and a preference principle which takes into account the
answer simplicity.

1 Introduction

In this paper, we present a general model dealing with nuanced information ex-
pressed in affirmative or negative forms as they may appear in knowledge bases
including, rules like "If the patient is not vaccinated, the inflammation due to
the test is not moderate or high" and facts like, "the inflammation due to the
test is not small". In our work, we do not refer to classical logic negation but to
a new kind of negation called linguistic negation. The representation of affirma-
tive information can be made by using the model proposed in [1] which can deal
with nuanced information within a fuzzy context [11], and the representation of
negative information can be based on the methodology proposed in [6-8]. Pre-
vious models [6], [8] have been improved in [7] in such a way that a user can
now deny a combination of nuanced properties called here a complex nuance.
The first object of this paper has been to improve previous negation operators
in such a way that all negation forms Ft of complex nuances U come from the
mechanism, denoted "All ... except ... ", which defines Negt (x, U), the reference
frame of the linguistic negation of "x is U", given Ft. The strength p with which
the user denies "x is U" defines Negt (x, U) a set containing V the affirmative
translations of the denied nuance U. In many cases, the user wishes only one
affirmative translation, so a choice strategy extracts one intended meaning be-
longing to Nege' (x, U). In [6,7], the choice is made among the solution leading to
the greatest membership degree ILV (x). When the linguistic negation is restricted
to one nuanced property, statistical data have been exploited to make this un-
certain choice [3]. The second object of this paper has been to enrich this choice
strategy in order to deal with denied complex nuances. This is made by taking
into account statistical data on the discourse universe, such as the frequency of
use of a fuzzy property associated with a concept, and of a nuance applied to a

Z.W. R9~ and S. Ohsuga (Eds.): ISMILS 2000, LNAI 1932, pp. 543-551, 2000.
@ Springer-Verlag Berlin Heidelberg 2000



544 D. Pacholczyk and F. Dupin de Saint Cyr

property. We also suggest taking into account linguistic statistics about the use
of negation in natural language. In order to illustrate this model, we consider
an example of reasoning on medical facts and rules in a medical diagnosis field
The statistical information are calculated by exploiting index cards written by
a doctor after his consultations. From the following three index cards (iCi) and
five rules (Rj), we wish to deduce a diagnosis.
ICi: The temperature is not very low, the eardrum color is really very red, fat
eating is low, the tension is perfectly (i.e. "exactly") normal
IC2:The temperature is not very high, the eardrum color is normal, fat eating
is high, and the tension is normal.
IC 3: The temperature is rather little high, the eardrum color is normal, fat
eating is very low or really moderate, the tension is normal, and the inflamma-
tion due to the monotest is not small.
RI: If the temperature is high and the eardrum color is very red, the disease is
an otitis.
R2: If the temperature is not normal, the patient is ill.
R3: If fat eating is not moderate, the cholesterol risk is not low.
R4:If the cholesterol risk is high, a diet with no fat is recommended.
R5: If the patient is not vaccinated, the inflammation due to the test is not
moderate or high.

2 Nuanced Expression Probability

We suppose that the discourse universe is characterized by a finite number of
concepts Ci. A set of basic properties Pik is associated with each Ci, whose de-
scription domain is denoted as Di. For example, the concept "temperature" can
be characterised by the basic properties "low", "normal" and "high" ; the con-
cept "eardrum colour" by the basic properties "normal" and "red" ; the concept
"cholesterol risk" by the properties "not-existent", "low", "moderate", "high"
and "tremendous", the concept "feat eating" by the properties "zero", "low",
"moderate" and "high", and the concept "inflammation" by the properties "not-
existent", "small", "moderate" and "high". Moreover, linguistic modifiers allow
us to express nuanced knowledge like "the temperature is rather normal". In this
paper, we use the methodology proposed in [1] to cope with affirmative informa-
tion like "x is famrPei" and with negative information like "x is not f"moPik"
(where f• and m3 are linguistic modiflers ). In the following, fm# is called the
nuance applied to Pik. The modifiers f, and m, are taken from two ordered
sets of fuzzy modifiers. The first one groups translation modifiers which operate
both a translation and a precision variation on the basic property: in this paper,
we use M9={rmn}•c[z.. 9 ] = {extremely little, very very little, very little, rather
little, moderately, rather, very, very very, extremely} (Figure 1). The second set
contains precision modfliers which make it possible to modify the precision of
the properties. Here, we use F6 = {ff} ,G[1..6] = {vaguely, neighboring, more or
less, moderately, really, exactly} (Figure 2). These two sets are totally ordered



An Intelligent System Dealing with Complex Nuanced Information 545

by the relation: ma <m, (resp. f, <f,) #= a < 3. The modifier "moderately"
is equivalent to the empty word.

7 1 A 4,( 1

Fig. 1. Translation Modifiers

high

Neighbourn
Moreor ess

0
Really

p Esecty

Fig. 2. Precision Modifiers

From the set of index cards owned by the doctor, we can extract statistical
knowledge about the use of nuance expressions in his language. Note that these
statistics are computed only on affirmative expressions contained on these index
cards. After index cards analysis, the percentages of use of every basic property,

when the doctor speaks about a given concept, are available.
Example: For the concept of temperature, the statistical probability that he uses
the term "low" is calculated by counting the occurrences of the term "low" (pos-
sibly with a nuance) with regard to the total number of expressions concerning
temperature. For instance: 5% of positive expressions concerning 'temperature"
use the term "low", 80% the term "normal" and 15% the term "high".

In the same way, we can obtain statistics about the use of every possible
nuance for every basic property. In practice, we only need statistics about the
use of relevant nuances: a combination of modifiers fam# is relevant if it is used
in English. Out of 54 possible nuances, finally only 20 are relevant. The statistics

concerning the use of these 20 relevant combinations are computed in the same
way as for basic properties.
Example: For the property "low" associated with the concept of "temperature",
the statistical probability that the doctor uses the nuance "really very" is com-
puted by counting the occurrences of "really very low" with regard to the total
number of expressions containing "low" and concerning temperature. For in-
stance: 5% of positive expressions containing "low" use the nuance "really very",
20% the empty nuance, 1% "very little", 8%o "very"...



546 D. Pacholczyk and F. Dupin de Saint Cyr

Proposition 1. For any expression e = "x is f~mfn Pik ", the statistical probabil-
ity that the doctor uses this expression in an index card when he speaks about the

concept Ci is: if Pr(bp(e) = Pik) > 0 then Pr(e) = Pr(bp(e) = Pik) x Pr(n(e) =
fmzIbp(e) = Pik) else we set Pr(e) = 0, where n(e) and bp(e) are respectively
the nuance and the basic property of e.

Example: The statistical probability that "very low" appears in affirmative
expressions concerning a patient "temperature" is equal to 0.05 x 0.08 = 0.004.

Definition 1. Given G = {Ah}h=1,...p a subset of Ni (the set of all nuanced
properties associated with the concept C) any finite combination of nuanced
properties of G based upon the operators A and V, denoted as U(A 1, .. , Ah, .. , AP),
is said to be a complex nuance induced from G. The set of all complex
nuances induced from G is denoted G*.
If no confusion is possible, then U stands .for U(A 1, . . . , Ah,. . . , Ap).

More formally, if we suppose that any complex nuance is defined in the prefixed
form, then G* can be recursively defined as .follows:
1 - VAh E G, Ah E G*, 2 - VU E G*, VV E G*, -yUV E G*, with -y E {A, V}, 3
- Any element of G* results from a finite number of uses of rules 1 and 2.

Definition 2 (First preference principle). Let U(AI, .., Ap) and V(B1 , .. , Bq)
be to complex nuances where every Ai (resp. Bj) are distinct: U is preferred to
V if and only if l-j=H..p Pr(Aj) > F1j=1..q Pr(Bj).

Example: The expression "x is low" is preferred to "x is low or really very
low" since Pr( "x is low") >Pr( "x is low") x Pr( "x is really very low"), 0.1 >
0.1 x 0.0025 = 0.00025.

3 Linguistic Negation Translations

Taking into account several linguistic results [5,4, 2], Pacholczyk showed in [6]
that when the user says "x is not U":(1) he rejects the sentence "x is U", and
(2) he possibly refers either to another object y (i. e., "y is U") or to another
property V (i. e., "x is V") distinct from U but which concerns the same concept
Ci. The linguistic negation concept used here is defined, as in [9], by a one-to-
many mapping from E into q3(Qý) (E parts), called here a multi-set function.
In this paper we propose a new definition of the concept of linguistic negation
which can be viewed as a generalization of the one proposed in [8]. Let M be the
set of every possible modifier combinations (including irrelevant combinations)
(M = {f.}aI[1..6] x {m,3}J3e[1..9]). Given a concept Ci, let Bi = {Pik}kGEV be
the set of basic properties associated with Ci having as definition domain Di,
Nik be the set of all nuanced properties associated with property Pik, and Ni be
the set of all nuanced properties associated with the concept Ci. Given G C Ni,
G* denotes the set of all complex nuances induced from G. Then, for any concept
Ci, we define a linguistic negation operator as a parameterized function Negt:



An Intelligent System Dealing with Complex Nuanced Information 547

Definition 3. For any concept Ci, let U and V be two complex nuances induced
.from Ni*, such that: U = U(nlPik1 , ... , njP.kj, .,npPik) and V = V(mlPil,
S mjPimj,..., mnqPi,,). and let L = {kl, ... , kj, ... , kp, 11, ... , lj, ... , lq} A
linguistic negation operator is a .function Negt : Di x N* --+ T3(Xi) x q3(91*)
defined as follows, knowing that ne M, -y E {A, V} and t E {0, 1, 2, 3, 4, 5}
- Nego(xu)= (0, 0); Negi(x, u)=(Di\{x}, {u}); Neg2 (x, u)=({x},N,*\{u})
- Neg3 (x, nPik)=({x}, Nik\{nP k})
and Neg3 (x, -YUV) = ({X},(UhGLNih)* \ {yUV})
- Neg4 (x, nPik)=({x}, N* \ N'k); Neg4 (x, YUV) = ({x}, N* \ (UhELNih)*)
- Neg5 (x, nPik) = ({x}, N'm) where Pim # Pik is a precise property in Bi
and Neg5 (x, _YUV) ({x}, (UmcG Ni,)*) where G is a set of index such that
Ln G =0 and {Pim E Ni I m E G} C Bi.

It is possible to associate a standard form Ft for "x is not U" with each
scope of the negation operator.When a speaker says "x is not U", he means
that:
- Fo: For this x, "x is U" is rejected and there is not any corresponding af-
firmative expression. Saying "the disease is not an otitis" may not admit any
affirmative translation, the only thing that the doctor knows about the disease
is that it is not an otitis.
- Fl: Another object of the same domain satisfies the same nuanced property U.
"x is not U" means "not(x) is U". The doctor can note that "Mary is not ill"
because he knows that "it is John and Jack who are ill".
- F 2 : The same x satisfies another complex nuance of N*. For instance, the
doctor can say that "The temperature is not very high" because he hesitates
between "the temperature is normal" and "the temperature is little high".
- F 3 : The same x satisfies another complex nuance of N* induced from the same
basic properties. The doctor can say "the temperature is not low" because he
thinks that "the temperature is really low".
- F 4 : The same x satisfies a complex nuance of N* which is not induced from the
same basic properties. The doctor can say "cholesterol risk is not low" because
he thinks that "cholesterol risk is at least medium".
- F 5 : The same x satisfies a complex nuance of N* induced from other precise
basic properties. The doctor can say that "the patient is not very big" since he
thinks that "he is rather thin".
- F6 : The same x satisfies a complex nuance induced from new affirmative ba-
sic properties. In this case, "x is not U" means that the new property "not-U"
is associated to the same concept as U. "The patient is not seriously ill" may
introduce a new basic property "not-seriously-ill".

Note that, in this paper, we are not concerned with the .forms F1 or F 6 .

Remark 1. Let t E {2, .., 5}, "x is not U" means that there exists a complex
nuance V such that we have "x is V". This V is defined as follows: V E F such
that Negt(x, U) = ({x}, F) with F G q3(M*). In other words, "x is V" is an
affirmative translation of "x is not U" in form Ft.
If no confusion is possible, in the following, we simply write VE Negt(x, U).



548 D. Pacholczyk and F. Dupin de Saint Cyr

Proposition 2. Neg5(x, u) C Neg4 (x, u) C Neg2 (x, u); Neg3 (x, u) C Neg2 (x,
u).

Assumption: Statistics on the most used negation forms are available for any
nuanced expression. These statistics come from a linguistic analysis of English

negation.

For instance, "Temperature is not normal" usually corresponds to a nuance
of "low" or "normal" or "high" and refers to the form F2 in 70% of cases. On
the other hand, "Temperature is not very low" is related in 60% of cases to a
nuance of "high" (F 5). "Fat eating is not moderate" usually means that it is
at least "high" (F 5 ). "Cholesterol risk is not low" means usually that it can
be "moderate", "high" or "tremendous" (F 4 ). "Temperature is not very high"
usually corresponds to another nuance of "high" (F 3 ).

4 Linguistic Negation Strength

Let us notice that the subset Negt(x, U) systematically excludes U but it must
also exclude complex nuances which are close to U. So, a complex nuance V
may be chosen as a negation of an expression u ="x is U" if V is a complex
nuance associated with the same concept as U and if for a given x: if Uu(X)

(resp. l'v(X)) is close to 1 then uLv(x) (resp. btu(x)) is close to 0.

Definition 4. Let 0.5< p <1. Let us suppose that CQ is a concept, Ft a standard
form (t E [2..5]), Negt a linguistic negation operator and U(A 1, , Ah, , Ap) (or

U) is a complex nuance induced from Ni. The linguistic negation of U
applied to x, given p and the standard form Ft, denoted as Negp(x, U),
is a set of complex nuances induced from Ni. More precisely, V(B 1 , , B., , Bq)
(or V) being a complex nuance induced .from Ni, then VENege'(x, U) iff:
LO: VBm, ]Ah such that: LOO: Bm ENegt(x, Ah), L01 : Vz, I'Ah (Z) Ž p

l'B_, (z) < 1 - p, L02 : Vz, ILB_ (Z) > p => YA,& (z) < 1 - p.
Li: Vz, {IPU(Z) p => MV (z)4-1-p}, and L2: Vz, {IVy(Z)Ž p Z=4> Yiu(z)51-p].
Any VENegt (x, U) is said to be a linguistic negation of U applied to x,
given p and the standard form Ft.

Definition 5. Let U and V be associated with the same concept, Vox(U, V) =

min{Iu(X) -*L Jav(X), Yv(X) -*L ,uu(X)} where -- L is Lukasiewicz's impli-
cation. Let the neighborhood between U and V be: Vo(U, V) = minx Vo. (U,

V).

Proposition 3. If VE Negf(x, U) then Vo(V, U) • 2(1 - p)

Definition 6. Knowing that 0.5 < p :- 1, the value 2p - 1 defines the rejection
strength associated with a property VE Nege (x, U).

Proposition 4. Negi(x, U) C Neg°'9 (x, U) C ... C Neg. 5(x, U).



An Intelligent System Dealing with Complex Nuanced Information 549

Example: Using proposition 3, Vo("normal", "rather little high")=0.2, then

p < 0.9, i.e., "rather little high" belongs at most to the subsets of Neg°9 (x,
"normal"). For Q = "extremely high", Vo("normal",Q) = 0 means that p < 1,
i.e. "extremely high" belongs to the subsets of Neg,(x, "normal").

Definition 7 (Second Preference Principle). Given a standard.form Ft and
an expression "x is U", let p(V) be the greatest p such that VE Negg(x, U). V
is preferred to Wfor the negation of U if p(V) Ž p(W).

Example: For the negation of "normal" in form F5 , "extremely high" is pre-
.ferred to "rather little high". Since p( "extremely high") = 1 meanwhile p( "rather
little high") = 0.9.

The following properties result from previous definition of linguistic negation.

Proposition 5. (1): Given UE N,* and VE N,*: VENegf(x, U) if UENegt(x,
V). (2): A complex nuance VENegf (x, U) if: (2a): U=AAB with AENj' and
BENt, V=PVQ with PENegP(x, A), QENegt(x, B),(2b): U=AVB with AEN•
and BENiV, V=PAQ with PENegf(x, A), QeNegt (x, B).

Proposition 6 (Contraposition Laws). Let us suppose that the implication
--* and its associated T-norm T satisfy the properties: u--*v=l iff u~v ; T(u-*v,
v-*w)•u--*w (weak transitivity law); u--+v=-v--* -'u (contraposition law). Then,
the extended linguistic negation possesses the following properties:
(i) If there exists PENegtp (x, A) and QENegtP (y, B) such that Qc -'B and -AAcP,
then the rule if "x is A" then "y is B" implies the rule if "y is not B" then "x
is not A".
(ii) If there exists PENegtP (x, A) and QENegtP (y, B) such that PC -,A and - Bc Q,
then the rule if "y is not B" then "x is not A" implies the rule if "x is A" then
"4y is B".

(iii) If there existsPCNegep (x, A) and QENegtp (y, B) such that - A=P and - B=Q,
then the rules if "y is not B" then "x is not A", and if "x is A" then "y is B"
are equivalent.

Example 1. Let us suppose that:
P=(Vrather low V very low extremely low)ENegP(x, V(medium high)),

(V rather low V very low extremely low) C -(Vmedium high),
Q=-'vaccinated. In the rule R5 :"If the patient is not vaccinated, the inflam-
mation due to the test is not medium or not high", the conclusion is translated
into "the inflammation is rather or very or extremely low". By using previous
proposition, this rule implies the rule "If the inflammation is medium or high
then the patient is vaccinated".

5 Choice Strategy

We extend the strategy proposed in [3] to the negation of complex nuances:
1. First, select the negation form Ft according to linguistic statistics concerning
the complex nuance U (assumption presented in 3)



550 D. Pacholczyk and F. Dupin de Saint Cyr

2. Compute the set Negt~r, U).
3. Select in Negt(x, U), the complex nuances V such that p(V) is maximum.
4. Among these complex nuances, use the first preference principle in order to
make a choice.
5. Discriminate ex-aequo complex nuances by taking into account their com-
plexity degrees. This last point is justified by Sperber and Wilson's simplicity
principle [10].

6 The Model in Action

First of all, we are going to translate all negative complex nuances appearing
in rules and facts. They concern the expressions: "temperature is not normal",
"fat eating is not moderate", "risk of cholesterol is not weak", "temperature is
not very low", "temperature is not very high", "the inflammation is not small",
"the patient is not vaccineted" and "the inflammation due to mono-test is not
moderate or high". Let us decompose the affirmative translation of the assertion
"Temperature is not normal": according to linguistic statistics on the different
forms of linguistic negation, this negation has the standard form F'2. So, let
us calculate Neg2 (x, "normal"). This set contains all nuances of all properties
associated with the concept "temperature" (except the precise nuance exp.-es-
sion "0 normal"): Neg2 (x, "normal") = Nteprtr \ normal" }. Then we

must select the properties having a maximal rejection strength. The following
properties have a strength equal to 1: properties containing "high" or "low"
without nuance, or with translation nuances greater than "rather", or with pre-
cision nuances greater than "more or less", or with combinations "really very",
"C4really very very", "really extremely", and also the three properties "extremely
little normal", "very very little normal" and "very little normal", Computing the
statistical probability of all these nuanced properties, it appears that the best
expression is "high". "Temperature is not very low" is translated into "Tempera-
ture is high". "Temperature is not very high" by the form F2 leads to all nuances
of "high", which finally gives "Temperature is little high". "Inflammation is not
small" is translated into "Inflammation is medium or high" "Fat eating is not
moderate", by the form F3 , leads to the nuances of "zero" "low" and high",
and finally is translated into "Fat eating is high". "The cholesterol risk is not
low" is translated into "The cholesterol risk is high". The rule R5 is translated
as shown in example 1. Finally, we obtain:
ICI: The temperature is high, the eardrum color is really very red, fat eating is
low, the tension is exactly normal.
1G2:The temperature is little high, the eardrum color is normal, fat eating is
high, and the tension is normal.
1G3: The temperature is rather little high, the eardrum color is normal, fat eat-
ing is very low or really moderate, the tension is normal, and the inflammation
due to the mono-test is medium or high.
Ri: If the temperature is high and the eardrum color is very red, the disease is
an otitis.



An Intelligent System Dealing with Complex Nuanced Information 551

R2: If the temperature is high, the patient is ill.
R3: If fat eating is high, the cholesterol risk is high.
R4: If the cholesterol risk is high, a diet with no fat is recommended.
R5: If the inflammation due to the monotest is medium or high then the patient
is vaccinated.

From index card 1, rule RI can be fired, since "really very red" implies "very
red", so we can infer that "The disease is an otitis". Rule R2 leads us to deduce
that "The patient is ill". The other two rules can not be fired. From index card
2, rule R3 gives that "the cholesterol risk is high", then rule R4 leads us to
recommend "a diet with no fat". By using rule R5, we can conclude that the
third patient is vaccinated.

7 Conclusion

We have defined a general model of linguistic negation of assertions like "x is not
U" in the fuzzy context. This approach to negation, in accordance with linguis-
tic analysis pursues preceding works. The strategy of choice uses the rejection
strength: one selects the complex nuances which belong to the strongest nega-
tions of the initial complex nuance then statistical information on the language
and on the customs of the speaker are used.

References

1. Desmontils E., Pacholczyk D.: Towards a linguistic processing of properties
in declarative modelling. Int. Journal of CADCAM and Comp. Graphics
12:4, 351-371, 1997

2. Ducrot 0., Schaeffer J.-M. : Nouveau dictionnaire encyclop6dique des sci-
ences du langage. Seuil Paris, 1995

3. Dupin de Saint-Cyr F., Pacholczyk D.: De la Port~e et de la Force
d'un Op~rateur de Negation A l'Interpr6tation de la Negation Linguistique
d'Informations Nuanc~es, Proc. of RFIA00, Paris, II, 421-430, 2000

4. Horn L.R.: A Natural History of Negation. The Univ. of Chicago Press 1989
5. Muller C.: La negation en fran~ais. Publications romanes et frangaises

Gen~ve 1991
6. Pacholczyk D.: A New Approach to the Intended Meaning of Negative In-

formation. Proc. of ECAI-98, Brighton, UK, August 1998, Pub. by J. Wiley
& Sons, 114-118, 1998

7. Pacholczyk D.: An Extension of a Linguistic Negation Model allowing us to
Deny Nuanced Property Combinations. Proc. of ECSQARU 99, LNIA 1638,
316-327, 1999

8. Pacholczyk D., Levrat B.: Coping with Linguistically Denied Nuanced Prop-
erties: A Matter of Fuzziness and Scope, in Proc. IEEE ISIS/CIRA/ISAS
Joint Conference, Gaitherburg MD, USA, (1998) 753-758

9. Torra V.: Negation Functions Based Semantics for Ordered Linguistic Labels.
Int. Jour. of Intelligent Systems 11, 975-988, 1996

10. D. Sperber, D. Wilson : La pertinence. Communication et cognition. Paris,
Les 6ditions de Minuit (1989)

11. Zadeh L.A.: Fuzzy Sets. Information and Control 8, 338-353, 1965



On the Complexity of Optimal Multisplitting

Tapio Elomaa1 and Juho Rousu 2

1 Department of Computer Science, P. 0. Box 26 (Teollisuuskatu 23),

FIN-00014 University of Helsinki, Finland, elomaaDcs .helsinki. fi
2 VTT Biotechnology, P. 0. Box 1500 (Tietotie 2),

FIN-02044 VTT, Finland, juho.rousuCvtt.fi

Abstract. Dynamic programming has been studied extensively, e.g.,
in computational geometry and string matching. It has recently found a
new application in the optimal multisplitting of numerical attribute value
domains. We reflect the results obtained earlier to this problem and study
whether they help to shed a new light-on the inherent complexity of this
time-critical subtask of machine learning and data mining programs.
The concept of monotonicity has come up in earlier research. It helps
to explain the different asymptotic time requirements of optimal mul-
tisplitting with respect to different attribute evaluation functions. As
case studies we examine Training Set Error and Average Class'Entropy
functions. The former has a linear-time optimization algorithm, while
the latter-like most well-known attribute evaluation functions-takes a
quadratic time to optimize. It is shown that neither of them fulfills the
strict monotonicity condition, but computing optimal Training Set Error
values can be decomposed into monotone subproblems.

1 Introduction

Consider the optimal multisplitting problem faced by classifier learning algo-
rithms in processing numerical attributes. Given a sample S containing b indivi-
sible subsets and an evaluation function F to rank partition candidates, find the
F-optimal partition of S with at most k intervals. We denote a partition with k

intervals by (Jk 1 Ri. The examples are instances of m classes.
Numerical attribute domain partitioning is a time-critical subtask in machine

learning and data mining algorithms. Recently there have been many attempts
to enhance the efficiency of this task [2,3,5,6,7,8,9,14]. Many commonly-used
functions conform to cumulativity: the score of a partition is a weighted sum
of its interval scores [9,5]. This property lets us apply dynamic programming
to combine the solution efficiently from optimal partitions of subsequences. The
time complexity of the algorithm is only quadratic in b.

The inherent complexity of the multisplitting task is uncharted territory.
However, mathematically similar problems have been encountered in computa-
tional geometry arid string matching [11]. This paper reflects that work to the
multisplitting framework. It turns out that the optimal multisplitting algorithms
solve as a subproblem an instance of the column minima problem [11], for which

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 552-561, 2000.
© Springer-Verlag Berlin Heidelberg 2000



On the Complexity of Optimal Multisplitting 553

lower bound results are already known. This problem takes 2(b 2 ) time if the
only knowledge that we have about the function is that it is cumulative. If the
function is monotone, it can be optimized in f2(b log b) time and, further, a so-
called totally monotone function is optimizable in linear time. Commonly-used
attribute evaluation functions do not fulfill these properties. In particular, we
show that two functions, Average Class Entropy (ACE) [8,13] and Training Set
Error (TSE) [2,3,9], are not monotone.

It is known that many evaluation functions-including ACE and TSE-fulfill
Jensen's inequality [4]. Its consequence is convexity of the function over the data
set from which it follows that each partitioning of the sample leads to a better
partition score. We study whether Jensen's inequality alleviates the inherent
complexity of optimal multipartitioning.

TSE is the only commonly-used evaluation function that is known to be op-
timizable in linear time. Even though the function itself is not monotone, its
optimization algorithms can combine the result from optimal values for (totally)
monotone subproblems in a single scan through the data [2,3,9]. Similar decom-
position of more complex functions does not seem possible.

Section 2 describes the optimal multisplitting problem. Then we examine, in
Section 3, the monotonicity formulations that have emerged in string matching
and computational geometry and translate Jensen's inequality to the same vo-
cabulary. It corresponds to a weak form of monotonicity. In Sections 4 and 5
we study the functions ACE and TSE, which have different known optimization
requirements. Section 6 discusses the observations presented in this paper and
gives the concluding remarks of this study.

2 The Optimal Multisplitting Problem

Assume that the sample S = UL=1 Si with b indivisible subsets has been given.

In a partition KJ=- Ri of S each interval is composed of consecutive sample

subsets, Ri = U•=h St. The cumulative attribute evaluation function scoring
partition candidates is defined as

S R) = W(R2 ),

where w(R) = I Rjf (R) is the score given to interval R by the "impurity" function
f.

The score of an interval consisting of subsets Sh,... , Sj is denoted by w(h, j)

= w(U=h St). Furthermore, p(k,j) denotes the minimum value of p on k-
partitions of S1, ... , Sj.

The dynamic programming algorithm for optimal multisplitting [5,9,14] cal-
culates the recurrence

p(kfJ mink<h<j{p(k-1,h)+w(h+1,j)} ifk<j
f 00 otherwise (1)



554 T. Elomaa and J. Rousu

and outputs p(k, b) as the answer. In other words, the best partition of sub-
sets Si,..., Sj into k intervals consists of some non-empty final interval Rk -
U•=h+1 SI together with the optimal (k - 1)-partition of the sample prefix com-

posed of subsets S1 ,... , Sh, where h > k - 1.
In recurrence 1 the computation of best k-partitions of a set depends on the

scores of the best (k - l)-partitions of the proper prefixes of the set. Thus, when
calculating values on row k, the algorithm consults the values on row k - 1.

The time complexity of the dynamic programming computation of recur-

rence 1 is O(kb2 ), excluding the work needed to compute w(h, j) for each 1 <
h < j < b. There are 0(b2 ) such terms; the computation of each value requires
scanning the class frequency distribution in ((m) time. Thus, the total comple-
xity for obtaining the w(h,j) values is 0(mb2 ). We cannot avoid computing all
w(h, j) values without knowing more about the evaluation function than just its
cumulativity.

3 The Column Minima Problem and Optimal

Multiplitting

The calculation of one row of the matrix p is an instance of the one-dimensional
dynamic programming problem introduced in string matching context by Galil
and Park [10].

Definition 1. Given a real-valued function w(h, j) for integers 0 < h < j • b
and C[0], the one-dimensional dynamic programming problem is to compute

C[j] = mOh{D[h] + w(h,j)} for 1 < j < b, (2)

O~h<j

where D[h] is computed from C[h] in constant time.

From the above formula we obtain recurrence 1 by replacing C[j] with p(k, j),
D[h] with p(k - 1, h), and w(h,j) with w(h + 1,j).

The one-dimensional dynamic programming problem, in turn, is equivalent
to finding the column minima of a b x b upper triangular matrix C, defined by

C[h,j] = p(k - 1, h) + w(h + 1,j). (3)

This problem is well-studied and lower bounds for its time complexity are known.
Most importantly, it has been shown that if no further information on the fun-
ction w is available, solving the column minima problem takes time S?(b 2 ) [11].
This agrees with time complexity 0(b 2) of computing one row of the optimal
multisplitting matrix p [5]. Hence, any algorithm that needs the scores of (k - i)-
splits when computing the optimal k-split of a sample must take 10(kb 2 ) time if

no extra information about the function being optimized is available.
Aggarwal et al. [1] studied the closely related problem of finding the row

maxima of rectangular matrices. They considered two kinds of monotonicity in
the matrices. We translate the properties to the column minima problem. Finding
the column minima of a matrix A is equivalent to finding the row maxima of its
negated transpose, -AT.



On the Complexity of Optimal Multisplitting 555

jl j2 h3

'U.1)

r(j)2)

r(j3) .•:

Fig. 1. Illustration of the effect of monotonicity: the black squares denote the locations
of column minima. Only the gray area of the upper triangular matrix needs to be
examined to discover the column minima of the matrix.

Definition 2. Let r(j) be the smallest row index for the minimum value in the
column j in a matrix. The matrix is monotone, if 1 Jil < j2 :- b implies that
r(ji) •ý r(j 2 ). If every submatrix of A is monotone, then A is totally monotone.

An equivalent definition of total monotonicity was given by Galil and Park
[10]. Given a pair of row indices, hi < h2 , and a pair of column indices, j, < j2,
in a totally monotone matrix C the following holds.

C[hi,ji] > C[h2,j1] == C[hl,j2] > C[h2,J2]. (4)

In the whole matrix both monotonicity and total monotonicity imply that the
minimum row indices are nondecreasing; r(1) _• r(2) • ... • r(k).

Aggarwal et al. [1] showed that the time complexity of the column minima
problem is reduced to 0(blogb) when the matrix is monotone and introduced
an 0(b) algorithm for the totally monotone case. In their work the matrix is a
square, while the one-dimensional dynamic programming matrix is upper trian-
gular. This does not affect the asymptotic time complexity, because a b x b upper
triangular matrix contains a square submatrix of size [b/21 x Eb/2]. It is easy
to construct a matrix where the respective column minima fit inside the square
submatrix. Since the column minima problem needs to be solved also for this
submatrix, the same ((b log b) bound applies to upper triangular matrices.

In searching for the minimum element of column J2, Jl < j2, in a monotone
matrix, we never have to look rows with lesser index than r(jl). Thus, the area
that needs to be covered in the matrix decreases as we go towards higher column
indices (see Fig. 1). The matrix manipulation never needs to back-up to the rows
with a smaller index than the least-recently found column minimum has.

These strong monotonicity conditions require the optimized function to be
simple. Unfortunately, no attribute evaluation function is known to satisfy them.
Hence, they do not seem to help in bringing the time complexity of optimal
multisplitting down. Subsequently we show explicitly that two commonly-used



556 T. Elomaa and J. Rousu

attribute evaluation functions are not monotone. On the other hand, we are able
to explain TSEs linear-time complexity O(kmb) with the help of monotonicity.

The most useful general property that is known to hold for many evaluation
functions is Jensen's inequality [4]:

w(h,i) +w(i + 1,j) • w(h,j), for any h < i < j. (5)

Intuitively, this inequality states that we obtain a better score for a partition of
the sample by dividing the final interval into two rather than keeping it together
as one. Taking this further, any splitting of the data will make the partition
score better.

1

Inequality 5 is equivalent with the following weak monotonicity condition:

Vi < j : C[h,i] Ž_ C[i,i] ==# C[h,j] >_ C[i,j]. (6)

Weak monotonicity has the following interpretation. If a (k - 2)-split of a prefix
of the data has a better score than a (k - 1)-split of the same prefix, the optimal
multisplit cannot contain the (k - 1)-split as its part. Elomaa and Rousu [6] use
property 6 to dynamically prune the search space. In conjunction of the ACE
function, the search space could be reduced in half, which indicates that the
the expected case behavior of the search algorithm differs considerably from the
above outlined worst case.

This property is not as helpful as the stronger monotonicity conditions. In
the worst case, the items C[i, i] are all column maxima and the location of the
column minima cannot be constrained at all. Thus, the asymptotic behavior of
the multisplitting algorithms cannot be improved below S2(b 2) with the help of
Jensen's inequality. It relates partitions of different arity, while the monotonicity
conditions only talk about partitions with the same arity. In the following, we
show by two counterexamples that Jensen's inequality and monotonicity are not
equivalent.

4 Average Class Entropy

The Average Class Entropy of a partition Wi Ri of a sample S is

ACE ( R.) T- H H(R) i I RH (R.),

where H is the entropy function,

m

H(R) = - P(Cj, R) log P(Cj, R),
j=1

in which m denotes the number of classes and P(C, R) stands for the proportion
of the examples in R that belong to the class C. ACE is a concave function by
the concavity of the entropy function [4]. Thus, it fulfills Jensen's inequality.

1 This is the reason why we need to bound the partition arities in practical situations.



On the Complexity of Optimal Multisplitting 557

ACE is a component function in many well-known evaluation functions used,
e.g., in decision tree learning; Information Gain and Gain Ratio [13] as well
as Normalized Distance measure [12] are examples of evaluation functions that
build upon ACE.

4.1 Average Class Entropy Is Not Monotone

We show by a simple example that ACE does not satisfy monotonicity.
Let the sample S SU i S• consist of five indivisible subsets with the follo-

wing class distributions for the two classes:

S1 = (0, 3), S2 = (3, 0), S3 = (17, 5), S4 = (4, 5), S5 = (4, 2).

It is not possible to split the first indivisible subset into two partition in-
tervals. Hence, C[1, 4] = C[1, 5] = oo. The optimal ACE scores of the other
3-partitions are:

C[2,4] = ACE(S1 [± S 2 U+ (S 3 U S 4 )) 26.328

C[3, 4] = ACE(SI W (S 2 U S3) W S4) 25.031

C[2, 5] = ACE(Si W S 2 U+ (S 3 U S4 U S 5 )) ý 31.847

C[3, 5] = ACE(S1  (S2 U S 3 ) W (S 4 U S 5)) z 31.963

C[4, 5] = ACE(S1 W (S 2 U S 3 U S4 ) bi S 5) ; 35.225

The values C[3,4] and C[2, 5] are the minima for the columns 4 and 5, res-
pectively. Their row indices, r(4) = 3 and r(5) = 2, violate the monotonicity
condition, which requires non-decreasing row indices for the column minima.

5 Training Set Error

The majority class of a set R, denoted by majc(R), is its most frequently oc-

curring class. The number of disagreeing instances is given by

J(R) = I{r G R I valc(r) : majc(R)}l.

Training Set Error is the number of training instances falsely classified in the
partition. For a partition (J Ri of S it is defined as

TSE (j R.) = Ri

Also TSE is concave and, thus, fulfills Jensen's inequality.
The linear-time optimization of TSE is best understood from the relatively

simple algorithm for it. Auer's [2] O(kmb) time algorithm for optimal TSE



558 T. Elomaa and J. Rousu

Table 1. Auer's [2] algorithm for optimal TSE partitions.

Partition optimalTSE(k, S, b, m)
/* Partition sample S into at most k intervals so that the training set

error is minimized. There are b possible cut points and m classes. */

II DATA STRUCTURES: P[h,j] is the optimal partition of the processed
I/ data into h intervals with the last one labeled by j. E[h,j] is the
// corresponding number of disagreements. E' stores intermediate results.
Partition [k] [m] P; int [k] [m] E; int [m] E';

for ( h= 1 to k ) // initialize
for ( j= 1 to m ) {P[h,j]= (Si,j); E[h,j]= 0;}

for ( i= i to b ) // go through segments
{ for ( j= 1 to m ) {E'[j]= E[i,j]; EEl,j]+= 6j(Si);}

for ( h= 2 to k )
{ j*= arg minjE'[j]; E*= E[j*];

for ( j= 1 to m )
{ E'[j]= E[h,j];

if ( E* < E[h,j] ) {P[h,j]= P[h-1,ji] U (Si,j); E[h,j]= E* + Jj(Si);}
else {P[h,j]= P[h,j]; E[h,j]+= 6j(Si);}}}}

j*= arg minjE[k,j];
return P[k,j*];

multipartitioning (Table 1) assumes that the sample has been sorted into as-
cending order by the value of the numerical attribute under consideration. It
maintains for each class j the optimal partitions of the prefixes of the sorted
data into 1,... , k intervals such that the last interval is labeled by j. In the
algorithm 5j (S) denotes the number of disagreements with class j in the subset
S; 5j(S) = Ilse S Ivalc(s) #J}I.

In processing each new indivisible example segment a simple update of parti-
tions suffices. We only need to check whether the new segment labeled by class j
obtains less total disagreements when it is combined together with the previously
known best partition of the data into k intervals with the last one labeled by
j or together with the previously known best partition of the data into k - 1
intervals with the last one labeled by an other class than j.

This is a consequence of the monotonicity condition. When scanning through
the data the disagreement with respect to each class grows monotonically. Auer's
algorithm can be seen to compute m (totally) monotone optimization problems
in parallel.

5.1 Training Set Error Is Not Monotone

We show that TSE does not satisfy monotonicity, even though optimizing it can
be decomposed into m monotone subproblems.



On the Complexity of Optimal Multisplitting 559

Again, let the sample S = U-j= 1 Si consist of five indivisible subsets with the
following class distributions:

S1 = (2, 1), S 2 = (0, 1), S3 = (6, 2), S4 = (1, 3), S5 = (4, 2).

Like above, C[1, 4] = C[1, 5] = oc. The optimal TSE scores of the other
3-partitions are:

C[2,4] = TSE(S 1 W S2 W (S3 U S 4 )) = TSE((2, 1), (0, 1), (7,5)) = 6

C[3, 4] = TSE(Si W (S 2 U S 3 ) w S4 ) = TSE((2, 1), (6, 3), (1, 3)) = 5

C[2, 5] = TSE(S 1 W S2 U (S 3 U S 4 U S5 )) = TSE((2, 1), (0,1), (11, 7)) = 8

C[3, 5] = TSE(S1 W (S 2 U S3 ) W± (S 4 U S 5 )) = TSE((2, 1), (6, 3), (5, 5)) = 9

C[4, 5] = TSE(Si W (S 2 U S 3 U S 4) W S 5 ) = TSE((2, 1), (7, 6), (4, 2)) = 9

The row indices, r(4) = 3 and r(5) = 2, of the column minima are increasing,
contrary to the monotonicity condition.

5.2 Remarks

TSE differs from other functions that satisfy Jensen inequality by its optimiza-
tion efficiency that is below the inherent complexity of dynamic programming
algorithms based on recurrence 1. Nevertheless, TSE itself is not a monotone fun-
ction and the optimization algorithm may have to back-up to recover the optimal
partition. This can also be seen from the algorithm: an extra, one-dimensional
table E' is needed to store intermediate results in the dynamic programming.
The number of back-up points, though, is constant; there is only a single location
per class to go back to.

A single left-to-right scan over the ordered data suffices to reveal the optimal
TSE value, because for a fixed class and arity finding the optimal TSE value
is a totally monotone problem. Thus, the lower bound for the restricted case is
Q?(b). Combining this for all k arities and m classes gives total time requirement
of 9(kmb), which is the asymptotic time requirement of Auer's algorithm.

6 Discussion

The results in this article suggest that it may be hard to improve the asymptotic
time complexity of the optimal multisplitting algorithm. If the algorithm relies
on the best (k - 1)-partitions to be computed for all prefixes when computing
the k-partitions, S2(b 2 ) bound seems inevitable for each row, which implies total
complexity bound S2(kb2 ) for the whole problem. Hence, if more efficient algo-
rithms are desired, the computation should be arranged in some other way than
row by row or the rows should be made sparse by utilizing special properties of
the evaluation function.



560 T. Elomaa and J. Rousu

The strongest general property that is known to hold for many evalua-
tion functions is Jensen's inequality, which guarantees that a partition cannot

have a worse score than its subpartitions. However, this alone does not reduce
the asymptotic time complexity. Stronger properties than Jensen's inequality-
monotonicity or total monotonicity-lead to better time complexities. Howe-
ver, as shown by the counterexamples, neither of the properties hold for the
commonly-used ACE and TSE functions.

The concept of monotone function is potentially relevant for the attribute
evaluation functions used in machine learning algorithms. Designing monotone

or even totally monotone functions would allow efficient optimization of these
functions. Recent advances in solving the optimal multisplitting problem seem
to bring the solution closer to the problem's inherent complexity bound.

Acknowledgements. We thank Esko Ukkonen for bringing into our attention
the work done in the field of string matching.

References

1. Aggarwal, A., Klawe, M.M., Moran, S., Shor, P., Wilber, R.: Geometric Applica-
tions of a Matrix Searching Algorithm. Algorithmica 2 (1987) 195-208

2. Auer, P.: Optimal Splits of Single Attributes. Unpublished manuscript, Institute
for Theoretical Computer Science, Graz University of Technology (1997)

3. Birkendorf, A.: On Fast and Simple Algorithms for Finding Maximal Subarrays and
Applications in Learning Theory. In: Ben-David, S. (ed.): Computational Learning
Theory. Lecture Notes in Artificial Intelligence, Vol. 1208, Springer-Verlag, Berlin
Heidelberg New York (1997) 198-209

4. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley and Sons,
New York (1991)

5. Elomaa, T., Rousu, J.: General and Efficient Multisplitting of Numerical Attribu-
tes. Mach. Learn. 36 (1999) 201-244

6. Elomaa, T., Rousu, J.: Speeding Up the Search for Optimal Partitions. In: Zytkow,
J., Rauch, J. (eds.): Principles of Data Mining and Knowledge Discovery. Lecture
Notes in Artificial Intelligence, Vol. 1704, Springer-Verlag, Berlin Heidelberg New
York (1999) 89-97

7. Elomaa, T., Rousu, J.: Generalizing Boundary Points. In: Proceedings of the Se-
venteenth National Conference on Artificial Intelligence. AAAI Press, Menlo Park,
CA (2000) to appear

8. Fayyad, U.M., Irani, K.B.: On the Handling of Continuous-Valued Attributes in
Decision Tree Generation. Mach. Learn. 8 (1992) 87-102

9. Fulton, T., Kasif, S., Salzberg, S.: Efficient Algorithms for Finding Multi-Way
Splits for Decision Trees. In: Prieditis, A., Russell, S. (eds.): Machine Learning: Pro-
ceedings of the Twelfth International Conference. Morgan Kaufmann, San Fran-
cisco, CA (1995) 244-251

10. Galil, Z., Park, K.: A Linear-Time Algorithm for Concave One-Dimensional Dy-
namic Programming. Inf. Process. Lett. 33 (1990) 309-311

11. Galil, Z., Park, K.: Dynamic Programming with Convexity, Concavity and Sparsity.
Theor. Comput. Sci. 92 (1992) 49-76



On the Complexity of Optimal Multisplitting 561

12. L6pez de Mhntaras, R.: A Distance-Based Attribute Selection Measure for Decision

Tree Induction. Mach. Learn. 6 (1991) 81-92
13. Quinlan, J.R.: Induction of Decision Trees. Mach. Learn. 1 (1986) 81-106

14. Zighed, D.A., Rakotomalala, R., Feschet, F.: Optimal Multiple Intervals Discre-

tization of Continuous Attributes for Supervised Learning. In: Heckerman, D. et al.

(eds.), Proceedings of the Third International Conference on Knowledge Discovery

and Data Mining. AAAI Press, Menlo Park, CA (1997) 295-298



Parametric Algorithms for Mining Share Frequent
Itemsets

Brock Barber and Howard J. Hamilton

Department of Computer Science, University of Regina, Regina, SK., Canada $4S 0A2

Abstract. Itemset share, the fraction of some numerical total contributed by
items when they occur in itemsets, has been proposed as a measure of the im-
portance of itemsets in association rule mining. The IAB and CAC algorithms
[4], are able to find share frequent itemsets that have infrequent subsets. These
algorithms perform well but do not always find all possible share frequent item-
sets. In this paper, we describe the incorporation of a threshold factor into these
algorithms. The threshold factor can be used to increase the number of frequent
itemsets found at a cost of an increase in the number of infrequent itemsets ex-
amined. The modified algorithms are tested on a large commercial database.
Their behavior is examined using principles of classifier evaluation from ma-
chine learning.

1 Introduction

A data mining problem receiving considerable attention is the discovery of association
rules from market basket data. The problem was first introduced in the context of bar
code data analysis [1]. The goal of bar code data analysis is to identify buying pat-
tems by examining itemsets, groups of items purchased together in transactions. From
any itemset, an association rule can be derived which, given the purchase of a subset
of the items in an itemset, predicts the probability of the purchase of the remaining
items. The problem of discovering association rules from transaction data can be
decomposed into two subtasks [1]: (1) find all itemsets meeting a minimum frequency
requirement, and (2) generate association rules from the frequent itemsets. The sec-
ond step is relatively easy compared to the first [14]. The focus of this paper is the
first task, the extraction of frequent itemsets from transaction data. While the problem
and our methods are general, we present the problem in terms of the retail sales do-
main, because it provides easily accessible intuitions for explaining problems, con-
cepts and solutions.

In general, examination of all possible combinations of products and services of-
fered by a retail organization is impractical, so methods are needed to focus effort on
itemsets considered important to an organization. Itemset share, the fraction of some
numerical value, such as total quantity of items sold or total profit, contributed by
items when they occur in an itemset, has been proposed as a measure of itemset im-
portance [5]. Unlike support [1], itemset share can be applied to non-binary numerical
data that are typically associated with items in a transaction, allowing for a more in

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 562-572, 2000.
© Springer-Verlag Berlin Heidelberg 2000



Parametric Algorithms for Mining Share Frequent Itemsets 563

sightful analysis of the impact of itemsets in terms of stock, cost or profit. In practice,
itemset ranking by support and share can be significantly different [5].

The support measure is downward closed since all subsets of a frequent itemset, are
themselves frequent [3]. This property has permitted the development of efficient
algorithms that traverse only a portion of the itemset lattice, yet find all possible fre-
quent itemsets, e.g. [3, 9, 14]. However, since share can work with non-binary nu-
merical values, the share of an itemset can be higher than the share of its subsets.
Thus, if the frequency requirement is based on the total share of the itemset, frequent
itemsets might contain infrequent subsets. Algorithms that do not rely on the property
of downward closure have been proposed to extract this class of frequent itemset from
transaction data [4]. The CAC and IAB algorithms perform well when applied to a
large commercial database, finding most of the frequent itemsets while counting few
infrequent itemsets. In this paper, we introduce parametric versions of these algo-
rithms. A parameter called the threshold factor is used to increase (decrease) the abil-
ity of the algorithms to find frequent itemsets at the cost of increasing (decreasing) the
number of infrequent itemsets examined. Algorithm behavior is evaluated using
methods developed for classification system evaluation in machine learning.

2 The Share Measure and Share Frequent Itemsets

We summarize itemset methodology formally as follows [2]. Let I = {1, ..... , I be
a set of literals, called items. Let D = { T1, T,. T, } be a set of n transactions, where
for each transaction T c D, T c L A set of items X c I is called an itemset. A trans-
action T contains an itemset X if X c T. Each itemset X is associated with a set of

transactions Tx = { T c D I T D X1, the set of transactions containing itemset X.
A measure attribute (MA) is a numerical attribute associated with each item in

each transaction, such as quantity sold [4]. The transaction measure value of item /
in transaction T,, tmv(l,Tq), is the value of a measure attribute associated with / in Tq*
The global measure value of item 4, MV(4), is the sum of the transaction measure

values of / in every transaction in which / appears, given as

MV(Ip)= Y tmv(Ip,Tq). (1)

The total measure value (MV) is the sum of the global measure values for all items in 1
in every transaction in D, given as

MV= MV(Ip). (2)
p=i

We use x to denote the ilh item of an itemset X. The item local measure value of item
x, in itemset X, lmv(x,X), is the sum of the transaction measure values of the item x, in
all transactions containing X, given by

lmv(xi,X)= I tmv(xi,TT). (3)



564 B. Barber and H.J. Hamilton

The itemset local measure value of itemset X, lmv(X), is the sum of the local measure
values of each of the k items in X in all transactions containing X, given by

k
lmv(X) = I lmv(xi, X). (4)

1

The item share of an item x, in itemset X, SH(x,,X), is the ratio of the local measure
value of x) in X to the total measure value, as given by

SH (xi, X) = lmv(xi, X)/MV . (5)

The itemset share of itemset X, SH(X), is the ratio of the local measure value of X to
the total measure value, as calculated by

SH(X) = lmv(X)/MV . (6)

We illustrate share using the sample transaction database in Table 1. The TID col-
umn gives the transaction identifier values. Beneath each item name are values indi-
cating quantity of item sold, the measure attribute. The table values are transaction
measure values. For example, tmv(D,T1) is 14. Global measure values for the items
are indicated in the last row. The total measure value MV is 100. Table 2 provides
local measure values, item shares and itemset shares for the itemset ACD and its sub-
sets. For itemset AD, lmv(AD) = lmv(A,AD) + lmv(D,AD) = 6+25 = 31 and SH(AD)

= lmv(AD)/MV= 31/100 = 0.31. Support (sup) is shown for comparison.
Table 1: Sample Transaction Database

TED [ Item A J Item B ] Item C Item D

TI 1 0 1 14
T2 0 0 6 0
T3 1 0 2 4

T4 0 0 4 0
T5 0 0 3 1
T6 0 0 1 13
T7 0 0 8 0
T8 4 0 0 7
T9 0 1 1 10

T10 0 0 0 18

M I) 6 J 1 26 [ 67 100

Table 2: Sample Database Summary

Itemset X Item A Item C Item D

X IIsup I lmv SH lmv SHj Imv SH If I Si
A 0.3 6 0.06 6 0.06 - -

C 0.8 26 0.26 - 26 0.26 - -

D 0.7 67 0.67 - - - - 67 0.67
AC 0.2 5 0.05 2 0.02 3 0.03 - -

AD 0.3 31 0.31 6 0.06 - - 25 0.25
CD 0.5 50 0.50 - - 8 0.08 42 0.42

ACD 0.2 23 0.23 2 0.02 3 0.03 18 0.18



Parametric Algorithms for Mining Share Frequent Itemsets 565

To find frequent itemsets with infrequent subsets, we employ the following defini-
tion of share frequency. An itemset X is share frequent, or simply frequent, if SH(X)

> minshare, a user defined minimum share value. This definition of frequency is not

downward closed. A property P is downward closed with respect to the lattice of all
itemsets if, for each itemset with the property P, all of its subsets also have the prop-
erty P [12]. However, the share of an itemset may increase or decrease as the itemset
is extended by the adding an item. Adding an item x to a k-itemset X to create a new

(k+1)-itemset Y, adds a restriction to the measure values of the items in X. The meas-
ure values associated with the items in X contribute to the local measure value of Y,
only when they occur with the new item x,. Their contribution towards the local
measure value of Y must be less than or equal to their contribution to the local measure
value of X. However, the local measure value of x, is added to the local measure value
of Y, which may be less than, equal to, or greater than the local measure value of X. If

share frequency is measured against the share of the itemset, an itemset with share
above minshare, may have component itemsets with share below minshare.

3 Description of Algorithms

The Combine All Counted (CAC) and Item Add-Back (IAB) algorithms extract share-
frequent itemsets from transaction data, including those with infrequent subsets [4].
Parametric versions of the algorithms, which we refer to as parametric CAC (PCAC)
and parametric IAB (PIAB), are introduced here. The major modification is the addi-
tion of a threshold factor.

The first pass through the data collects information about all 1-itemsets in the data.
Summary information is compiled, including MV and TCQ the total number of trans-
actions. Ck is the set of candidate itemsets for the k' pass. C2 is generated using in-
formation about the 1-itemsets and information about the candidate 2-itemsets is col-
lected in pass 2. The process of building Ck using itemsets in Ck,- continues until no
candidate itemsets are added to Ck. After the kt' pass, the local measure value and
transaction count is available for each counted k-itemset.

In the lAB algorithm, each item with a non-zero transaction count is given the
chance to contribute in the generation of candidate itemsets for every pass. In the k'h
pass, candidate itemsets are generated by adding to each itemset in C,.l, any item
found in the first pass that is not contained in the itemset. In the absence of pruning,
this would produce an exhaustive algorithm. To prevent this, three types of pruning
are used. First, zero pruning removes any itemset X( E C,-, for which TCxi = 0. Sec-
ond, share infrequency pruning removes any itemset X. e C,,. whose actual share

SH(X) < minshare. Third, predictive pruning uses a heuristic to calculate the pre-
dicted share of a potential candidate itemset X ,, PSH(Xý), and prunes any Xý, where

PSH(XP) < minshare. PSH(XPC) is based on the actual share of components of Xpc [4].
We modify predictive pruning to create the PIAB algorithm. The intuition is that

itemsets having nearly enough share should not be pruned since their supersets may
have enough. We define the threshold factor (TF) as a parameter, ranging from 0.0 to
1.0, that is applied to the share threshold prior to comparison of a predicted share



566 B. Barber and H.J. Hamilton

value. Potential candidate itemsets are added to C, only if PSH(Xý) > TF*minshare.
For TF = 1.0, the parametric versions of the algorithms behave identically to the non-
parametric versions. The threshold factor is similar to the relaxation factor, a pa-
rameter that has been applied to the support measure as a means of adjusting algorithm
accuracy [10].

The processes of candidate itemset generation and itemset pruning are encapsulated
in a procedure GenerateCandidateltemsets. The generation of the next potential
candidate itemset X Pc, is represented by an iterator procedure GenerateNextltemset.
The first call to the procedure returns the first generated itemset, repeated calls cycle
through all possible generated itemsets and when no more itemsets can be generated,
the procedure returns false. The value of PSH(Xpc) is returned by the function Get-
PredictedShare. For PIAB, the procedure GenerateCandidateltemsets is written
as:

GenerateCandidateltemsets (Ck,)

1 foreach Xi e Ck-1
2 if TCxi = 0 or SH(Xi) < minshare then
3 remove Xi from Ck-1

4 while X1 := GenerateNextltemseto do
5 PSH(X,) := 0, SubsetCount := 0
6 foreach x, e Xý,
7 foreach x) Xc where ij
8 add x, to X
9 if X) 0 Ck, then
10 continue
11 PSH(Xp) := PSH(X,) + GetPredictedShare(x.,X)
12 SubsetCount := SubsetCount +1
13 if PSH(X1 )/SubsetCount > TF*minshare then
14 Add X, to Ck

In the CAC algorithm, each counted itemset is given a chance to contribute to the
generation of a larger frequent itemset. Itemsets are generated by combining itemsets
in Ck, which differ only in their last item. Again, in the absence of pruning, the algo-
rithm is exhaustive. Zero pruning and predictive pruning are done as with IAB. In-
frequency pruning is done, but after the generation of candidate itemsets. In addition,
subset pruning prunes any generated itemset with a k-I subset not found in Ck-. To
create the PCAC algorithm, the threshold factor is incorporated. For PCAC, the pro-
cedure GenerateCandidateltemsets is written:

GenerateCandidateltemsets (Ck_,)

1 foreach Xi e Ckl1

2 if TCxi = 0 then
3 remove Xi from Ck-1

4 while X, := GenerateNextltemset0 do
5 PSH(Xp,) := 0, SubsetCount := 0



Parametric Algorithms for Mining Share Frequent Itemsets 567

6 foreach x, c X

7 foreach x, c X,, where ij
8 add x, toX

9 if Xý e CI then

10 break;

11 PSH(X ) := PSH(XO) + GetPredictedShare(xi,X)
12 SubsetCount := SubsetCount + 1;
13 if SubsetCount = k and PSH(Xý)SubsetCount > TF*minshare then
14 Add Xý, to Ck

We illustrate the effect of the threshold factor by comparing the behavior of the

CAC and PCAC algorithms. Figure 1 gives the itemset lattice for the sample data set
in Table 1. Each node in the lattice is labeled with the itemset name. Below the item-
set name are the total measure value of the itemset in all transactions and the number

of transactions in which the itemset appears, separated by a forward slash. The total
measure value MV is equal to 100 and, assuming minshare is 0.20, any item with a
measure value greater than or equal to 20 is share frequent. Frequent itemsets are

shaded in Figure 1. A threshold factor of 0.60 is assumed.

ABCD 1:1 Candidate for CAC
0/0 0 Candidate for PCAC, TF = 0.6

0 6/3 ~j 01/1 Q2/5 77

Figure 1: Itemset Lattice

CAC: The first pass identifies 1-itemsets C and D as frequent itemsets. All
counted 1-itemsets are used to generate the candidate itemsets for pass 2. However,

before any 2-itemset is added to C, we prune based on predicted share value [4].
Consider itemset AC. SH(A) = 0.06, TCA = 3 and SH(C) = 0.26, TC, = 8. Since TC"
< TCc, PSH(AC) = SH(A) + SH(C)*(TCA/TCT) = 0.06+0.26*(3/10)=0.14 which is less

than minshare, so AC is pruned. Only AD and CD meet the minimum share require-
ment so they are the only 2-itemsets counted in pass 2. The algorithm terminates after

pass 2 because AD and CD cannot be used to generate a 3-itemset with all subsets



568 B. Barber and H.J. Hamilton

existing in Ck,. The frequent 3-itemset ACD is missed because the subset AC was not
counted.

PCAC: PCAC performs in the same way as CAC until predictive pruning, where
PSH(AC) = 0.14 is now compared to TF*minshare = 0.12. Since the less stringent
requirement is met, AC is also counted in pass 2. After the second pass we find that
AC is infrequent, but before discarding it, we use it to generate candidate itemsets. It
is combined with itemset AD to generate ACD. Since we counted AC, AD and CD in
pass 2, ACD is not subset pruned. PSH(ACD) = 0.26 which is greater than
TF*minshare, so ACD is counted in the third pass. The algorithm terminates after the
third pass since no 4-itemsets can be created from a single 3-itemset. We counted one
additional itemset and it was frequent. By setting a less stringent criteria for deciding
which itemsets to count, PCAC may find frequent itemsets that CAC missed. How-
ever, the increased effectiveness comes at the cost of counting more infrequent item-
sets.

4 Evaluation Criteria

An algorithm for extracting frequent itemsets from a data set can be thought of as a method for
classifying itemsets into two classes, frequent itemsets (positive instances) and infrequent item-
sets (negative instances). A confusion matrix [7] gives information about actual and predicted
classifications done by a classification system. Performance of such systems is commonly
evaluated using terms defined on the matrix data. These terms are listed in Table 3. Here, a is
the number of correct predictions that an itemset is infrequent, b is the number of incorrect
predictions that an itemset will be frequent, c is the number of incorrect of predictions that an
itemset will be infrequent, and d is the number of correct predictions that an itemset will be
frequent.

Table 3: Classifier Evaluation Terms

Term Proportion of Equation

Accuracy (AC) total number of predictions that were correct (a+d)/(a+b+c+d)
True Positive Rate (TP) positive cases correctly identified d/(c+d)
False Positive Rate (FP) negatives cases incorrectly classified as positive b/(a+b)
True Negative Rate (TN) negatives cases classified correctly a/(a+b)
False Negative Rate (FN) positives cases incorrectly classified as negative c/(c+d)
Precision (P) predicted positive cases that were correct d/(b+d)

Most itemsets in an itemset lattice are infrequent or do not occur at all. Accuracy
may not be an adequate performance measure when the number of negative cases is
much greater than the number of positive cases [8].

We use ROC graphs to examine the general behavior of the PIAB and PCAC algo-
rithms with variation of the threshold factor. An ROC graph is a plot with the true
positive rate (TP) on the Y axis and the false positive rate (FP) on the X axis [13].
Point (0,1) is the perfect classifier: classifying all cases correctly. Point (0,0) repre-
sents a classifier that predicts all cases to be negative, while the point (1,1) corre-
sponds to a classifier that predicts every case to be positive. Point (1,0) is the classi-
fier that is incorrect for all classifications. The CAC and IAB algorithms produces a



Parametric Algorithms for Mining Share Frequent Itemsets 569

single ROC point, a (FP,TP) pair for a particular data set. In the PCAC and PIAB
algorithms, each TF value produces a (FP,TP) pair for the data set. A series of such
pairs can be used to plot an ROC curve.

It has been suggested that the area beneath an ROC curve can be used as a measure
of accuracy in many applications [13]. In [11], it is argued that using classification
accuracy to compare classifiers is not adequate unless cost and class distributions are
completely unknown and a single classifier must be chosen to handle any situation.
They propose evaluation of classifiers using a ROC graph and imprecise cost and class
distribution information.

Itemset algorithms must have sufficient generality that they can be applied to any
transaction database and so, we choose not to include assumptions regarding cost and
class distributions in our analysis. ROC graphs provide a visual tool for examining the
tradeoff between the ability of a classifier to correctly identify positive cases and the
number of negative cases incorrectly classified. We use ROC graphs to examine algo-
rithm behavior, without making claims about the relative accuracy of the parametric
algorithms.

5 Experimental Results

All experiments were carried out using a 450 Mhz Pentium II PC with 384 MB of
RAM. Test data were drawn from an eight million record customer database pro-
vided to us by a commercial partner. Transaction information is contained in a three
million record table representing the purchase of 2200 unique items by over 500,000
customers. Five discovery tasks were performed on different subsets of the data.
Baseline information was obtained using the ZSP algorithm [4], which is guaranteed
to find all frequent itemsets but requires a large amount of space and time. By know-
ing the true answers, we are able to evaluate the behavior and performance of our
parametric algorithms. A share threshold of 0.02 was used, since this produced tasks
small enough to run the ZSP algorithm on but not too small to be interesting. Infor-
mation about the tasks is contained in Table 4. Tasks T1, T2, T3 and T4 were run for
threshold factors 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1 and 0.0. T5 was tested
for threshold factors 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.1 and 0.0.

Table 4: Task Metrics

ITask Identifier IITiI T2 I T3 I T4 I T5
Transaction Count 599 2058 2374 5092 14257
Record Count 1844 4373 7051 24725 43700

Figure 2 shows the ROC graphs for PCAC and PIAB for four of the five tasks.
Only the upper portions of the graphs are shown because this includes all ROC points.
The ROC graph for T3 is not shown because both algorithms found all frequent itemn-
sets for all values of TF. Decreasing the threshold factor simply moves successive
ROC points further to the right on the top axis of the ROC graph.

At TF equal to 1.0, the PCAC and PIAB algorithms are equivalent to CAC and
IAB. As TF is decreased towards 0.0, the share frequency criterion becomes less



570 B. Barber and H.J. Hamilton

stringent and more of the itemsets that are generated may be selected for counting.
The general trend is for the ROC points to move upward and to the right as the thresh-
old factor is decreased. However, the true positive rate tends to move up in a series
of steps. This is best illustrated in Figure 2(a) where the initial ROC points for the
PIAB algorithm in TI move to the right but not upward. The true positive rate for the
PIAB algorithm remains the same until the threshold factor equals 0.4. Similar be-
havior is displayed for the PCAC algorithm, although it seems more prevalent in the
IAB algorithm. The step behavior of the true positive rate occurs because a decrease
in threshold factor will have no effect until certain discrete events occur. Additional
frequent itemsets must be generated, predicted to be frequent, not subset pruned for
the PCAC algorithm and counted. The false positive rate always increased with a

1.0 -1.0

0.9 0.9

S0.8 --F P 1A 0 0.8

0.7 0.7

0,6 0.6
0.0 0,1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.1 0.2 0.3 0.4 0.5 0.6

FP FP

2(a):T1 2(b):T2

1.0 1.0

0.9

0.8 0.9

0.7 [:-.-PIAB 00 F---FIA8
0.6 ______________ PIAE1 - PCAC

0.5

0A 
0.7

0.44

0.3 0.6
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1.0

IP FP

2(c) :T4 2(d):T5Figure 2: Task ROC

decrease in the threshold factor, although in some cases, the increase was small.
In the PCAC algorithm, all counted itemsets are used to generate potential candi-

date itemsets. As the threshold factor is decreased, the number of counted itemsets
increases and thus, more itemsets are available for itemset generation and fewer item-
sets are subset pruned. For TF = 0, the PCAC accepts any itemset that is generated,
provided that none of its subsets have been zero pruned, so the CAC algorithm be-
comes equivalent to the ZSP algorithm, with TPrAc = TP, = 1 and FPrAc = FP,,,. In
other words, if the threshold factor is decreased far enough, the algorithm is guaran-
teed to find all frequent itemsets. On the other hand, the PIAB algorithm does not
guarantee this. The upper limit of TP equals 1 and this limit was reached in T2 and



Parametric Algorithms for Mining Share Frequent Itemsets 571

T5. However, in T1 and T4, TPpMAB is less than 1 for a threshold factor of 0.0. Item-
sets are generated by adding single items to frequent itemsets from the previous pass.
If the set of frequent itemsets for the k" pass does not change with a decrease in the
threshold factor, then the foundation of the generated itemsets remains the same.
Once all itemsets that can be generated by adding single items to frequent itemsets are
counted, the true and false positive rates are at their maximum. Thus, there is a trade-
off between algorithms. The PCAC algorithm will find all frequent itemsets, provided
the threshold factor is low enough, but it may count many infrequent itemsets. The
PIAB algorithm counts fewer infrequent itemsets at lower threshold factors but may
not find some frequent itemsets, regardless of the threshold factor.

The degree of variation between the ROC curves for different tasks run against the
same transaction database indicates that we may not be able to provide a single ROC
curve that is applicable to all tasks or transaction databases. Further tests against dif-
ferent transaction databases will be required to confirm or refute this. However, the
general shape of the ROC curve seems consistent enough to provide the user with
insight into the general behavior that can be expected as the threshold factor is varied.

6 Conclusions

We described the incorporation of a threshold factor into algorithms for discovering
share frequent itemsets, including those that contain infrequent subsets. The threshold
factor can be used to increase (decrease) the effectiveness of the algorithms at a cost
of an increase (decrease) in the number of infrequent itemsets examined. The CAC
and IAB are useful heuristic algorithms for finding share frequent itemsets. This study
indicates that a threshold factor can be successfully incorporated into these algorithms
to increase the number of frequent itemsets found.

References

1. Agrawal A., Imielinksi T., Swami A. Mining Association Rules between Sets of Items in Large
Databases. Proceedings of the ACM SIGMOD International Conference on the Management of
Data. Washington D.C., (1993) 207-216.

2. Agrawal A., Mannila H., Srikant R., Toivonen H., Verkamo A.I. Fast Discovery of Association
Rules. Fayyad U.M., Piatetsky-Shapiro G., Smyth P. and Uthurusamy R. Eds., Advances in Knowl-
edge Discovery and Data Mining, Menlo Park, California, (1996) 307-328.

3. Agrawal A., Srikant R. Fast Algorithms for Mining Association Rules. Proceedings of the 2 0th

International Conference on Very Large Databases. Santiago, Chile, (1994) 487-499.
4. Barber B., Hamilton H.J. Algorithms for Mining Share Frequent Itemsets Containing Infrequent

Subsets. 41h European Conference on Principles and Practices of Knowledge Discovery in Data-
bases, Lyon, France (2000).

5. Carter C.L., Hamilton H.J., Cercone N. Share Based Measures for Itemsets. Proceedings of the First
European Conference on the Principles of Data Mining and Knowledge Discovery. Trondheim,
Norway, (1997) 14-24.

6. Hilderman R.J., Carter C., Hamilton H.J., Cercone N. Mining Association Rules from Market Basket
Data using Share Measures and Characterized Itemsets. International Journal of Artificial Intelli-
gence Tools. 7(2): (1998) 189-220.

7. Kohavi R., Provost F. Glossary of Terms. Machine Learning, 30(2): (1998) 271-274.
8. Kubat M., Holte R.C., Matwan S. Machine Learning for the Detection of Oil Spills in Satellite

Radar Images. Machine Learning, 30(1): (1998) 195-215.



572 B. Barber and H.J. Hamilton

9. Mannila H., Toivonen H., Verkamo A.I. Efficient Algorithms for Discovering Association Rules.
Proceedings of the 1994 AAAI Workshop on Knowledge Discovery in Databases. Seattle, Wash-
ington, (1994) 144-155.

10. Park J.S., Yu P.S., Chen M. Mining Association Rules with Adjustable Accuracy. Proceedings of
the Sixth International Conference on Information and Knowledge Management. (1997) 151-160.

11. Provost F., Fawcett T. Analysis and Visualization of Classifier Performance: Comparison under
Imprecise Class and Cost Distribution. Proceedings of the Third International Conference on
Knowledge Discovery and Data Mining. (1997) 43-48.

12. Silverstein C., Brin S., Motwani R. Beyond Market Baskets: Generalizing Association Rules to
Dependence Rules. Data Mining and Knowledge Discovery, 2(1): (1998) 39-68.

13. Swets J.A.. 1988. Measuring the Accuracy of Diagnostic Systems. Science, 240, (1988) 1285-1293.
14. Zaki M.J., Parthasarathy, M,, Ogihara M., Li W. New Algorithms for Fast Discovery of Association

Rules. Proceedings of the Third International Conference on Knowledge Discovery & Data Mining.
Newport Beach, California, (1997) 283-286.



Discovery of Clinical Knowledge in Hospital
Information Systems: Two Case Studies

Shusaku Tsumoto

Department of Medicine Informatics, Shimane Medical University, School of Medicine,
89-1 Enya-cho Izumo City, Shimane 693-8501 Japan

E-mail: tsumotoC computer. org

Abstract. Since early 1980's, the rapid growth of hospital information
systems stores the large amount of laboratory examinations as data-
bases. Thus, it is highly expected that knowledge discovery and data
mining(KDD) methods will find interesting patterns from databases as
reuse of stored data and be important for medical research and practice
because human beings cannot deal with such a huge amount of data. Ho-
wever, there are still few empirical approaches which discuss the whole
data mining process from the viewpoint of medical data.In this paper,
KDD process from a hospital information system is presented by using
two medical datasets. This empirical study show that preprocessing and
data projection are the most time-consuming processes, in which very
few data mining researches have not dicussed yet and that application
of rule induction methods is much easier than preprocessing.

1 Introduction

Medical practice and research has been changed by rapid growth of life science,
including biochemistry and immunology(Levinson, 1996). The mechanism of a
disease can be explained as a biochemical process or cell disorder and the dia-
gnostic accuracy of medical experts is increasing due to the development of
laboratory examinations. However, it is also true that data analysis is very in-
dispensable to generating a hypothesis. For instance, discovery of HIV infection
and Hepatitis type C were inspired by analysis of clinical courses unexpected
by experts on immunology and hepatology, respectively (Fauci et al, 1997). Alt-
hough the life science has been rapidly advanced, mechanisms of many diseases
are still unknown: especially, neurological diseases were very difficult to analyze
because their prevalence is very low (Adams and Victor, 1993). Even the me-
chanism of diseases with high prevalence, such as cancer, is partially known to
medical experts. In this sense, medical research always need a good hypothesis,
which is one of the most important motivations to data mining and knowledge

discovery for medical people.
Also, another aspects interest medical researchers in data mining. Since early

1980's, the rapid growth of hospital information systems (HIS) stores the large
amount of laboratory examinations as databases (Van Bemmel, and Musen,
1997). For example, in a university hospital, where more than 1000 patients visit

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 573-581, 2000.
(© Springer-Verlag Berlin Heidelberg 2000



574 S. Tsumoto

from Monday to Friday, a database system stores more than 1 GB numerical data
of laboratory examinations for each year. Furthermore, storage of medical image
and other types of data are discussed in medical informatics as research topics
on electronic patient records and all the medical data will be stored in hospital
information systems within the 21th century. Thus, it is highly expected that
data mining methods will find interesting patterns from databases as reuse of
stored data and be important for medical research and practice because human

beings cannot deal with such a huge amount of data.
In this paper, knowledge discovery and data mining (KDD) process (Fayyad,

et. al, 1996) for two medical datasets extracted from a hospital information
system is presented. This empirical study show that preprocessing and data
proejction are the most time-consuming processes, in which very few data mining
researches have not dicussed yet and that application of rule induction methods
is much easier than preprocessing.

2 Data Selection

In this paper, we use the following two datasetsfor data mining, which are ex-
tracted from two different hospital information systems. One is bacterial test
data, which consists of 101,343 records, 254 attributes. This data includes past
and present history, physical and laboratory examinations, diagnosis, therapy,
a type of infectious disease, detected bacteria, and sensitivities for antibiotics.
The other one is a dataset on the side effect of steroid, which consists of 31,119
records, 287 basic attributes. This data includes past and present history, physi-
cal and laboratory examinations, diagnosis, therapy, and the type of side effects.
The characteristic of the second dataset is that it is a temporal database: alt-
hough it includes 287 basic attributes, 213 attributes of which have more than
100 temporal records. These datasets are obtained through the first to third
steps of KDD process: data selection, data cleaning and data reduction.

In the first step of KDD process, these databases are extracted from two
different hospital information systems by simple queries. Table 1 gives results
for data selection: the second column shows the total size of HISs when data were
selected (December, 1998). The third column presents the size of data selected
from HIS. Finally, the fourth column gives the computational time required for
data selection. Since each HIS is implemented on different computers, it may
be difficult to compare each computational time, but those values suggests that
time is not dependent on the selected data, but on the total HIS size.

Table 1. Data Selection Results

Datasets HIS size Target Data Time Required
Bacterial Test 1,275,242(52GB) 361,932(14GB) 2.3 Days
Side-Effect 2,631,549(100GB) 135,749(6GB) 7.3 Days



Discovery of Clinical Knowledge in Hospital Information Systems 575

3 Data Cleaning as Preprocessing

After data selection, data cleaning is required since the data obtained from the
first step are not clean, including data records not suitable for data analysis.
Even though these records are selected by matching the query condition, they
do not include enough amount of information. In the case of bacterial tests, some
patients have information about bacterial tests, but they made very few labora-
tory examinations. On the other hand, in the case of side effects, some patients
have a record on steroid therapy, but they made two or three examinations for
each year since the status of allergic diseases was stable and the patients do not
suffer from any side-effects. These data may be removed if the queries in the
first step are refined. However, it should be pointed out that the refinement of
queries is not so a easy task because we have many types of insuitable data,
which is difficult to predict and will occur not only due to the factors of pati-
ents but also due to the factors of medical doctors. For example, some patients
may not come to the outpatient clinic when they recover from allergic disorders.
Some doctors may tell the patients not to come to the clinic so often. In some
cases, some patients are found to suffer from very a severe disease and they
should be admitted to a university hospital. In other cases, patients may move
from a university hospital to a municipal hospital. Many factors not included in
a database, mainly social factors, will be a cause for degrading the cleaness of
data.

Thus, it is much easier to clean the data not by using complex queries but
by using simple statistics. Since each domain has attributes indispensabe to eva-
luating the status of patients, the number of attributes used to describe each
record is a good index for removing not-clean records. So, we define the two-fold
cleaning steps: first we select the records which have no missing values in the
pre-defined indispensable attributes. Then, we calculate how many attributes in
the remaining attributes are used to describe the records in the first step. If the
number of attributes used for a case is not sufficient, then this case will removed.
For those steps, the indispensable attributes and the threshold for the second
selection are given a priori by domain experts. In the case of bacterial tests, 254
attributes are very important. Furthermore, 27 attributes are indispensable to
describe each case. Thus, in the data cleaning step, first select the records which
have missing values in the 27 attributes. Then, calculate how many attributes
have missing values in remaining 227 attributes. If 75% of them are missing
,then remove these records. In the case of steroid side-effects, the same stra-

tegy is applied. 74 non-temporal attributes are indispensable and 217 temporal
attributes are used for second selection.

Table 2. Data Cleaning Results

Datasets Data Cleaned Data Time Required
Bacterlal Test 361,932(14CB) 101,343(3GB) 5.2 Days
Side-Effect 135,749(6GB) 31,119(1,5GB) 2.5 Days



576 S. Tsumoto

Table 2 summerizes results for data cleaning. The second column shows the
number of records selected in the data selection. The third column shows the
size of data after the data cleaning process is applied. The fourth column gives
the computational time required for the whole steps.

4 Data Reduction and Projection as Preprocessing

4.1 Data Projection for Bacterial Test Database

From the viewpoint of table processing, data cleaning can be viewed as cleaning
steps in the direction of records, that is, in the direction of row. On the other
hand, data reduction can be viewed as cleaning steps in the direction of attri-
butes, that is, in the direction of column. Although the data cleaning process is
a time-consuming process, it takes much more time to reduct and project data
in clinical databases due to the characteristics of biological science, including
medicine. The tradition of classification in biology tends to have a large scale of
classification systems. For example, let us consider the classfication of bacteria.
If we look at the classification tree of bacteria, more than millions of bacteria are
classified neatly in one classification tree. However, the number of bacteria on
which we want to focus in medicine is very few, compared with this total classi-
fication. But, even the number of bacteria used in bacterial tests are too many,
compared with the total number of classes used in data mining techniques. In
the case of bacterial test database, 1194 kinds of bacteria and other bioorganism
are used as a target class. If conventional classification or statistical methods
are applied to this data, most of induced rules or patterns may be useless be-
cause these methods tend to extract knowledge for differentiation between 1194
classes. These tendencies are unexpected for medical experts who want to have
more generalized results.

Thus, generalization of such over-classified attributes is required to discover
rules which are easy for medical experts to interpret. For bacterial test data-
bases, a simple concept hierarchy was used for generalization of values. All the
bioorganism are classified into 1124 bacteria and 70 non-bacteria bioorganism.
Then, 1124 bacteria are classified into aerobic (973) and anaerobic (151). ZFrom
the levels below, which is not shown in this figure, conventional bacterial clas-
sification sytem is used for construction of tree, into which totally five levels of
hierarchy is implemented. For each data mining task, we set up which hierarchi-
cal level is suitable for data analysis. Although data projection for this dataset
is parallel with data mining process, we show how much time is needed for each
data projection in Table 3.

The first column denotes the level of concept hierarchy used for generaliza-
tion. The second one shows the number of total values for compairson. Ther third
column gives the number of total values for generalization.The fourth column
gives computational time for generalization. Finally, the fifth column gives time
for construction of a hierarchical tree by interaction between data analyzers and
domain experts. Especially, since a construction of hierarchical tree can be vie-
wed as a knowledge acquisition process, it cannot be automated. In addition to



Discovery of Clinical Knowledge in Hospital Information Systems 577

Table 3. Generalization of Bacteria

Projection Level Generalized Values Time Computation Time Construction
2. (Bacteria) 2 24 hours 1.0 Days
3. 5 25 hours 1.4 Days
4 52 26 hours 3.0 Days
5 175 27 hours 7.0 Days
6 1194 0

this hierarchical tree, the following hiearchical tre is also needed for generaliza-
tion of this dataset: a classification tree for chronic diseases which each patient
suffers from. This process also takes 7 days to complete the tree structure with
domain experts.

4.2 Data Reduction for Steroid Side-Effect Database

Characteristics of Medical Temporal Databases. Since incorporating tem-
poral aspects into databases is still an ongoing research issue in database area
(Abiteboul, et. al., 1995), temporal data are stored as a table in hospital informa-
tion systems (H.I.S.) with time stamps. The characteristics of medical temporal
data are as follows(Tsumoto 1999): (1)The Number of Attributes are too many,
(2) Irregularity of Temporal Intervals, and (3)Missing Values.

Data Reduction using Moving Average Method. The way to how to
deal with medical temporal databases is discussed in (Tsumoto, 1999). Tsumoto
introduces extended moving average method, which automatically set up the
scale of the temporal interval. For example, if the scale factor is set to be 2, then
the temporal interval for moving average is calculated from 2, 4, 8, 16, and so on.
Each temporal interval is called window.In general, let s and yi denote a scale
factor and a value for laboratory test. Then moving average for y is defined as:

w

W"
j=1

where n denotes an integer which is set up for temporal interval. Thus, sn gives
the size of window. One of the disadvantages of moving average method is that
it cannot deal with categorical attributes. To solve this problem, we will classify
categorical attributes into three types, whose information should be given by
users. The first type is constant, which will not change during the follow-up
period. The second type is ranking, which is used to rank the status of a patient.
The third type is variable, which will change temporally, but ranking is not
useful. For the first type, extended moving average method will not be applied.
For the second one, integer will be assigned to each rank and extended moving
average method for continuous attributes is applied. On the other hand, for the



578 S. Tsumoto

third one, the temporal behavior of attributes is transformed into statistics by
using frequencies.

For further discussion on data reduction of temporal data, the readers may
refer to (Tsumoto, 1999).

Table 4. Computational Time for Data Summarization

Window Size Computational Time
2'(- 128) 12.0 hours
2"(=~ 256) 8.0 hours

00 7.0 hours

Results of Data Reduction for Steroid Side Effects. Steroid side-effects
is known as long-term side-effects, usually observed when a patient takes steroid
for more than several years. Thus, to capture long-term effects, the window
size is set to 27(= 128) and 21(= 256). It is true that a significant amount of
temporal information is lost by using data reduction, but we should remember
that the first objective of data mining is to find simple useful and unexpected
patterns from data. As discussed in 4.2.1, medical temporal data suffer from
many types of irregularities. Table 4 shows the computational time required for
data summerization. It is notable that this table shows the trade-off relationship
between the window-size and computational time: if the window-size is smaller,
the computational time grows much larger.

4.3 Total Timne Required for Data Reduction

In summary, Table 5 gives the total time required for data reduction and pro-
jection for each data set, including knowledge acquisition process. The second
column gives the type of preprocessing. The third column shows total time re-
quired for each process. Finally, the fourth column shows the time required for
acquisition of knowledge from domain experts.

Table 5. Total Time Required for Data Reduction

Dataset Preprocessing Total Time Time for Acquisition
Bacterial Test Projection 15.25 Days 7.0 Days
Side-Effect Summarization 2.3 Days 0

This table suggests the generalization of values in attributes should be a
time-consuming process, especially when domain knowledge is given.



Discovery of Clinical Knowledge in Hospital Information Systems 579

5 Rule Induction as Data Mining

After the third step, rule induction based on rough set model (Pawlak, 1991) was
applied to two medical datasets. Tsumoto (1998, 2000) extends rough-set-based
rule induction methods into probabilistic domain.

In this section, we skip this part due to the limitation of space. For further
discussion, the readers may refer to (Tsumoto, 1998; Polkowski and Skowron,
1998). The algorithm introduced in (Tsumoto 1999) was implemented on the
Sun Spaarc station and was applied to the above two medical databases, the
information of which is summarized in Table 6. For rule induction, the thresholds
for accuracy and coverage are set to 0.5 and 0.5, respectively.

For bacterial test databases, six attributes for which domain experts want to
find simple pattern are assigned to decision attributes. For side-effect databases,
one attribute (side-effect) is assigned to a decision attribute. Table 7 summarizes
the results of data mining. The second and third columns give information about
data. The fourth column shows the number of rules induced by rule induction
methods. Finally, the fifth column presents the computational time required. It
is notable that the computational time is rather small, compared with compu-

tational time.

Table 6. Summary of Data Mining

Data Size Attributes Rules Computational Time
Bacterial Test 101,343 (3CB) 254 24,335 60 hours (2.5 Days)
Side-Effects 31,119 (1.5GB) 287 14,715 18 hours (0.75 Days)

6 Interpretation of Induced Rules

After the data mining step, we obtain many rules to be interpreted by medical
experts. Even if the amount of information is very small compared with the
original databases, it still takes about one week to evaluate all the induced rules.

6.1 Induced Rules of Bacterial Tests

Of 24,335 rules, only 114 rules are unexpected or interesting to medical experts.
From these discovered results, nine rules are shown below.

1. 0-lactamase(+) -+ Bacteria-Detection (+)
2. 0-lactamase(3+) --* Bacteria-Detection (+)
These two results are interesting from the viewpoints of history of bacterial

infection. Since penicillin has been introduced as antibiotics, many bacteria have
acquired to generate enzymes that decompose penicillin, called 3-lactamase. The
above two results show that such penicillin-resistant bacteria can be more easily
found than penicillin-sensitive ones.



580 S. Tsumoto

3. Pneumonia --÷ Bacteria-Detection (-)
4. Fever (BT>39) -* Bacteria-Detection(-)
5. Malignant Tumor -+ Bacteria-Detection (-)
These three results are unexpected by medical experts. As for the third rule, it

is well known that bacterial infection is the main cause for pneumonia. However
even if pneumonia comes from the bacterial infection, it would be difficult to
detect bacteria. Concerning the fourth rule, high fever suggests that the degree
of infection is high. However, it would be difficult to detect bacteria even if the
degree is high. Finally, in the case when a patient suffers from malignant tumor,
he/she may suffer from a severe infection due to immunological insufficiency.
However, it may be difficult to detect bacteria for this case.

6.2 Induced Results of Steroid Side-Effects

Of 14,715 rules, only 106 rules are unexpected or interesting to medical experts.
From these discovered results, four rules are shown below For simplicity, these
rules are given in the summarized form, though they are originally represented
as the conjunction of temporal attributes.

1. [Steroid>3.Oyears] & [Headache(+)>0.5] -- Glaucoma
This rule shows that headache is an important sign for glaucoma due to

steroid side-effect.
2.. [Steroid>2.5years] & [Blurred Vision(+)>0.75] -> Cataracta
This result shows that if a patient takes steroid for more than two years, the

side effects may be frequently observed. Those unexpected/interesting rules are
also feedbacked to the university hospital, which donates a dataset to us, and
the staff in the hospital is evaluating them.

7 Discussion: Time Required for KDD Process

After the data interpretation phase, about one percent of induced rules are found
to be interesting or unexpected to medical experts. In this section, the total KDD
process is reviewed with respect to computational time.

Table 7 shows the total time required for KDD process. Each column shows
two data sets for each process. Each row includes computational time required
for each process. Totally, it takes about one month and three weeks to complete
the whole KDD process for bacterial test database and side-effect database,
respectively. It is notable that more than 60% of the process is devoted to the
three preprocessing processes: data selection, cleaning and reduction. Especially,
as for the bacterial test dataset, 22.75 days (79.5%) are used for three processes.
It is because domain knowledge should be acquired for generalization of data,
as discussed in Section 3. On the other hand, only 4 to 8 percent of total time
is spent for data mining process. In the case of bacterial test database, only 2.5
days (8%) is used for rule induction. Therefore, these empirical results suggest
that the main KDD processes should be preprocessing rather than discovery of
patterns from data.



Discovery of Clinical Knowledge in Hospital Information Systems 581

Another important point is that data interpretation is also time-consuming
process, compared with data mining process because it needs interpretation by
domain experts. In summary, if we want to make KDD process faster, then
we should consider the automation of processes which needs interaction bet-
ween computers and domain experts. Especially if domain knowledge is easily
incorporated into the program, the computational time for the third step may
be significantly improved. Therefore, more intensive research on automation of
data preprocessing is required for future research.

Table 7. Total Time Required for KDD process

KDD Process Bacterial Test Side-Effect
Data Selection 2.3 7.3
Data Cleaning 5.2 2.5
Data Reduction 15.25 2.3
Data Mining 2.5 0.75
Data Interpretation 7.0 7.0
Total Time 32.25 19.85

References

1. Adams, R.D. and Victor, M. 1993. Principles of Neurology, 5th edition, McGraw-
Hill, NY.

2. Abiteboul, S., Hull, R., and Vianu, V. 1995. Foundations of Databases, Addison-
Wesley, NY.

3. Fauci, A.S., Braunwald, E., Isselbacher, K.J. and Martin, J.B. (eds.) 1997. Harri-
son's Principles of Internal Medicine (14th Ed), McGraw Hill, NY.

4. Fayyad, U., Piatetsky-Shapiro, G. and Smyth, P. 1996. The KDD Process for
Extracting Useful Knowledge from Volumes of data. CACM, 39: 27-34.

5. Levinson, W.E. and Jawetz, E. 1996. Medical Microbiology & Immunology : Ex-
amination and Board Review (4th Ed), Appleton & Lange.

6. Holt, J.C. (Ed.) Bergey's Manual of Systematic Bacteriology (Vol 1) Lippincott,
Williams & Wilkins.

7. Pawlak, Z. 1991. Rough Sets, Kluwer Academic Publishers, Dordrecht.
8. Polkowski, L. and Skowron, A. 1998. Rough Sets in Knowledge Discovery Vol.1

and 2, Physica-Verlag, Heidelberg.
9. Tsumoto, S. 1998. Automated extraction of medical expert system rules from cli-

nical databases based on rough set theory, Information Sciences, 112, 67-84.
10. Tsumoto, S. 1999. Rule Discovery in Large Time-Series Medical Databases. In:

Proc. 3rd European Conference on Principles of Knowledge Discovery and Data
Mining (PKDD), LNAI'1704, Springer Verlag, 23-31.

11. Van Bemmel,J. and Musen, M. A.1997. Handbook of Medical Informatics,
Springer-Verlag, NY.



Foundations and Discovery of Operational
Definitions

Jan M. Zytkow and Zbigniew W. Rag

Computer Science Dept. University of North Carolina, Charlotte, N.C. 28228
e-mail: zytkowt~ucc .edu & rasOuncc. edu

also Institute of Computer Science, Polish Academy of Sciences

Abstract. Empirical equations and rules are important classes of regu-
larities that can be discovered in databases. We concentrate on their role
as definitions of attribute values. Such definitions can be used in many
ways in a single database and for transfer of knowledge between databa-
ses. We analyze quests for definitions of an attribute in a given database.
A quest triggers a discovery mechanism that specializes in searching re-
cursively a system of databases and returns a set of partial definitions.
We introduce the notion of shared operational semantics founded on
an equation-based and rule-based system of partial definitions. It gives
necessary foundations for designing local query answering systems in a
distributed knowledge system (DKS).

1 Shared Semantics for Distributed Autonomous DBs

In many fields, such as medical, manufacturing, banking, military and educatio-
nal, similar databases are kept at many sites. Each database stores information
about local events and uses attributes suitable for locally collected information,
but since the local situations are similar, the majority of attributes are compa-
tible among databases. Yet, an attribute may be missing in one database, while
it occurs in many others. For instance, different military units may apply the
same battery of personality tests, but some of these tests may be not used in
one unit or another.

Missing attributes lead to problems. A recruiter new at a given unit may
query a local database S1 to find candidates who match a desired description,
only to realize that one component a, of that description is missing in S1 so that
the query cannot be answered. The same query would work in other databases
but the recruiter is interested in identifying suitable candidates in S1.

1.1 System Architecture

Operational semantics introduced in [15] provides definitions of missing attribu-
tes through search for definitions in many databases. Figure 1 shows the archi-
tecture of a distributed knowledge system. Discovery Layer for each database is
initially formed from rules and equations extracted from that database. They

Z.W. Rag and S. Obsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 582-590, 2000.
@ Springer-Verlag Berlin Heidelberg 2000



Foundations and Discovery of Operational Definitions 583

define some of the attributes by other attributes in the same database and are
discovered by an automated process. They are used for knowledge exchange
between databases and jointly form an integrated semantics for a distributed
knowledge system which defines the meaning of queries. Query answering sy-
stem QAS uses definitions extracted at other databases and/or available in the
local discovery layer to answer queries which otherwise would not be reachable.

Knowledge Knowledge Knowledge
Exchange Exchange Exchange

Discovery Discovery Discovery Discovery
Layer Layer Layer Layer

mining 1I mining{ \j mining'~~ mining

Database Database Database Database

Operational Operational I Operational I Operational
Semantics Semantics Semantics SemanticsI

OAS OAS OASQA

Fig. 1. Distributed Knowledge System

1.2 Links to Previous Research

QAS is a natural knowledge-discovery-based extension of the query answering
system for a system of databases, presented in [11], [12], [13]. In these papers rules
discovered in one database define values of missing attributes in other databases.
The search for rules can use many strategies which find rules describing decision
attributes in terms of classification attributes. It has been used in conjunction
with such systems like LERS (developed by J. Grzymala-Busse [3]) or AQ15
(developed by R. Michalski and his collaborators [8]).

The task of integrating established database systems can be complicated not
only by the differences between the sets of attributes but also by differences in
structure and semantics of data. The notion of an intermediate model, proposed
by Wiederhold [7], is very useful in dealing with such a problem, because it
describes the database content at a relatively high abstract level, sufficient for a
homogeneous representation of all databases. In our paper a discovery layer can
be seen as an application of the ideas of an intermediate model for a distributed
DB system.

1.3 Operational Definition

Definitions that are used to compute attribute values of objects are often cal-
led operational definitions. They are common in science, where values of each



584 J.M. Zytkow and Z.W. Ra,ý

attribute are determined in many ways, depending on different applications.
Operational semantics has been introduced by Bridgman [1] and developed by
Carnap [2] and many others, including semantics of coherent sets of operational
definitions developed by Zytkow [16] and applied in robotic experiments [18].

Operational semantics can be applied to databases. Many computational me-
chanisms can be used to define values of an attribute. We call them operational
definitions because each is a mechanism by which the values of a defined attri-
bute can be computed. Many are partial definitions, as they apply to subsets of
records that match the "if" part of a definition. In 1989-1990, Ras et al. [6], [14]
introduced a mechanism which first seeks and then applies as definitions rules in
the form "If Boolean-expression(x) then a(x)=w" which are partial definitions
of attribute a applicable to all objects x that satisfy Boolean-expression(x).

The 49cr system can find knowledge in many forms, including equations,
that can be used to define one attribute by other attributes in a relational table.
We conducted experiment, using this mechanism in addition to rule-based defi-
nitions [4]. The growing interest in KDD will make the discovery of operational
definitions increasingly popular. Recently, Prodromidis & Stolfo [10] argued that
attribute definitions are a useful target for discovery in databases.

1.4 Shared Semantics in Action: Query Answering

Many query-answering situations can benefit from the following generic scenario.
A query q is issued at database S1, but it is "unreachable" in S, because it uses
an attribute a which is missing in S1 . A request for a definition of a is issued to
other sites in the distributed autonomous database system. The request specifics
attributes al, ... , a,, available at S1. When attribute a and a subset jai .. .... ai, I}

of { al,..., aJ~ are available in another database S2, a discovery mechanism is
invoked to search for operational definitions at S2, by which values of a can be
computed from values of some of ail, ...,I aik . If discovered, such a definition is
returned to the discovery layer over S, and used to compute the unknown values
of a that occur in query q.

The same mechanism can apply if attribute a is available at S1, but some
values of a are missing. In that case, the discovery mechanism can be applied at
S1, if the number of the available values of a is sufficiently large.

1.5 Other Applications

Functional dependencies in the form of equations are a succinct, convenient form
of knowledge, useful in many ways. The equation a = f (al, a2 , ... , am,) can be
directly used to predict values a~x) of a for object xr by substituting the values
of a 1 (x), a2 (X), ... , a, (x) if all are available. If some are not directly available,
they may be predicted by other operational definitions.

When we suspect that some values of a may be wrong, an equation imported
from another database may be used to verify them. An equation acquired at the
same database may be used, too. For instance, patterns discovered in clean data
can be applied to distinguish wrong values in the raw data.



Foundations and Discovery of Operational Definitions 585

Equations that are generated at different sites can be used to cross-check the
consistency of knowledge and data coming from different databases. If the values
of a that are computed by two independent equations are approximately equal,
this confirms consistency of both definitions.

All equations by which values of a can be computed expand the understan-
ding of a. Attribute understanding is often initially inadequate when we receive a
new dataset for the purpose of data mining. We may know the domain of values
of a, but we do not understand a's detailed meaning, so it is difficult to apply
background knowledge and the knowledge discovered about a. In such cases, an
equation that relates a poorly understood attribute a with attributes of known
meaning, explains some of the meaning of a.

2 Recursive Search for Equations

Let us present in algorithmic details a recursive discovery mechanism that sup-
ports global query answering. When an attribute a is needed but unreachable in
database S1, a request for a definition of a is issued to other sites in the distri-
buted database system. The request specifies the attributes a1,,..., a,- available
in S1, because only those attributes can be included in a definition useful at S1.

In this section we present a recursive algorithm that searches for equations
and we analyze an application os this algorithm. But that algorithm can be used
to search for rules. In section 3 we will present an example of recursive search
for rules.

When the attribute a and a subset fail, ... ai, I of {ai, ...,a,,} are available
in another database S2, 49er's discovery mechanism is invoked to search S2 for
equations by which values of a can be computed from values of some of ail, ..., i
If discovered, such equations are returned to S, and can be used in numerous
ways.

In [15] we considered a computational mechanism that searches at each da-
tabase individually for equations suitable in a role of definitions of a. But there
are numerous situations when this mechanism must be expanded and applied
recursively.

2.1 Non-overlapping Attribute Sets

First, there may be no database which contains a and any of {al, ... , a,,}. This
can be illustrated with the following example of simple relation schemas, one
relation per database:

Si(ai, a2 , .... a,) ;definition of attribute a is sought

S(ia2, a3 )

Suppose that an equation a f (b1 ) has been discovered in S2. It cannot be
used in S1, because b, is unavailable. But S3 includes b, and some of {ai, ... , a~j.
An equation b, = f, (a2, a 3) may be discovered that defines b, in terms a2 and
a3 . That equation can be substituted into a f (b1 ) leading to equation a
f (f, (a 2 , a3)) that can be applied in S1.



586 J.M. Zytkow and Z.W. RaA

2.2 Search for a Sufficient Fit

Second, there may be a database S4 that includes a and some of {a1 , ... , a"}.
But no equation that defines a through any of f{a,,..., a,, I has a fit sufficient to
play the role of a definition. In this situation, the search for a definition can be
expanded. Perhaps an equation is discovered that has a sufficient fit to play the
role of a definition, but in addition to some of f{a,,..., a, I it uses bl, unavailable
in S1. We already discussed the steps appropriate for this situation.

2.3 Empirical Contents in a Set of Definitions

There is a more systematic reason why the search for equations should continue,
even if it has been successful. Equations that are used to compute missing values
are empirical generalizations. Although they may be reliable, we cannot trust
them unconditionally, and it is a good practice to seek their further verification,
especially if they are applied to the expanded range of values of a. The veri-
fication may come from additional knowledge that can be used as alternative
definitions. Ras et al. [12], [13] used rules coming from various sites and verified
their consistency.

Multiple equations give a chance for cross-verification, as their predictions
can be compared. Each consistent prediction provides extra justification for the
system of definitions, while each inconsistency calls for further empirical analysis
of data and definition improvements.

2.4 Recursive Discovery Algorithm

The following algorithm can be used to search recursively for an attribute defi-
nition:

Algorithm: Find definitions of attribute a that are applicable in DB
Let A be the set of attributes in DB3
For each database X

Let Ax be the set of attributes in both A and X
If a is available in X and Ax is not empty, then

seek all definitions of a in Ax; push them on deffa, A)
If deffa,A) is non-empty, then HALT
For each X

If a is available in X, then
seek all definitions of a in X; push them on def(a,X)
For each definition DEF in def(aX)

For each attribute b in DEF that is missing in D13
Find definitions of attribute b that are applicable in D13

If all attributes in DEF are defined by attributes in A
then add DEF to list of definitions of a



Foundations and Discovery of Operational Definitions 587

2.5 An Example of Recursive Search for a Definition

Consider the following database schemas

SI(al, a 2 , a3),
S 2 (a, a,, b),
S3 (a, b, a3),
S 4 (a 2 , b)

also illustrated in Figure 2. Discovery layer is assigned to each of these four
databases and contains definitions of attributes and/or attribute values extracted
from them. Definition of attribute a is sought.

a=f2(al ,b) "a~f 1'(a3)bi"(

Discovery Discovery Discovery Discovery
Layer Layer Layer Layer

mining t t t mining t 1 t mining Ai / j t mining

Sl(al,a2,a3) S2(a,al,b) S3(aba3) S4(a2,b)

Database Database Database Database

Queryl

q(a) I
kdQAS kdQAS kdQAS kdQAS

Fig. 2. Search for equations in support of query answering; an example

The recursive search for a definition follows these steps:
1. S1 sends a request: define a, use a,, a 2, a 3

2. S2 and S 3 try to answer.
3a. Situation 1: definition found in S 3: a = fl(a 3 )
3b. Situation 2: no definition found, so the search is expanded to additional

attributes: define a, use a,, a2, a 3 and any other parameters available.
4. S2 tries to answer.
5a. Situation 3: definition not found so the search halts.
5b. Situation 4: definition found in S 2 : a = f 2 (a,, b)
6. A new quest is issued: define b, use a,, a 2 ,a 3

7. S 3 and S 4 try to answer.
8a. Situation 5: definition not found so the search halts.

8b. Situation 6: definition found in S4: b = f 3 (a 2 )
9. Equation in 8b is substituted into equation in 5b: a = f 2 (a,, f 3 (a 2 ))
10. The search halts.



588 J.M. Zytkow and Z.W. Raý

3 Query Answering System Based on Reducts

In this section we recall the notion of a reduct and show how it can be used to im-
prove the query answering process in distributed autonomous database systems
(DADS). We assume that information stored in all databases is consistent.

Let us assume that S = S(A) is a database schema and S(X, A) represents
its view. Each a G A is interpreted here as a function a : X --- Dom(a), where
Dom(a) is a domain of a. For simplicity reason we assume that Dom(a), Dom(b)
are disjoint for any a, b G A such that a $ b.

Let B c A. We say that x, y G X are indiscernible by B in S, denoted
Ix 'B Y], if (Va G B)[a(x) = a(y)].

I 
overlap

X2 I a b [c d f1

Xi 1 al bi ci dl fi

)(2 al b2 c2 dl f2stp1F5sJ

X3 al bi ci dl fi 4 f: dc , eg> site 1

x4 al b2 c2 dl f2

x5 a2 b2 cl dl f3 c, e local attributesa _4al *bl -> f1 
f :non-local

x6 a2 b2 of dl M a2 -> f3 el-> bla3 -> f4 e2 -> b2

x7 3 b c d2 f4 rules extracted e3 ->b2

x8 a3 bl c3 d2 f4 at 3

Coverings of f:
(a,b), (aic}, (bac}

Covering (b, c} is chosen step 2 Y, bl el gi hi
as optimal one.

<b d, c, a, g> y2 bl el g2 h2

N y3 bl el gl hl

y4 bl el g2 h2

y5 b2 e2 g2 h l1

y6 b2 e2 g2 hl

Coverings of b: y7 b2 e3 g3 h3(e), {g,h}

Covering {e} is
chosen as 8 b2 e g3 h
optimal one.

Fig. 3. Process of resolving a query by QAS in DADS



Foundations and Discovery of Operational Definitions 589

Now, assume that both B 1 , B 2 are subsets of A. We say that B 1 depends
on B 2 if PB 2 C•B1 . Also, we say that B 2 is a reduct of B 1 (Bl-reduct) if B1

depends on B 2 and B2 is minimal. If B is a singleton set (B = {f}) then instead
of B-reduct we say f-reduct.

Example. Assume the following scenario:

- S, = (XZ, {c, d, e, g}), S2 = (X 2 , {a, b, c, d, f}), S3 = (X 3 , {b, e, g, h})
are views of database schemas S1, S 2 , S3, respectively.

- User submits a query q = q(c, e, f) to the query answering system QAS
associated with database S 1,

- Databases S 1 , S 2 , S 3 form a distributed autonomous database system
DADS.

Attribute f is non-local for a database S1 so the query answering system
associated with S1 has to contact other sites of DAKS requesting a definition
of f in terms of {d,c,e,g}. Such a request is denoted by < f : d,c,e,g >.
Assume that the database S2 is contacted. The definition of f, extracted from
S 2 , involves only attributes {d, c, e, g} n {a, b, c, d, f} = {c, d}. There are three
f-reducts (coverings of f) in S2 . They are: {a, b}, {a, c}, {b, c}. The optimal f-
reduct is the one which has minimal number of elements outside {c, d}; in our
case {a, c} and {b, c}. Let us assume that {b, c} is chosen as an optimal f-reduct
in S2.
Then, the definition of f in terms of attributes {b, c} may be extracted from
S 2 and the query answering system of S 2 will contact other sites of DADS
requesting a definition of b (which is non-local for S1 ) in terms of attributes
{d, c, e, g}. If a definition of b is found, then it is sent to QAS of S1. Figure 4
shows the process of resolving query q in the example above.

4 Conclusion

The discovery layer at each site is formed from partial definitions either extrac-
ted from that site or imported from other sites. All these partial definitions (if
consistent) define a local operational semantics and the meaning of queries seen
by the local query answering system. Discovery processes update discovery lay-
ers associated with all databases in DADS. They do it in real-time whenever a
local query cannot be answered with the help of local operational semantics. As
"a result of operational definitions discovery, local semantics is augmented with
"a relevant selection of definitions found in DADS.

References

1. Bridgman, P.W., The Logic of Modern Physics, The Macmillan Company, 1927
2. Carnap, R., "Testability and Meaning", in Philosophy of Science, 3, 1936



590 J.M. Zytkow and Z.W. Ra.

3. Grzymala-Busse, J., "LERS - A system for learning from examples based on rough
sets", in Intelligent Decision Support, Handbook of Applications and Advances of
the Rough Sets Theory, Slowinski, R. (ed), Kluwer Academic Publishers, 1992, 3-18

4. Klopotek, M., Michalewicz, M., Michalewicz, Z., Ras, Z., Wierzchon, S., Zytkow,
J., "Discovering knowledge in distributed databases", in Proc. of 6th International
Workshop on Intelligent Information Systems, 1997, 128-138

5. Kryszkiewicz, M., Rybinski, H., "Reducing information systems with uncertain
attributes", in ISMIS'96 Proceedings, LNCS/LNAI, Springer, Vol. 1079, 1996, 285-
294

6. Maitan, J., Ras, Z., Zemankova, M., "Query handling and learning in a distributed
intelligent system", in Methodologies for Intelligent Systems, IV, (Ed. Z.W. Ras),
North Holland, 1989, 118-127

7. Maluf, D., Wiederhold, G., "Abstraction of representation for interoperation", in
Proceedings of Tenth International Symposium on Methodologies for Intelligent
Systems, LNCS/LNAI, Springer-Verlag, No. 1325, 1997, 441-455

8. Michalski, R.S., Mozetic, I., Hong, J. & Lavrac, N. "The multipurpose incremental
learning system AQ15 and its testing application to three medical domains." in
Proceedings of the Fifth National Conference on Artificial Intelligence, Morgan
Kaufmann, 1986, 1041-1045

9. Pawlak, Z., "Rough classification", in International Journal of Man-Machine Stu-
dies, Vol. 20, 1984, 469-483

10. Prodromidis, A.L. & Stolfo, S., "Mining databases with different schemas: Inte-
grating incompatible classifiers", in Proceedings of The Fourth Intern. Conf. onn
Knowledge Discovery and Data Mining, AAAI Press, 1998, 314-318

11. Ras, Z., "Query answering in DAKS based on reducts", in Proceedings of
FQAS'2000, Advances in Soft Computing, Physica-Verlag, 2000, will appear

12. Ras, Z., "Resolving queries through cooperation in multi-agent systems", in Rough
Sets and Data Mining (Eds. T.Y. Lin, N. Cercone), Kluwer Academic Publishers,
1997, 239-258

13. Ras, Z., Joshi, S., "Query approximate answering system for an incomplete DKBS",
in Fundamenta Informaticae Journal, IOS Press, Vol. 30, No. 3/4, 1997, 313-324

14. Ras, Z., Zemankova, M, "Intelligent query processing in distributed information
systems", in Intelligent Systems: State of the Art and Future Directions, Z.W.
Ras, M. Zemankova (Eds), Ellis Horwood Series in Artificial Intelligence, London,
England, November, 1990, 357-370

15. Ras, Z., Zytkow, J.,"Discovery of equations to augment the shared operational
semantics in distributed autonomous BD System", in PAKDD'99 Proceedings,
LNCS/LNAI, No. 1574, Springer-Verlag, 1999, 453-463

16. Zytkow, J., "An interpretation of a concept in science by a set of operational
procedures", in Polish Essays in the Philosophy of the Natural Sciences, Krajewski
W. ed. Boston Studies in the Philosophy of Science, Vol.68, Reidel 1982, p.1 69- 18 5 .

17. Zytkow, J. & Zembowicz, R., "Database exploration in search of regularities", in
Journal of Intelligent Information Systems, No. 2, 39-81

18. Zytkow, J.M., Zhu, J., and Zembowicz R., "Operational definition refinement: a
discovery process", in Proceedings of the Tenth National Conference on Artificial
Intelligence, The AAAI Press, 1992, p. 7 6-8 1 .



A Multi-agent Based Architecture for
Distributed KDD Process

Chunnian Liu 1 , Ning Zhong2 , and Setsuo Ohsuga3

School of Computer Science, Beijing Polytechnic University, China
2 Dept. of Information Eng., Maebashi Institute of Technology, Japan

3 Dept. of Information and Computer Science, Waseda University, Japan

Abstract. Focuses in KDD research are being extended from individual
techniques to KDD process, while KDD systems have been rapidly evolv-
ing from the early stand-alone ones to the current large, Distributed KDD
(DKDD) systems. In this paper, we concentrate on the architectural as-
pect of Distributed KDD systems from the perspective of CSCW (treat-
ing DKDD as a special case of CSCW). After summarizing the require-
ments needed to support Distributed KDD, we describe a Client/Server
architecture for DKDD that is "traditional" for CSCW in general. Then
we propose a Multi-Agent (MAS) based architecture for DKDD. Com-
pared with the traditional Client/Server architecture, the MAS based
architecture is better in terms of simplicity and flexibility, and particu-
larly useful in modeling and providing support to cooperative activities
(communication, negotiation, coordination and collaboration).

1 Introduction

Data Mining or Knowledge Discovery in Databases (KDD) means discovering
new, useful knowledge (called models in this paper) from vast amount of data
accumulated in an organization's databases. KDD process is the set of activities
needed to transform raw datasets into usable models. In real-world applications,
KDD process is an integrated part of a whole business process, with activities
such as data sampling, pre-processing, mining (model building), model analysis,
visualization and integration into the business process. Now it is well-recognized
that real-world KDD process can be very complex, similar in many aspects to
Software Development Process [Hum89].

KDD is essentially a demand-driven field. Although early work in KDD in-
evitably concentrated on individual mining techniques, what really important is
the KDD systems combining various KDD techniques and their successful ap-
plications to real-world databases. KDD systems have rapidly evolved [Ce99].
While the first generation of KDD systems was stand-alone mining applications
over files, the second generation has been integrated with data management,
and the third (current) generation is characterized by distribution of data and
computation over enterprises' Intranets or across the global Internet. We will
call this kind of KDD systems Distributed KDD Systems - DKDD. Further de-
velopment of DKDD systems includes dynamically adding new computational

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 591-600,2000.
0 Springer-Verlag Berlin Heidelberg 2000



592 C. Liu, N. Zhong, and S. Ohsuga

resources to a network, and the mobility of code (for example, mining compo-
nents move to DBMS sites and execute within the databases). Thus, we can
view the Distributed KDD as a special case of CSCW (Computer-Supported Co-
operative Work) that is a multidisciplinary research area focusing on effective
methods of sharing information and coordinating activities [Gru94].

In recent years, along with developing new KDD techniques, we pay increas-
ing attention to the process and architecture aspects of KDD systems. In or-
der to increase both autonomy and versatility of KDD systems, we proposed a
Global Learning Scheme (GLS) [?, ZLO97], as a framework for organizing com-
plex KDD process. GLS has two levels: the meta-level of process and the object
level of process. On the meta-level, it provides mechanisms and facilities for mod-
eling, planning, scheduling, controlling and management of KDD process; On the
object level, various mining components (methods and algorithms) are grouped
according to the different stages of data mining. Within this framework, we have
been investigating the planning meta process in depth [ZLKO97, LZ097]. In par-
ticular, we propose to handle iterations in KDD process by integrating planning
and execution [LZ098], and to deal with KDD process changes by incremental
replanning [ZLKO98].

In this paper, we concentrate on the architectural aspect of Distributed KDD
(DKDD) systems from the perspective of CSCW (treating DKDD as a spe-
cial case of CSCW). First we summarize the requirements needed to support
Distributed KDD. Then we describe a Client/Server architecture for DKDD
that is "traditional" for CSCW in general and based on the current status
of Internet technology. Then we propose a Multi-Agent (MAS) based archi-
tecture for DKDD, which is adapted from the generic MAS architecture for
CSCW [MMP98, WCL99]. Compared with the traditional architecture, the agent-
based architecture is better in terms of simplicity and flexibility, and particularly
useful in modeling and providing support to cooperative activities (communica-
tion, negotiation, coordination and collaboration). The proposed architecture
can model the information flow as well as the process flow in DKDD. Finally in
the Conclusion section, implementation issues are also briefly discussed.

2 Requirements for Distributed KDD Architecture

Distributed KDD (such as Enterprise Distributed Data Mining [Ce99]) faces
unique challenges and needs architectural support to cope with them. The re-
quirements for architectural support to Distributed KDD can be summarized as
follows.

- Multiple roles: Unlike simple, stand-alone, prototype KDD work, real-world
KDD process involves multiple human roles. We can identify at least three
types of them: the analysts (for KDD task planning and result analysis), the
knowledge engineers (executing the mining tasks), and the end-users (people
managing and optimizing the business process within that the KDD process
occurs). Multiple people may access to the data and the analytical results
(the models), so the KDD system must provide multiple access points.



A Multi-agent Based Architecture 593

(NB: in this paper, the "user" of KDD systems mainly refers to analysts or
knowledge engineers).

- Mining on data of huge size: Gigabytes or even terabytes of data have been
accumulated in large organizations. Mining on such large scale of data has
the following implications on KDD architecture:

"* We need large computational power (high-performance servers) for min-
ing tasks, and visualization tools for data analysis and model analysis.

"* The mining operation should he run close to the datahases, because it
is not practical to move the vast data between the sites of individual
analysts. This requirement can he supported either by mobile mining
components traveling to the database sites and executing there, or by
setting up high-performance servers close to databases.

"* The user should he allowed to hrowse and sample data during planning
and editing his/her mining tasks.

- Mining on diverse and distributed data sources: Because various types of data
are accumulated on many sites in a large organization. A user may need to
access to multiple datasets. So the KDD system must support distrihuted
mining and combining partial results into a meaningful total.

- KDD process planning: There are several stages in KDD process (the three
major stages are : pre-processing, model-building and model analysis and
refinement). For each stage, there is a large number of available KDD tech-
niques and algorithms. Some of them may be out-of-date soon while new
ones come continuously. So, good combination of KDD techniques and easy
integration with new techniques are very desirable, and this demands careful
planning of the KDD tasks. Note that from different kinds of data resources,
different KDD techniques are needed, so the planning involves browsing and
sampling data.

- Interactions among KDD roles: Because the KDD process is iterative through
the cycle of data-selection, pre-processing, model building, and model anal-
ysis and refinement, high degree of interactions among analysts, knowledge
engineers and the end-users is needed.

- Flexibility: Wide range of configuration options is needed to fulfill different
needs of large organizations, so that the applications can be scaled from a
few client workstations to high-performance server machines.

- Open-ended-ness for future extension.
- Conceptual and architectural simplicity is important in designing such a com-

plex system to ensure/enhance its correctness, flexibility and openness, etc.

On the implementation level, the rapid development of Internet and related
technologies such as software component technology and various Java/CORBA
packages do provide solutions to Distributed KDD. But on the design level, we
need conceptual and architectural clarity and simplicity for complex systems like
Distributed KDD systems. And this is the focus for the remaining part of this
paper.



594 C. Liu, N. Zhong, and S. Ohsuga

3 A Client/Server Architecture for Distributed KDD

We regard Distributed KDD (DKDD) as a special case of Computer-Supported
Cooperative Work (CSCW), trying to apply the generic Client/Server architec-
ture of CSCW [LC98, WCL99] to DKDD. We also investigate the architectures
of some existing Distributed KDD systems such as [Ce99] (though mainly on
the implementation level). As a result, we can describe here the "traditional"
Client/Server architecture for Distributed KDD systems as Figure 1.

KDD Server-1 KDD Server-2
• JDBC i iJDBC Z

Dl DIata ache I Cache D

ORBAMining Object Mining Object

Internet Internet

Browsing/Sampling Data Browsing/Sampling Data
client-] KDD Process Planning client-2 KDD Process Planning

Model Analysis/Refinement Model Analysis/Refinement
Visualization Visualization

SPrivate Private
Workspace Coordinating Client Workspaceof client-1 Coreaiepannof client-2

• •A Distributing KDD Tasks •%

Loa Combining Partial Models

KDD Process .:,........ ...... KDD ProcessPlan Plan

Fig. 1. A Client/Server Architecture of Distributed KDD Systems

On the server side, there could be multiple KDD Server sites, as well as mul-
tiple DBMS sites and HPC (High-Performance Computation) sites, distributed
globally (that is, they may be allocated across the whole Internet).



A Multi-agent Based Architecture 595

Obviously, a DBMS site provides the traditional database service. On the
other hand, a HPC site provides parallel mining algorithms executed on a dedi-
cated separate parallel machine. The algorithms include traditional ones for clas-
sification, clustering, and association rule discovery, as well as new techniques
such as Inductive Logic Programming (ILP). Full range of statistical service is
also available. As we mentioned before, a HPC site should be set up close to the
Database site from where the data is mined.

Each KDD server consists of three main components:

1. Object Manager: Manages persistent objects such as data mining tasks and
results (models) for various users, authenticates users and controls users'
access to the persistent objects.

2. Mining Manager: Provides the interface with a HPC site via CORBA, etc.
This component controls data conversion, data transfer, and parameter pass-
ing to the mining algorithms.

3. Data Cache: Provides the interface with a Database via JDBC. The loaded
and cached data are used for browsing the Database from the client.

On the client side, there could be multiple KDD Client sites, also across
the whole Internet. KDD client sites communicate with each other and with
KDD Servers. Connections between KDD client sites and DBMS/HPC sites are
indirect via KDD Server sites. A KDD client has the following components (the
first three interact with KDD Servers, the others are for internal work):

- Object Browser: Viewing the user's objects held in the Object Manager of
KDD Server.

- KDD Task Invoker: Submitting the planned and edited KDD tasks via the
Mining Manager of KDD Server, which in turn asks the service of HPC site.
Meanwhile some simple KDD tasks using only local datasets can also be
executed locally on the client site (see items below).

- Data Browser: Providing the function of browsing remote databases, by ac-
cess to the Data Cache of KDD Server.

- KDD Process Planner: Tries to make a plan for the KDD process. A plan
is a partially ordered network of mining activities needed for pre-processing,
model-building, model analysis and refinement. Remote data browsing and
sampling are needed for the planner to select relevant data, to choose appro-
priate mining techniques, and to organize them into a KDD process plan.

- Visualization Tool: For large-scale mining tasks, visualization is necessary
for data analysis as well as model analysis.

- Work Space: The place where the client works. A group of KDD clients may
have shared work spaces.

There is a special, coordinating KDD client (for the manager of the data
mining group in an organization, for example) with the following functionalities:

- Cooperative Planning: Partitioning the overall KDD tasks to a group of
knowledge engineers (KDD clients).



596 C. Liu, N. Zhong, and S. Ohsuga

- Scheduling: Distributing KDD tasks planned and submitted by other KDD
clients to appropriate KDD servers. The selection of KDD servers is based
on some resource allocation policy (for example, to execute the mining op-
erations in a KDD server that contains the data).

- Synthesis: Combining partial results from individual clients into a meaningful
total.

4 Multi-Agent Based Architecture for Distributed KDD

The previous section shows how complex a DKDD environment could be. Similar
situations exist in other Distributed Artificial Intelligence (DAI) systems [ONJ96],
and in Cooperative Software Engineering (CSE) [WCL99]. They are all examples
of Computer-Supported Cooperative Work (CSCW) [Gru94, LC98]. Nowadays
it is widely agreed that the Multi-Agent Systems (MAS) [MMP98] are a better
way to model these decentralized, distributed, open-ended systems and environ-
ments. A MAS is a loosely-coupled networks of problem solvers (agents) that
work together to solve a given problem.

In this section we propose a MAS-based architecture for Distributed KDD,
which is inspired by our MAS-based architecture for CSE [WCL99]. In such a
Multi-Agent architecture, we have the following main components:

- Agents:
An agent is a piece of software created by and acting on behalf of the user
(or some other agent). It is set up to achieve a modest goal, with the char-
acteristics of autonomy, interaction, reactivity to environment, as well as
pro-activeness. We have the following different types of agents in the DKDD
architecture: Assistant agents assisting KDD people in various work, such
as browsing and sampling data, planning KDD process, analyzing/refining
models, etc. Interacting agents helping participants in their cooperative work
such as communication, negotiation, coordination, and mediation. Mobile
agents as mining software that can move to DBMS sites and execute within

the databases (in order to reduce data transfer). And System agents for the
administration of the multi-agent architecture such as to register and man-
age large numbers of components; to monitor events in and status of the
WorkSpaces as well as the AgentMeetingPlaces (see below), and to collect

relevant measurement according predefined metrics.
- AgenrMeetingPlaces (AMPs):

AgentMeetingPlaces are where agents meet and interact with each other
(for communication, negotiation, coordination and collaboration). AMPs are

built on the underlying communication mechanisms, but must provide agents
with more intelligent means to facilitate their interaction. First of all, AMPs
should provide agent communication languages such as KQML [Fe97], defin-
ing communication types and the common syntax of the messages trans-
mitted. AMPs must also provide a set of information models, by which a
recipient can understand what the message means. For negotiation agents,



A Multi-agent Based Architecture 597

the purpose is to reach an agreement. The progress of negotiation depends
mainly on the negotiation strategies employed by the negotiating agents,
but MeetingPlaces should provide mechanisms to minimize communication
overheads, to help the negotiating agents in minimizing their computation
efforts.

- WorkSpaces (WSs):
Just as a software engineer needs a WorkSpace (WS) to perform software
development tasks, a knowledge engineer needs a WS to perform mining
tasks. A WS is primarily a container (often realized as a storage area in
a file system, in a web-directory, or in a sub-database) for relevant data
in a suitable format, together with the processing tools. The relevant data
include sampled source data as well as KDD process data (the KDD process
plan, etc). The processing tools include KDD algorithms for experiments
on the sampled data, KDD process planner, and visualization tools. In a
large organization, there may be a KDD division involving a number of
analysts and knowledge engineers. The KDD people work in groups. Each
group may have a shared WorkSpace while each knowledge engineer having
his/her private WS. That is, the contents of WorkSpaces may overlapped
with data shared by several people.

- Repositories:
The architecture contains various Repositories (global, local or distributed).
The most fundamental one is the databases to mine and the model repos-
itories to store the results of data mining. There could be other important
repositories. For example, in a large organization with frequent KDD ac-
tivities, it is useful to maintain an Experience Base (EB). The idea is that
for each (previous) mining project, its project/operative profile is recorded
in EB. All new projects are initiated with a specific own project/operative
profile. The project manager uses it as the criteria to search EB for those
previously completed projects that are similar to the current project. The
best-matching candidate is then selected as the baseline project. With the
baseline project as a guidance, the KDD process planning (hence the quality)
of the new project could be improved in various ways.

- High-Performance Computers (HPCs):
A HPC in this context means a parallel machine dedicated to mining tasks.
This is necessary when the size of data to be mined is so big that it becomes
unrealistic to perform the real data mining tasks in the WorkSpaces.

Within our architecture, the main components are interconnected and inter-
operated as follows:

1. Set up WorkSpaces according to people grouping: In large KDD process, we
can perceive various groups of people working as a team. Each KDD people
has his/her private WorkSpace, and the group has a share WorkSpace. There
are controlling WSs where the managing, controlling and scheduling people
(or their agents) work. They are responsible for the overall cooperative plan-
ning for the current KDD project (while other KDD people plan their own



598 C. Liu, N. Zhong, and S. Ohsuga

part of KDD tasks), for accessing to global databases, and for distributing
real mining tasks to HPCs according to some resource allocation policy.

2. Create agents: Assistant agents are created by people to help them work;
Interacting agents are created for communication purpose; Mobile agents
are created and sent to perform data mining tasks within databases sites;
and system agents are created by default to manage various components in
the architecture. Note that agents creation is a process of instantiation of
the corresponding agent classes. That is, agents are created from templates,
typically by supplying few parameters.

3. Communication between agent groups is via AgentMeetingPlaces (AMPs).
Some system agents are created by default to manage the AMP (creation,
deletion, and bookkeeping).

4. Repositories can be global, local to one people or a group of people, or dis-
tributed. For the databases and model repositories, we mention that: (1).
Local databases and model repositories can be accessed from associated
WorkSpaces; (2). Global ones can be accessed only from controlling WSs
where the controlling and scheduling people (or their agents) work. (3). In
the architecture, HPC components are optional, and set close to the rele-
vant global database components. (4). Mobile agents can travel to global
databases and execute there.

5. Within a WorkSpace, any existing KDD process models are allowed. For
example, the planning and replanning techniques described in [ZLKO97,
LZ097] can be applied to them.

Figure 2 shows some key issues in the architecture about the interconnection
and interoperation among the five components. To prevent the figure from being
too complicated, we do not show every details of the architecture described
above. The features shown in the figure include: WorkSpaces and their local
KDD process and local databases; The controlling WS and its access to the global
database; Mobile agents traveling to the global database; The close neighborhood
of the global database and the HPC; And interacting agents communicating via
an AgentMeetingPlace. When the normal WS completes a KDD plan and tries
to perform real mining tasks on the global database, it communicates with the
controlling WS by interacting agents, and the latter schedules the tasks, accesses
to the global database, caches relevant data, and invokes the nearby HPC to
perform the mining tasks. The results will be passed to the normal WS also via
interacting agents. The normal WS can also send a mobile agent to the global
database and let it execute there.

Compared with the "traditional" Client/Server architecture, we can mention
the main advantages of MAS-based architecture, when applied to Distributed
KDD, as follows:

- Decentralization: being able to break down a complex system into a set of de-
centralized, cooperative subsystems. Here we may have distributed databases
and unbounded numbers of agents, WorkSpaces and AgentMeetingPlaces.



A Multi-agent Based Architecture 599

• ~Normal WS

Global /\ oa

Fii Legend

bA nd Interacting(s sts

Mobile Agent
•• Database

Scheduling, Agent

t ac to allocation, n MeetingPlaceControlling

oai)icortewWorkSpace

.... :: Controlling WS~k_ HPC

Fig. 2. Multi-Agent Architecture for Distributed KDD

- Reuse of previous componentslsubsystems: That is, building a new and possi-

bly larger system by interconnection and interopera tio ng (sub)systems,
even though they are highly heterogeneous.

- Cooperative Work Support: being able to better model and support the spec-
trum of interactions (communication, negotiation, coordination and collab-
oration) in cooperative work.

-Flexibility: being able to cope with the characteristic features of a distributed
environment such as DKDD, namely incomplete specification, evolution, and
open-endedness.

-Simplicity: being able to offer conceptual clarity and simplicity in modeling

and design.

5 Conclusions

This paper investigated the architectural aspects of Distributed KDD systems,
viewing DKDD as a special case of CSCW. We listed the the requirements needed
to support Distributed KDD, described a Client/Server architecture for DKDD



600 C. Liu, N. Zhong, and S. Ohsuga

that is "traditional" for CSCW in general, and proposed a Multi-Agent (MAS)
based architecture for DKDD. Compared with the traditional Client/Server ar-
chitecture, the MAS based architecture is better in terms of simplicity and flex-
ibility, and particularly useful in modeling and providing support to cooperative
activities (communication, negotiation, coordination and collaboration).

In terms of implementation, both architectures rely on Internet related tech-
nologies such as software component technology and various Java/CORBA pack-
ages. For the MAS based architecture, we also need communicating agents and
mobile agents. On this part, the rapid development of agent technology provides
many options for implementation, such as KQML [Fe97] for agent communi-
cation, Aglets [L098] for mobile agents, etc. Prototyping work based on these
techniques is under way.

Acknowledgment
C. Liu's work was supported in part by the Natural Science Foundation of

China (NSFC), Beijing Municipal Natural Science Foundation (BMNSF), and
the 863 High-Tech Program of China.

References

[Ce99] J. Chattratichat et al. An Architecture for Distributed Enterprise Data Mining.
Proc. 7th International Conference on High Performance Computing and Networking
(HP CN'99), 1999.

[Fe97] T. Finin et al. KQML as an Agent Communication Languege. J.M. Bradshaw (ed.)
Software Agents, MIT Press, 1997.

[Gru941 J. Grudin. Computer-Supported Cooperative Work: History and Focus. IEEE Com-
puter, 27(5):19-26, 1994.

[Hum89] W. S. Humphrey. Managing the Software Process. Addison-Wesley, 1989.
[LC98] C. Liu and R. Conradi. Process View of CSCW. Proc. of ISFST98, 1998.
[L098] D.B. Lange and M. Oshima. Programming and Developing Java Mobile Agents with

Aglets. Addison-Wesley, 1998.
[LZO97] C. Liu, N. Zhong, and S. Ohsuga. Planning and Replanning of KDD Process. Proc.

IASTED International Conference: Al and Soft Computing, pages 339-342, 1997.
[LZO98] C. Liu, N. Zhong, and S. Ohsuga. Handling KDD Process Iteration by Integration of

Planning and Controlling. Proc. SMC'98: 1998 IEEE International Conference on
System, Man, and Cybernetics, pages 411-416, 1998.

[MMP98] M. Divitini M. Matskin and S. Petersen. An Architecture for Multi-Agent Support in
a Distributed Information Technology Application. Proc. International Workshop on
Intelligent Agents in Information and Process Management, pages 47-58, 1998.

[ONJ96] G.M.P. O'Hare and eds. N. Jennings. Foundations of Distributed Artificial Intelligence.
John Wiley & Sons, Inc., 1996.

[WCL99] A.I. Wang, R. Conradi, and C. Liu. A multi-Agent Architecture for Cooperative Soft-
ware Engineering. Proc. of SEKE'99, the 11th International Conference on Software
Engineering and Knowledge Engineering, pages 162-169, 1999.

[ZLKO97] N. Zhong, C. Liu, Y. Kakemoto, and S. Ohsuga. KDD Process Planning. Proc.
Third International Conference on Knowledge Discovery and Data Mining (KDD-
97), AAAI Press, pages 291-294, 1997.

[ZLK098] N. Zhong, C. Liu, Y. Kakemoto, and S. Ohsuga. Handling KDD Process Changes by
Incremental Replanning. J. Zytkow and M. Quafafou (eds.) Principles of Data Mining
and Knowledge Discovery, LNAI 1510, Springer-Verlag, pages 111-120, 1998.

[ZL097] N. Zhong, C. Liu, and S. Ohsuga. A Way of Increasing both Autonomy and Versatility
of a KDD System. Z.W. Ras and A. Skowron (eds.) Foundations of Intelligent Systems,
LNAI 1325, Springer-Verlag, pages 94-105, 1997.



Towards a Software Architecture for Case-Based
Reasoning Systems

Enric Plaza and Josep-Llufs Arcos

IIIA - Artificial Intelligence Research Institute
CSIC - Spanish Council for Scientific Research

Campus UAB, 08193 Bellaterra, Catalonia, Spain.
Email: {enric,arcos}@iiia.csic.es

WWW: http://uvw.iiia.csic.es

Abstract. We present a software architecture model of adaptation in
CBR. A software architecture is defined by its components and their
connectors. We present a software architecture for CBR systems based
on three components (a task description, a domain model, and adaptors)
connected by a type of connectors called bridges. Adaptors are basic in-
ference components that perform specific transformations to cases. Two
kinds of adaptors are introduced: domain adaptors (d-adaptors) and case-
based adaptors (c-adaptors). Adaptors are applied to a given problem,
performing search until a sequence of adaptor instantiations is found
such that a solution is achieved. Thus, in the ABC architecture adapta-
tion is viewed as a search process on the space of adaptors. The ABC
components have been used in the SaxEx application, a CBR system for
generating expressive musical phrases.

1 Introduction

The goal of software architectures is learning from system developing experience
in order to provide the abstract recurring patterns for improving further system
development. As such, software architectures contribution is mainly methodolog-
ical in providing a way to specify systems. In this paper we present a software

architecture for adaptation in CBR-called ABC for "Adaptors and Bridges as
Connectors"--based on the notion of connectors and inspired on object-oriented
and component-based methodologies.

The three main elements of the ABC software architecture are (i) a task
description-characterizing the goal that a CBR system pursues; (ii) a domain
model-characterizing the ontology and properties of the knowledge content; and
(iii) a library of adaptors-performing transformations to case-specific models.
The connector linking these three elements are called bridges.

* This research has been supported by the Project IST-1999-19005 IBROW An Intel-

ligent Brokering Service for Knowledge-Component Reuse on the World- Wide Web,
and the CICYT Project SMASH: Systems of Multiagents for Medical Services in
Hospitals.

Z.W. Rai and S. Ohsuga (Eis.): ISMIS 2000, LNAI 1932, pp. 601-609, 2000.
C Springer-Verlag Berlin Heidelberg 2000



602 E. Plaza and J.-L. Arcos

ABC follows the "problem solving as modeling" view, i.e. solving a problem
consists of building a model specific to the problem that satisfies the task re-
quirements; we call it the case-specific model. In this view, a knowledge system
uses a domain model to enlarge the input model until a complete and correct
case-specific model is built-where "complete and correct" are with respect to
the requirements of the task.

We have considered two kinds of adaptors: domain adaptors (d-adaptors) and
case-based adaptors (c-adaptors). D-adaptors use some domain-specific knowl-
edge to transform the case-specific model (in a way specified by the adaptor's
competence). C-adaptors also transform the case-specific model but use domain
knowledge that includes precedent cases retrieved from case memory.

Adaptors are applied to the case-specific model, performing search until a
sequence of adaptor instantiations is found such that transforms the initial case-
specific model into a correct case-specific model that satisfies the task goals.
Thus, adaptation is viewed as a search process on the space of adaptors. Since
new adaptors can be applied to the first adapted object, several search strategies
(such as depth-first, breadth-first, and beam search) are possible.

We are applying the ABC theory in the SaxEx application[l], a complex real-
world case-based reasoning system for generating expressive performances of
melodies based on examples of human performances that are represented as
structured cases.

In general terms, a software architecture describes the (i) components, (ii)
connectors, and (iii) a configuration of how the components should be connected
[7]. We can consider CBR systems as a specific variant of knowledge systems
that furthermore use experiential knowledge [3]. Because of this we have taken
UPML, a software architecture being developed for reuse of knowledge systems,
and we are developing a variant adequate for CBR systems. The Unified Problem
Solving Method Development Language UPML is currently in development by
the IBROW consortium, and the first version is currently released [6]. Although
UPML can still have future modifications we expect them to be minor and
maintain stable the core ideas.

The organization of this paper is as follows. In Section 2 we present the
ABC architecture. Section 3 describes how two different families of adaptors
(c-adaptors and d-adaptors) are incorporated in the Noos language. Finally, in
Section 4 we present the conclusions and discuss related work.

2 The ABC architecture

The three main elements of the ABC software architecture are (i) a task de-
scription, (ii) a domain model, and (iii) a library of adaptors. Figure I shows
these three elements connected with a special kind of connector called bridge. In
addition, the problem to be solved is called input in the figure and for simplicity
we will include the case base into the domain model element. More specifically,
we will consider that each solved problem is a model per se, and we will call it



Towards a Software Architecture for Case-Based Reasoning Systems 603

I :: Bridge Adaptor• :

Fig. 1. The ABC software architecture consists of three elements: a task description,
a domain model, and a library of adaptors. These three elements are connected by
connectors called bridges. The problem to be solved is called input in this picture.

case-specific model-in other words, it is the model of an episode of solving that
problem [3].

These three elements are taken from UPML where the main goal is thereuse of Problem Solving Methods (PSMs); since our goal is the reuse of cases

we propose the specific architectural variation where adaptors play the role of
PSMs. This transformation makes sense since PSMs are the components that

perform the inferences for a knowledge system to build the case-specific model of
the problem (i.e. the "solution" to the problem). In our approach the final case-
specific model is build by the adaptors thates transfrmthe case-specific model
imported from the case(s) retrieved from the case-base.

Tasks, domain models, and adaptors are conceptually distinct entities, al-

though in practice CBR systems use an implicit description of the task and
domain knowledge is tightly integrated with the CBR engine. From a method-

ological stance, however, it is better to consider they separate and possibly com-
ing from distinct sources.

In a similar manner, specification of tasks is also being studied [11] to provide
a vocabulary capable of describing tasks across a range of different domains of
application, i.e iindependent of the domain-specific vocabulary. For instance, a
task description of diagnosis [6] is specified in terms of findings and hypothesis.
A bridge is then needed to connect in a meaningful way task descriptions and
domain models. For instance, in a medical diagnosis domain the bridge from the
task description to the domain model maps findings and hypothesis to the terms

manifestation and cause respectively.
Therefore the methodological approach we are endorsing takes two main as-

pects of knowledge modeling techniques: explicit representation and conceptual
separation of tasks, domain knowledge, and adaptors. From UPML software
architecture [6] we adopt the bridge connectors among ABC architecture compo-
nents but we change the main elements of the architecture for CBR systems. In



604 E. Plaza and J.-L. Arcos

the rest of this section we make explicit those components, while in later sections
we show a particular adaptation engine developed following this methodology.

2.1 The ABC components

Tasks A task provides a way to characterize what a CBR system is intended to
achieve.

Task Description consist of a task name and
1. pragmatics (author, explanation, URL, last change date)
2. ontology (the vocabulary)
3. specification

- goals (expressions characterizing the output case-models)
- preconditions (expressions characterizing valid input case-models)
- assumptions (expressions characterizing requirements on domain knowledge)

The main elements for characterizing a task are goals, preconditions and as-
sumptions. These elements are described in some logical language, the option
of which is open to the designer. Preconditions state constraints to be satisfied
by the problems to be solved (input case models). Goals specify properties to
be satisfied by the solved problem, i.e. by the output case-specific model. Fi-
nally assumptions determine assumptions made by the task description upon
the content of the domain model.

Domain Models Domain models are specified using a specific vocabulary
(domain ontology) and is characterized by properties, assumptions, and domain
knowledge.

Domain Model Description consist of a domain model name and
1. pragmatics (author, explanation, URL, last change date)
2. ontology (the vocabulary)
3. specification

- properties (meta-expressions characterizing domain knowledge)
- domain knowledge (expressions describing knowledge)
- assumptions (expressions characterizing assumptions on domain model)

Properties and assumptions both are used to characterize the knowledge
content of a KB. These characteristics can be directly inferred from the domain
knowledge or can be derived from requirements introduced by other components
of the specification. While properties deal with characteristics of the knowledge
content assumptions deal with external requirements like the environment of the
system. As before, properties, assumptions, and domain knowledge are expressed
in a specific formal language of choice.

Task-domain bridge The td-bridge is a connector that translates (refines)
the task specification to a particular domain specified in domain-model. This
bridge may add assumptions (on domain knowledge) to ensure that the transla-
tion result is valid. The only formal requirement is the union of both task and
domain specifications is logically consistent.

Adaptors An adaptor is a special kind of connector between case-specific
models-i.e. between "models of cases".



Towards a Software Architecture for Case-Based Reasoning Systems 605

Output 
InAaptrt

C a s e 
, 

C s

Modl SFur-ao Prý-Cond Model

AD-Bridge

Fig. 2. The adaptor is a connector between "models of cases", here called case-specific
models.

Adaptor Description consist of an adaptor name and
1. pragmatics (author, explanation, URL, last change date)
2. ontology (the vocabulary)
3. specification

- preconditions (expressions characterizing valid input case-models)
- assumptions (expressions characterizing domain knowledge needed by the

adaptor to succeed)
- competence (expressions characterizing the output case-models)

The preconditions of an adaptor specify the requirements to be satisfied by
the input case-specific model for the adaptor's result be a valid one. The com-
petence is a description of the transformation resulting from the application of
the adaptor. Finally, the assumptions express the kind of domain knowledge the
adaptor requires in order to be able to function. These assumptions may en-
large the requirements on domain knowledge already specified by the task. Since
the case base is considered as a specific type of domain knowledge, case-based
adaptation is considered to be realized by adaptors that use the experiential
knowledge of the case base. Case-based adaptors are later discussed on § 3.

Task-Adaptor bridge The ta-bridge works like the tb-bridge above but
now is connecting the task goals with the adaptors competence. Since the task
goals specify the conditions for a problem to be correctly and completely solved
the problem solving process is finished when an adaptor with a corresponding
competence is available.

There are different ways to realize the ta-bridge depending on the strategy
used to implement adaptors. A common strategy is designing a component li-
brary of adaptors. Moreover, depending on the complexity of the application
domain the designers may implement one-shot adaptors-i.e. adaptors with a
competence that directly fulfills the task goals. In more complex situations, the
"total" adaptor need to be constructed from the elementary components in the
adaptor library to fit the needs of each particular problem. This is the implemen-
tation we have chosen for the SaxEx system[9]. In this setting, adaptation is then



606 E. Plaza and J.-L. Arcos

a search problem over the space of adaptors whose goal is finding a combination
of adaptor instantiations such that the final competence satisfies, via the bridge,
the task goals.

From the software architecture stance what is formally required to estab-
lish a ta-bridge is only that the adaptor competence logically implies the task
goals. The ABC architecture does not establish control constraints on the imple-
mentation nor distinguishes the situations where the adaptors already exist or
have to be constructed from elementary adaptor components (and whether this
construction is automated or performed by hand).

Domain-Adaptor bridge The do-bridge connects the assumptions upon
domain knowledge specified by the adaptor with the domain model, in a sim-
ilar way to how td-bridge maps task assumptions to the domain model. Some
requirements of PSM upon domain models have already been established by
connecting method with task and task with a domain. Now we only need to map
the knowledge requirements that are exclusively for the method.

2.2 ABC and CBR systems design

The very idea of software architectures is learning from system developing ex-
perience in order to provide the abstract recurring patterns for improving fur-
ther system development. As such, software architectures contribution in mainly
methodological in providing a way to specify systems. If we consider existing
CBR systems and the ABC architecture we can observe that ABC is making
explicit issues that CBR system developers already know but treat implicitly
when developing new systems and that they are not explicit either on the actual
CBR system. Let's take the task of a CBR system, for instance. The specific
task a CBR system has always to be specified, albeit informally, in the system
design phase. The ABC approach considers this a specification of the task but
also provides a specific way to relate that specification to each other component
of the architecture: preconditions relate to the input problem, assumptions re-
lates with the availability of knowledge, and goals relate to the search process
performed by the CBR system.

Furthermore, let us consider domain knowledge. Some CBR systems use cases
(and similarity) as the unique source of knowledge available to solve problems-
e.g. instance-based learning approaches. However, a great number of CBR sys-
tems use domain knowledge, for different purposes and in different ways, in
addition to cases. Commonly, this domain knowledge is not described as such,
but it is described by explaining the implementation of the CBR system. In
other words, what is described is the representation used to encode it (rules,
constraints) and the role it plays in the system implementation (mainly con-
cerning control issues). It is our personal opinion that a clarification of the role
of domain knowledge in CBR systems is needed to improve the understanding
of CJ3R and the development of CBR systems.

As a result of focusing on the adaptation process, ABC suggests that re-
trieval (and similarity assessment) is also a type of domain knowledge. In our
approach, solving a problem is constructing a case-specific model of the "input



Towards a Software Architecture for Case-Based Reasoning Systems 607

problem"-as was established in the knowledge-level description of CBR [3]. A
software architecture is a much refined level of description, so solving a problem
in ABC involves building a case-specific model that satisfies the task description
goals. Domain knowledge is used to perform the inference necessary to build this
model1 . The ABC architecture does not deal with control aspects of the imple-
mentation, thus the order in which domain-specific inference and case retrieval
are performed is unspecified.

3 Implementing Adaptors

We will consider two kinds of adaptors: domain adaptors (d-adaptors) and case-
based adaptors (c-adaptors). "Transformational adaptation" is realized by d-
adaptors, i.e. by adaptors that use some domain-specific knowledge to transform
the case-specific model (in a way specified by the adaptor's competence). More-
over, that domain knowledge is the one explicitly required by the adaptor's
assumptions.

"Derivational replay" is realized by c-adaptors. Case-based adaptors also
transform the case-specific model but use some domain knowledge that includes
a precedent case retrieved from case memory2 . In the simplest scenario there
is only on retrieved case, but in CBR systems where parts of cases are also
cases each part can be adapted in a case-based way by c-adaptors. Derivational
replay in planning is one example and the SaxEx system [9] is another example
- adaptation in the SaxEx system combines d-adaptors and c-adaptors.

The main issue to go from a specification like ABC to an actual implemen-
tation is deciding how is 1) the representation of components and bridges, and
2) the control scheme. We are implementing adaptors in Noos, a representation
language designed for supporting knowledge modeling approaches to problem
solving and learning [2] in which different CBR systems have been built, includ-
ing SaxEx. In Noos cases are represented as feature terms [8], a formalism for
representing structured cases in which any subpart of a case (feature term) is
also a term-and thus is also a case. Inference is provided by problem solving
methods (PSMs) that use domain knowledge to build models (or parts of mod-
els). A problem is solved when a case-specific model is completed, and then it is
retained in the case base. Retrieval is performed by specialized PSMs, retrieval
methods, that use domain knowledge or heuristic principles to search the case
base. Concerning the control scheme, Noos inference is on demand, i.e. follows a
lazy evaluation strategy. The chain of control is thus backwards: retrieval meth-
ods determine the features of a case that they need, thus forcing the evaluation of

Some CBR papers distinguish between primary and derived feature cases. Primary

features are those appearing on the "input case" and derived features are inferred by
the system from primary features. In our approach, inference uses domain knowledge
(including cases) to build a model of the problem.

2 Recall that, for the ABC architecture, the base of cases is also part and parcel of the
domain model.



608 E. Plaza and J.-L. Arcos

the PSMs that infer those features needed that were not part of the input prob-
lem model. Moreover, c-adaptors use retrieval methods so the retrieval process
is in fact directed by the adaptation strategy.

The main ABC elements incorporated in Noos are i) an explicit description
of a task, ii) adaptors, iii) and ta-bridges. Since the rest of the ABC elements
is obviated, some parts of this elements need not be represented explicitly: the
reason being that Noos will not be reasoning about them. Thus, a task holds
only goals and preconditions, while adaptors holds only competence and precon-
ditions. Assumptions are not present since we are not representing td-bridges
nor da-bridges. The contents of these slots (goals, competence, preconditions)
are expressed by feature terms. Satisfaction is represented as feature term sub-
sumption (E), thus a case-specific model C satisfies an adaptor preconditions
A• when Aý, E C (Aý subsumes C).

The overall adaptation process is realized following an "Adaptation as Search"
strategy. The initial state is the case-specific model of the problem; this begins
with the information given as input, but the domain PSMs can enlarge this
model performing inference as needed. The goal state is a complete and correct
case-specific model CF that satisfies the task goals TG. The ta-bridge provides
a translation from the task description vocabulary to the domain vocabulary
used in adaptors and case specific models. Thus, the task goals expressed in
domain vocabulary are obtained applying the bridge BTA to the task goals
BTA(TG) and therefore a solution is defined as a case-specific model CF such
that BTA (TG) E CF.

Adaptors are applied to the case-specific model, performing search until a
sequence of adaptor instantiations is found such that transforms the initial case-
specific model into CF. A classical means ends analysis technique is used with
the adaptors, where preconditions establish if the adaptor is applicable to a
particular case-specific model, and competence establishes the goals or subgoals
achievable by instantiating the adaptor. Since Noos provides automatic back-
tracking, selection of adaptors and adaptor instantiation following several search
strategies -such as depth-first, breadth-first, and beam search- can be easily
implemented for a particular CBR system. An interesting issue left for future
work is performing a case-based search of adaptor selection and instantiation:
since adaptors are feature terms, they are stored in memory by Noos and they
are thus amenable to be retrieved. This case-based adaptation process would
be able to use both c-adaptors and d-adaptors, unifying "transformational" and
"generative" adaptation in a case-based reuse of cases.

4 Discussion and Related work

A conceptual framework for describing CBR systems is Richter's knowledge con-
tainers [10]. An approach towards a formal model of transformational adapta-
tion based on the knowledge containers framework is presented in [4]. The pur-
pose of Bergmann and Wilke's paper is to characterize when properties such as
soundness and completeness can be formally proven to hold in transformational



Towards a Software Architecture for Case-Based Reasoning Systems 609

adaptation. Interestingly, their approach centered on adaptation also seems to
downplay the importance of retrieval (and similarity) in CBR systems, in a
similar way as the ABC architecture conceives of retrieval as a part of domain
knowledge. In our approach it is up to the designer of a CBR system to decide
whether completeness is required or possible. Moreover, the designer may decide
to use a logical language for specifying a ABC architecture and then formally
prove that certain formal properties hold. For an approach of using UPML with
automated reuse see [5]. It is an interesting question whether the knowledge
containers framework could be refined to provide a software architecture with
the containers as components-in which case appropriate connectors should be
defined.

References

1. Josep Llufs Arcos, Ramon L6pez de Mintaras, and Xavier Serra. Saxex : a case-
based reasoning system for generating expressive musical performances. Journal
of New Music Research, 27 (3):194-210, 1998.

2. Josep Lluis Arcos and Enric Plaza. Inference and reflection in the object-centered
representation language Noos. Journal of Future Generation Computer Systems,
12:173-188, 1996.

3. E. Armengol and E. Plaza. A knowledge level model of case-based learning. In
S. Wess, K.D. Althoff, and M. Richter, editors, Topics in Case-Based Reason-
ing, number 837 in Lecture Notes in Artificial Intelligence, pages 53-64. Springer-
Verlag, 1993.

4. R. Bergmann and W. Wilke. Towards a new formal model of transformational
adaptation in case-based reasoning. In European Conference on Artificial Intelli-
gence (ECAI'98), 1998.

5. D. Fensel and V. R. Benjamins. Key issues for automated problem-solving methods
reuse. In Proceedings of the 13th European Conference on Artificial Intelligence
(ECAI-98), pages 63-67, 1998.

6. D. Fensel, V. R. Benjamins, M. Gaspari S. Decker, R. Groenboom, W. Grosso,
M. Musen, E. Motta, E. Plaza, G. Schreiber, R. Studer, and B. Wielinga. The
component model of upml in a nutshell. In Proceedings of the International Work-
shop on Knowledge Acquisition KAW'98, 1998.

7. D. Garland and D. Perry (Eds.). Special issue on software architectures. IEEE
Transactions on Software Engineering, 1995.

8. Enric Plaza. Cases as terms: A feature term approach to the structured repre-
sentation of cases. In M. Veloso and A. Aamodt, editors, Case-Based Reasoning,
ICCBR-95, number 1010 in Lecture Notes in Artificial Intelligence, pages 265-276.
Springer-Verlag, 1995.

9. Enric Plaza and Josep L. Arcos. The ABC of adaptation: Towards a software archi-
tecture for adaptation-centered CBR systems. Technical Report 99-21, IIIA-CSIC,
1999. Available online at http://www.iiia.csic.es/Projects/cbr/ABC/abc.html.

10. M. M. Richter. The knowledge contained in similarity measures, 1995. Invited talk
to ICCBR-95. Available at http://wwwagr.informatik.uni-kl.de/ lsa/CBR/.

11. K. Seta, M. Ikeda, T. Shima, 0. Kakusho, and R. Mizoguchi. Clepe: a task ontology
based conceptual level programming environment. Trans. of IEICE, (9), 1999.



Knowledge Representation in Planning: A PDDL to
OCLh Translation

R. M. Simpson, T. L. McCluskey, D.Liu, D.E.Kitchin

Department of Computing Science University of Huddersfield, UK
r.m.simpson@hud.ac.uk t.l.mccluskey@hud.ac.uk

d.liu@hud.ac.uk d.e.kitchin@hud.ac.uk

Abstract. Recent successful applications of Al planning technology have high-
lighted the knowledge engineering of planning domain models as an important
research area. We describe an implemented translation algorithm between two
languages used in planning representation: PDDL, a language used for commu-
nication of example domains between research groups, and OCLh, a language
developed specifically for planning domain modelling. The algorithm is being
used as part of OCLh's tool support to import models expressed in PDDL to
OCLh's environment. Here we outline the translation algorithm, and discuss the
issues that it uncovers. Although the tool performs reasonably well when its out-
put is measured against hand-crafted OCLh, it results in only partially specified
models. Analyis of the translation results shows that this is because many natural
assumptions about domains are not captured in the PDDL encodings.

1 Introduction

Despite many years of research into AI Planning, knowledge engineering for applica-
tions of planning technology is in its infancy. Recent successful AI planning applica-
tions [10, 14, 1] have nonetheless highlighted the problems facing knowledge engineer-
ing in planning. Questions include how to choose appropriate planner technology for a
given application, and how to encode knowledge into domain models for use with plan-
ning algorithms. The engineering of knowledge-based planners has resulted in a set of
workshops and initiatives, including those in references [2, 12]. An accepted syntax for
exchange of domain encodings is PDDL, a planning domain definition language, and
many established planners can be obtained via the internet with a set of domains en-
coded in this syntax. PDDL emerged from the need to construct a common language
for the biannual AIPS competitions (for details of PDDL and domain examples consult
reference [3]). Language conventions such as PDDL help the research community to
some extent in the problems of exchanging research information, and in the indepen-
dent validation of research results.

Domain definition languages such as PDDL, however, are not designed with the
same criteria in mind as a domain modelling language. The latter would be associated
with a domain building methodology, be structured to allow the expeditious capture
of knowledge, and have the benefit of a tools environment for knowledge engineering.
OCLh stems from a family of fairly simple planning-oriented domain modelling lan-
guages deriving from the work in reference [8]. The benefit in using OCLh is seen as

Z.W. Rai and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 610-618, 2000.
@ Springer-Verlag Berlin Heidelberg 2000



Knowledge Representation in Planning 611

twofold: to improve the planning knowledge acquisition and validation process; and to
improve and clarify the plan generation process in planning systems. A range of plan-
ners have been implemented for use with OCLh and the language is being used as a
prototype for a collaborative UK project to create a knowledge engineering platform
for planning [13]. OCLh is structured to allow the capture of object and state-centred
knowledge, as well as action-centred knowledge, 1 and it is encased in a tools environ-
ment.

In this paper we discuss the issues raised in the construction of one of the tools

in OCLh's environment: a translator, to help import models written in PDDL into the
OCLh environment. The translation is feasible because PDDL and OCLh share similar
underlying assumptions about worlds - they are assumed closed, actions are determin-
istic and instantaneous. We outline the translation process, and the results in applying
it to example domain models. The tool's output is used to both make comparisons with
hand-crafted models, and to identify omissions and insecurities in the PDDL encodings.
In effect, it is not possible for the tool to derive secure OCL encodings as the notion of
"valid state" is present neither implicitly or explicitly in the PDDL encodings. This has

serious consequences for the communication and maintenance of domain descriptions
within this medium, as the set of states in which an action can be executed wll generally
contain many states which are not sensible. For example, while it is understood that do-
main writers encode all the positive preconditions that must be true before an action is
executed, the language does not encourage the recording of propositions that must not
be true for the execution to make sense.

2 The Planning Domain Definition Language

PDDL was established by the AIPS-98 Competition Committee to enable competitors
to have a common language for defining domains, and to aid the development of a
set of problems written in PDDL on which the different planners could be tested [3].
PDDL has been incrementally extended to include a wide range of syntactic features,
although most planners cited in the literature utilise only basic features. Planners can
be restricted to a PDDL subset by declaring those language features required when the
domain is defined. Here we only mention those features relevant to the paper.

PDDL's basic level of representation is the literal, and a model's central element is a
set of operator schemae representing generalised domain actions (very much in the style
of 'classical planning' literature with its roots in STRIPS [4]). Each operator is defined
with a precondition and effect, where the semantics are interpreted under the STRIPS
assumptions. Below are two examples of simple PDDL operator definitions which use
typed parameters. They belong to an encoding of an example domain called the Tyre
World which was taken from the distribution examples associated with reference [3]. A
planner using the Tyre World should be able to output sequences of ground operators
to solve goals involving changing a flat tyre. We will use this domain as a "running
example".

'traditionally, models of planning domains were equated with a set of action specifications, and
were therefore only 'action-centred'



612 R.M. Simpson et al.

(:action loosen
:parameters (?n - nut ?h - hub)
:precondition (and (have wrench)(tight ?n ?h)(on-ground ?h))
:effect (and (loose ?n ?h) (not (tight?n ?h))))

(:action fetch
:parameters (?x - (either tool wheel) ?c - container)
:precondition (and (in ?x ?c) (open ?c))
:effect (and (have ?x) (not (in ?x ?c))))

The loosen operator models the action of undoing (but not removing) the nuts that
fasten a wheel onto a hub. The fetch operator models the action of removing a tool or a
wheel from a container in which it was stored (such as a car's trunk).

Problems for a planner to solve are posed in PDDL as an initial state (a set of ground
literals) and a goal condition. Although the current PDDL version includes many other
features (hierarchically-defined operators, domain axioms, safety constraints, quantifi-
cation over parameter domains etc) the majority of domain encodings and test-sets
available via the internet input the simple form of PDDL similar to that described above.

3 The Object-Centred Language OCLh

OCLh was designed to be a kind of 'lifted' STRIPS-language, aimed to keep the gener-
ality of classical planning but to incorporate a model-building method and be structured
to help the validation and operationalisation of domain models [12,6,8]. An OCLh
world is populated with dynamic/static objects grouped into sorts2 . Each dynamic ob-
ject exists in one of a well defined set of states (called 'substates'), where these substates
are characterised by predicates. On this view the application of an operator will result
in some of the objects in the domain moving from one substate to another. In addi-
tion to describing the actions in the problem domain, OCLh provides information on
the objects, their sort hierarchy and the permissible states that the objects may be in.
Relations and propositions are not fully independent entities - rather they now belong
to collections that can be manipulated as a whole. So instead of dealing with literals
planning algorithms reason with objects. Similarly to a typed PDDL specification, the
objects and the sorts they belong to are predefined, as is the sort of each argument of
each predicate in the OCLh model.

An object description in a planning world is specified by a tuple (s, i, ss), where $

is a sort identifier, i is an object identifier of sort s, and ss is its substate. A substate is
a set of predicates which all describe i. For example, (nut, nutO, [loose(nutO, hubl)])
is an object description meaning that nutO of sort nut is loosely done up on hubl. Or
again, (container, trunk1, [closed(trunk1), locked(trunkl)]) is an object descrip-
tion meaning that container trunkl is closed and locked. Only a restricted set of pred-
icates are allowed to describe an object and appear in its substate. Substates operate
under a closed world assumption local to this restricted set - thus in the last example,
the predicate open(trunkl) is false because (a) it is used to describe objects of this

2 we use the name 'sorts' rather than 'object classes' to emphasis that OCLh is an abstract

object-centred modelling language - in contrast to an 00 implementation language



Knowledge Representation in Planning 613

sort (b) it does not appear in the substate. The domain modeller defines the predicates
used to describe objects, and the form of each substate, using substate class defini-
tions. The predicate expressions in such definitions are constructed to form a complete,
disjoint covering of the space of substates for objects of each sort. When fully ground,
an expression from a substate class definition forms a legal substate. For example, the
substate class definitions for the sorts container, nut and hub are3:

substate classes (container, C,
[[closed(C)], [open(C)], [closed(C),locked(CI])

substate classes (nut,N, [[loose(N,H)], [tight (N,H)], [off.hub(N) ]])
substate classes (hub,H, [[onground(H) , fastened(H)],

[jackedup(H,J),fastened(H)], [unfastened(H),jacked up(H,J)I],
[free(H),jacked up(H,J) ,unfastened(H)]])

The first example means that objects of sort container can be either closed, not
open and not locked, or open, not closed and not locked, or closed, locked and not
open (or here is exclusive). Thus, in OCLh negation is implicit: if it is the case that
-iopen(trunkl), then this means that trunkl must be in one of two substates, its ob-

ject description being (container, trunk1, [closed(trunkl)]) or (container, trunkl,
[closed(trunk l), locked(trunk l)]).

A domain model is built up in OCLh by creating the operator set at the same time
as creating the substate class definitions. We define an object expression to be a tuple
(s, i, se) such that the expression part se is a generalisation of one or more substates
(se is normally a set of predicates containing variables). An object transition to be
an expression of the form (s, i, se =:' ssc) where i is an object identifier or a variable
of sort s, (s, i, se) forms a valid object expression, and ssc is taken from one of the
substate class definitions. Thus when ssc is ground it will always be a valid substate.
An action in a domain is represented by an operator schema with an identifier, a prevail
condition, and a list of transitions. Each expression in the prevail condition must be true
before execution of the operator, and will remain true throughout operator execution.

Two OCLh operators hand-crafted to (loosely) correspond to the PDDL operators
above are as follows:

operator (loosen (N, H,W),
[ (wrench,W, [have(W)]), (hub,H, [on-ground(H) ,fastened(H)]) 1,
[(nut,N,[tight(N,H)]=>[loose(N,H)])] )

operator (fetch (T,C),
[(container,C, [open(C)])],
[(tool_orwheel,T,[in(T,C)]=>[have(T)]l])

As with PDDL, OCLh has many other features such as conditional operators, hier-
archical operators, atomic and general invariants, but due to lack of space we refer the
reader to the literature for these details.

3 whereas in PDDL we write a variable as an identifier beginning with '?', in OCLh variables
are identifiers with leading capitals



614 R.M. Simpson et al.

4 Lifting PDDL To OCLh

The general framework : We base the translation on two main assumptions: (1) the
input to the translator will be any model written in the subset of PDDL that includes
STRIPS-like operators with literals having typed arguments. This translator will be ad-
equate for our purposes as the test sets in use in the AIPS competitions and those avail-
able in resource web sites are generally no more expressive. Where the model is written
without typed arguments, it can be augmented by hand or a tool such as TIM [5] can be
used to provide the typing. (2) the translation should keep, as far as possible, the names
and structure of the input model. This leads us to the following general framework for
translation:
PDDL parameter type name => OCLh sort name
PDDL predicate =r OCLh predicate
PDDL operator name => OCLh operator name
The first association preserves the correspondence of PDDL primitive types and OCLh
sorts but does not guarantee conformity to the OCLh requirements for a sort hierarchy
as PDDL's sort hierarchy is not required to form a tree structure. This problem can
however be ignored for the STRIPS-like domains we are interested in here as non-
primitive types are just a device to allow single operators to describe transformations to
objects of diverse types. The second association raises problems concerning the issue of
grouping predicates to form substate class definitions as discussed below. Once this is
done, re-writing the PDDL operators by extracting the object transitions and the prevail
clauses from the raw STRIPS operator is relatively straightforward.

Inducing Substate Classes : Steps in the OCLh method that are used to derive
substate class definitions are as follows:
1. Identify the sorts that are dynamic and those that are static
2. For each dynamic sort, identify those predicates that are to be included in defining its
substate classes
3. For each dynamic sort, define its substate classes
For step 1, a sufficient condition for a sort s to be dynamic is that PDDL type s is de-
scribed by a property which can be changed by a PDDL operator. Those types that have
no changeable properties, but are referred to within a changing relation may or may not
be mapped to a dynamic sort - this choice will become clear after our discussion of step
2. In step 2, the problem alluded to above arises in that given a predicatep(sl, s2, .., sn),
what subset of the OCLh sorts s 1, s2, .., sn should it be associated with, to describe that
sorts' substates classes? In the method associated with OCLh it is proposed that nor-
mally each predicate describe a single sort (although if the sort were not primitive the
predicate would be used in distinct primitive sorts). To illustrate this problem consider
the PDDL predicate in, with two arguments of type tool and container respectively.
Both types are mapped over to OCLh dynamic sorts, and the question arises: should
the predicate "in" be used to describe the state of an object of sort tool, the state of
an object of sort container, or both? Though from a logical point of view there is
no more reason to say that the predicate in characterises a tool than there is to say it
characterises a container there are strong pragmatic reasons to classify the predicate as
belonging to only one of the objects referenced. If we allow predicates to describe all
its sorts' states then there is a clear redundancy in our representation, in that we record



Knowledge Representation in Planning 615

the same information twice. More serious than this, allowing a relational predicate to
characterise all referenced sorts introduces the frame problem in a particularly acute
manner. Recall that the right hand sides of OCLh transitions must fully characterise
the resulting substate of the dynamic object participating in the transition, without de-
fault persistence but with a closed world assumption local to the predicates describing
that sort. Then to record the possible substates of the container we would have to con-
sider the possible combinations of the container being open, closed and locked along
with all possible combinations of objects such as the tools and wheels being either in
or not in the container; this would lead to a proliferation of object transitions and op-
erators. The discussion above shows that it is not practicable to let a predicate be used
in the substate descriptions of objects in every one of its argument sorts. Our solution
to this frame problem is to try to follow the intuition in building an OCLh model man-
ually: let the algorithm choose one single sort. This distinguished sort is said to own
the predicate. Though from a logical point of view this may seem arbitrary it coincides
with intuition in the sense that we would not naturally think of the action of opening
the trunk as having a different result depending on the trunk's contents. In English an
action verb is typically thought of as characterising the subject of the sentence rather
than the object. In this spirit we say the the predicate in(wrench, trunk) describes the
state of the wrench but not that of the trunk. Given that we will only allow a predicate
to characterise a single sort the choice of sort could be made in a number of competing
ways. We could try to allocate predicates to sorts in a way to try and minimise the frame
problem or to minimise the number of sorts that change state in the actions concerned,
or we could simply allocate them to the first mentioned object in each predicate. Up to
now our experiments have shown the third strategy gives satisfactory results when the
auto-generated OCLh model has been compared to a hand crafted version. Returning
to step 1, this analysis determines the split of static and dynamic sorts: if some dynamic
predicate has the property that its first argument can contain object identifiers of sort s,
then s is a dynamic sort; otherwise, s will not be described by any dynamic predicates
and hence will be static.

Dealing with Negation : Negation in OCLh is not represented explicitly, because
of the local closed world assumption used in substates. It may be the case, however,
that a negative form (or opposite) is required. We deal with this by potentially creating
for each predicate a negative form, identified by prepending the predicate with not-.
Though we start with the availability of all such possible negations, not all are used in
the final translation. This would be the case in the Tyre-World if the container/trunk
is described as either open or closed in which case the negative forms not-open and
not-closed are not needed.

5 The Translation

Overall Results : The associations described above have been implemented in a PDDL-
OCL translation tool. The translator has been tested on four typed PDDL worlds: Tyre-
World, Ferry, Gripper and Fridge. Details of the algorithm and results, which have been
omitted here due to lack of space are given in [9].



616 R.M. Simpson et al.

The translation results are encouraging in that they are close to those produced by
hand translation from the same PDDL source. To indicate the nature of the results, of
the thirteen actions in the Tyre World two of the actions contained anomalies flagged up
by the translation. Eight of the translated actions contained unnecessary, though correct,
negations on their right hand sides and two actions had incomplete object transitions.
In the Ferry world the translation was capable of running by a planner by the addition
of a missing object state to the problem specification.

Anomolies : The translation forms a basis for hand completion but also has the
power to flag up potential problems and insecurities with the PDDL domain specifica-
tion. The most interesting of the anomalies uncovered in the Tyre World domain occurs
with the jack-down action which is translated as follows:

(:action jack-down
:parameters (?h - hub)
:precondition (not (on-ground ?h))
:effect (and (on-ground ?h) (have jack)))

operator (jack down (H),
[],
[(hub,H, [not onground(H)]=>[onground(H)]),
(tool,jack,]=>[have(jack)])] )

The transition for the jack indicates that it may be in any state prior to being pos-
sessed as a result of jacking down the wheel. This is not adequate as the mechanic only
possesses thejack after execution of the action because it was used to jack-up the wheel
in the first place. The PDDL formulation works (operationally) because in the version
of the domain used there is no alternative way of getting the wheel off the ground (al-
though we might have an alternative jack-up action, such as use a block and tackle).

A second anomaly which arises with the encoding of the jack-down action is that we
treat [on-ground (H) ] as a complete substate of the hub. From the auto-generated
substate class definition for the hub we see that either the predicate fastened(H) or
unfastened(H) and either the predicatefree(H) or not free(H) must also apply to the the
hub and this raises the following question: should it not be the case that we should make
it a precondition of the action that the hub has the wheel on and fastened to it prior to
jacking down? In effect, in OCLh terms the transition should be

(hub,H, [not on.ground(H) ,fastened(H) ,notfree(H) 1=>
[onground(H) ,fastened(H) ,not_free (H)]),

This example raises a more general problem with the PDDL representation of plan-
ning domains. As noted OCLh requires the right hand side of an object transition to
completely characterise the resulting state of the object. In the PDDL representation the
state of an object is not fully determined by the application of an operator as some of the
object's properties my simply persist without being referenced by the operator from an
earlier state. This makes it impossible to determine which states of objects are legal in
the domain. In general if we have n predicates characterising an object sort, excluding
their negations, there are 2n possible substates for objects of that sort. Accordingly for
example for the hub described by the predicates (on-ground(H), fastened(H), free(H)



Knowledge Representation in Planning 617

there are eight possible such substates. From the PDDL operators some of these states
may be reachable and others not but we cannot definitively exclude any from the sub-
state class definition as all may be candidate start states for an imaginable problem. But
this is inadequate as some of these states may not be possible such as on-ground(H) A
fastened(H) A free(H) i.e. hub on the ground with the nuts fastened up but no wheel on.
Operationally this may not occur if the hub starts off in a sensible state but we should
not be relying on such a procedural definition of an object's states to determine what is
possible.

Implicit agents : A problem with agents of actions being implicit in PDDL domain
specifications arises when translating to OCLh. The problem is amply illustrated by
the following translation of the move rule from the Gripper domain where we have a
robot that can move from a named location to another named location.

operator(move(TO, FROM),

[1,
(room,TO, []=>[atrobby(TO)]),
(room, FROM, [at-robby(FROM) ]=>[not-atrobby(FROM) ])]

The rooms TO and FROM are being classed as dynamic objects subject to change,
but we would more naturally want to say that it is the robot that has changed. In OCLh
parlance locations should be treated as static. To solve this problem we need to recode
the at-robby predicate and introduce an agent i.e. the robot. at(Agent, Location). If the
agent has, as in this case been implicitly encoded into the predicate then there will only
be one such agent and we can effectively introduce a new constant agentO and a new
type Agent.

6 Discussion

The basic strategies of re-casting domain knowledge from a predicate base into an
object-centred base are not new and have been discussed in the literature for some
period (e.g. see [11]). OCLh contrasts with previous domain modelling languages for
planning such as SIPE-2 and O-Plan [16, 15] in its simplicity and clarity. On the other
hand, OCLh is less sophisticated than these system (for a comparison of O-Plan's TF
and OCLh see reference [7]).

Fox and Long in reference [5] show that the limitation of requiring arguments to be
typed in the PDDL specification is not fundamental to the translation. They demonstrate
that type information can be extracted from a set of PDDL operator schemae only. Fox
and Long's TIM uses the operator schemae to analyse the domain and produce types
such that objects belonging to them are identical up to naming. It therefore appears to
produce a type structure more appropriate to OCLh. Our future work will involve merg-
ing the translation algorithm with the TIM engine to create a more powerful translation
tool.

It has been acknowledged since the modern inception of Al that the representa-
tion of knowledge has a critical bearing on the performance of a problem solver. In
planning especially, there have been relatively few insights or research projects in this
area - instead the planning literature has tended to concentrate on the efficiency issues



618 R.M. Simpson et al.

of planners, or the adequacy of expression of their domain model languages. We see
our ongoing work on the translation from PDDL to OCLh as promoting the debate on
the relative merits of planning domain encodings, and, in time, the matching up of ap-
propriate planner technology to application domain. Working with a domain modelling

language such as OCLh gives opportunities for higher level domain validation with rich
tool support that eases domain modelling. Our translator from PDDL to OCLh gives
us access to a rich source of research examples written in PDDL, although it shows
up the lack of "knowledge content" in these encodings. Also, it has highlighted those
issues in representation such as use of negation, completeness and security of models,
and construction of object hierarchies that are fundamental to the creation of a planning
domain model.

References

1. A. Tate (editor). Advanced Planning Technology: Technological Achievements of the
ARPA/Rome Laboratory Planning Initiative. IOS Press, 1996.

2. Benjamins, Nunes de Barros, Shahar, Tate and Valente (eds). Workshop on Knowledge Engi-
neering and Acquisition for Planning: Bridging Theory and Practice. Proceedings of AIPS,
1998.

3. AIPS-98 Planning Competition Committee. PDDL - The Planning Domain Definition Lan-
guage. Technical Report CVC TR-98-003/DCS TR- 1165, Yale Center for Computational
Vision and Control, 1998.

4. R. E. Fikes and N. J. Nilsson. STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solving. Artificial Intelligence, 2, 1971.

5. M. Fox and D. Long. The Automatic Inference of State Invariants in TIM. JAIR vol. 9, pages
367-421, 1997.

6. D. Liu and T.L.McCluskey. The OCL Language Manual, Version 1.2. Technical report,
Department of Computing Science, University of Huddersfield, 2000.

7. T. L. McCluskey, P. Jarvis, and D. E. Kitchin. OCLh: a sound and supportive planning
domain modelling language. Technical report, Department of Computer Science, The Uni-
versity of Huddersfield, 1999.

8. T. L. McCluskey and J. M. Porteous. Engineering and Compiling Planning Domain Models
to Promote Validity and Efficiency. Artificial Intelligence, 95:1-65, 1997.

9. T. L. McCluskey and R.M.Simpson. Adequacy of Planning Domain Descriptions. Technical
Report, The University of Huddersfield, 2000.

10. B. Pell N. Muscettola, P. P. Nayak and B. C. Williams. Remote Agent: To Boldly Go Where
No Al System Has Gone Before. Artificial Intelligence, 103(1-2):5-48, 1998.

11. N. J. Nilsson. Principles of Artificial Intelligence. Springer-Verlag, 1982.
12. PLANET. First Workshop of the PLANET Knowledge Acquistion Technical Coordination

Unit. http://helios.hud.ac.uk/planet, 1999.
13. Planform. An Open Environment for Building Planners. http://helios.hud.ac.uk/planform.
14. S. Chien (editor). Proceedings, 1st NASA Workshop on Planning and Scheduling in Space

Applications. NASA, Oxnard CA, 1997.
15. A. Tate, B. Drabble, and J. Dalton. O-Plan: a Knowledged-Based Planner and its Application

to Logistics. AIAI, University of Edinburgh, 1996.
16. D. Wilkins. Using the SIPE-2 Planning System: A Manual for SIPE-2, Version5.0. SRI

International, Artificial Intelligence Center, 1999.



A Method and Language for Constructing
Multiagent Systems

Hiroyuki YamauchiI and Setsuo Ohsuga2

1 Research Center for Advanced Science and Technology, University of Tokyo

4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, JAPAN
yama~ai .rcast.u-tokyo.ac.jp

2 Faculty of Software and Information Science, Iwate Prefectural University
152-52 Sugo Takizawa, Iwate 020-0172, JAPAN

ohsuga~soft, iwate-pu. ac.jp

Abstract. This paper describes a method to construct multiagent sy-
stems. The method proposed here is explored accounting for the Gib-
son's ecological view of information, i.e. affordance. We apply the idea
of affordance not only to the reactive models of agents but also to the
deliberative models of the agents. By this approach, we can avoid the
frame problems that emerge from the dynamic environment including
the agent's mental world. We describe a basic representation scheme for
agent modules which reflects the Gibson's view of information resources.
As a system description language, we use knowledge processing langu-
age KAUS (knowledge acquisition and utilization system) based on first
order logic and axiomatic set theory. We consider as an example the
multi-strata modeling scheme for developing human-computer interac-
tive problem solving systems that are essentially multiagent systems.

1 Introduction

The more the information systems become complex and large-scaled, the more
it becomes important for the systems that these have the property of autonomy
for information gathering, processing and management. The agent technology

developed so far [1,2,3] has been much applied to design and implement such
autonomous systems (autonomous agent systems). We can see the typical appli-
cations of the agent technology in intelligent robots [1], enterprise models [10]
and information assistants in the Web environment [3].

The common problem to be solved for constructing agent systems is how to
describe agent structures (organizations), its functionality, properties and the
control structures in general. We have to consider especially the autonomy of
the system, that is, the capabilities of learning from environments through the
interaction and self decision-making for attaining his/her goals. In the multia-
gent environment, the coordination, cooperation and communication with each
individual agent should be considered. We believe that it is inevitable for us to
apply knowledge processing technology to solve these problems.

Z.W. Ra. and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 619-628, 2000.
( Springer-Verlag Berlin Heidelberg 2000



620 H. Yamauchi and S. Olisuga

The other points to be considered about agent systems are the ability of
perception of information resources by the agents. If the environment with which
the agents interact is very complex, large, uncertain and dynamical, it is very
hard and even impossible for them to possess beforehand all information about
it. This means that the agent should have a mechanism to find automatically
information necessary in the environment. The more importance is how to solve
the frame problem in artificial intelligence.

In this paper, we show that the Gibson's ecological view of information re-
sources denoted by affordance [7] is valuable to solve these problems described
above. In Chapter 2, we briefly summarize the notion of affordance, the frame
problem in artificial intelligence [6] and a link between them. In Chapter 3, we
describe a basic representation scheme for agent modules which reflects the Gib-
son's view of information resources. In Chapter 4, we describe a language which
is suitable for implementing agent systems, specifically, KAUS language [11,12]
developed by us. In Chapter 5, we consider as an example the multi-strata mode-
ling scheme for developing human-computer interactive problem solving systems.
Finally, we give concluding remarks in Chapter 6.

2 A Link between the Frame Problem in Al and
Affordance in Psychology

The frame problem is the problem of describing, computationally, what pro-
perties persist and what properties change as actions are performed. In the
literature [6], the two frame problems are discussed. One is the mathematical
frame problem and another is the commonsense frame problem. The former is
concerned with the intractability of time and space for computing frame axioms.
The latter is concerned with the intrinsic difficulty of axiomatization and con-
ceptualization of the significant portion of the real world, the world which is
complex, large, uncertain and dynamical, and ill-defined by nature. The qualifi-
cation problem in such circumstances has to be solved.

On the other hand, the theory of affordance established by ecological psycho-
logist James J. Gibson (1904-1979) gives us a new point of view on perception
of objects in the real world. According to Gibson, the correct context of our
perception is defined by the interaction between us and the real world. It differs
from the notion in traditional cognitive psychology in the sense that perception
and action are not treated as separate processes in affordance theory. Organisms
move in the world, finding the available information in it and move again using
the information found. It is assumed that information available emerges from
what is maintained in the real world. An organism's activities are said to be
directly linked to what the objects in the real world afford (for example, a chair
affords sitting).

To summarize, the frame problem means that it is fundamentally difficult
for the practical Al systems to provide all information necessary for problem
solving in advance and in the exhaustive way. It also denotes that the centrali-
zed information management is intractable for complex and large-scaled problem



A Method and Language for Constructing Multiagent Systems 621

domains. On the other hand, the notion of affordance shows us that we can con-
figure AI systems in such a manner that they maintain information resources

in a distributed objects in the problem world and they accept on-demand in-
formation processing through the interaction with the objects. The concurrent
objects [13], agent-oriented programming [14] and more broadly saying distribu-
ted artificial intelligence (DAI) and multiagent systems (MAS) [15] involve the
potential use of the notion of affordance. Brook's subsumption architecture [1,
2] in robotics also involves the potential use of the notion of affordance to avoid
the frame problem in AL. However, the Brook's architecture is only concerned
with a reactive level of actions. As a result, the potential use of affordance in
the deliberative level is not considered. In fact, the Gibson's original ecological
view of information also relates only to the reactive level of perception. It de-
nies all the mental states, cognitive maps and inference in the organism's brain
(similarly the Brook's architecture). The higher level of intelligence is not at all
referred to therein. We claim this restrictive consideration of affordance is not
enough to construct truly intelligent systems. In general settings, intelligent sy-
stems should have all the reactive, cognitive and deliberative performances. The
seamless applications of affordance to all the reactive, cognitive and deliberative
performances of the agents should be considered. Our goal in this paper is thus

motivated to take away this restrictive consideration in developing multiagent
systems.

3 Basic Representation Scheme for Individual Agents

As described in the previous chapter, every constituent of the environment, na-
mely organisms and artifacts, can be regarded as ecological information media-
tors and processors. From the ecological viewpoint of information resources, not
only organisms but also artifacts can be regarded as agents having certain af-
fordances. Consequently the basic representation scheme for agents described in
this chapter can be applied both to the representation of organic agents and to
that of artificial agents.

3.1 Skeleton Structure of an Agent Functional Module

An agent functional module(M) is defined with a set of variables for holding
values of the specified attributes and a set of primitive/compound methods (pro-
cedures) that achieve the specified goal using the input and the current state
of the defined variables. We define the skeleton structure of an agent functional
module M as follows (see Fig.1).

(1) The name of the module.
(2) The layer or type of the module.
(3) The state of the module.
(4) The affordance.
(5) A set of methods for perception, action, and communication.
(6) The local working memory.



622 H. Yamauchi and S. Obsuga

NAME ILAYER STATE

AFFORDANCE

PERCEPTION IACTION FCOMMUNICATION

r ~WORKING MEMORYI

Fig. 1. Skeleton structure of an agent functional module

The name of the module is a unique identifier that can discriminates itself
from other agent modules. The state of the agent module holds both the current
state and the past state (history) in the predefined time period. The history
describes the time series of the results of perceptions and actions executed by this
module. The layer or type of the agent module is used for classifying this module
(see the next section). The layers considered here are those of reactive modules
which perform reactive goals, mental modules which perform local reflective
thinking, and social modules which perform cooperative tasks. A rational agent
is made up from these three layers [1].

Perception, action and communication are component modules that charac-
terize the agent functionality. The affordance describes the set of attributes and
their values the agent module can afford to the other agent modules. This set
may be either invariable or variable. The variable set means that some attributes
are added or deleted by the interaction with the environment. Some attributes
may denote roles of the module. We want to stress here that the perception
module is a context dependent searcher which searches for the necessary infor-
mation from the affordances that are maintained by the other agent modules. In
this sense, the perception module is active input function but not passive input
function. 1

An action module describes an output function that changes the internal
state of the agent module and affects the external state by executing an action
in the environment. A communication module describes the protocol for message
passing and the intention of acceptance/rejection of messages to and from the
other agent modules. The communication module is triggered in the if-needed
mode. The local working memory is a memory used only within its agent module.
It is a temporary memory used at the activation time of this agent module.

To conclude, the frame problems described in the previous chapters can be
avoided by making cooperative use of perception and communication modules.
That is, it is needless for each individual agent to know all things about his/her

1In constraint logic programming, active constraints and passive constraints are con-
sidered. The author believe that the Gibson's view of perception corresponds to the
active constraint solving in constraint logic programming.



A Method and Language for Constructing Multiagent Systems 623

environment but only required to interact with it and perceive (search for) the
necessary information which is afforded by the other agent modules. The result of
this interaction affects only the state of the agents concerned with the interaction
and does not affect the states of the other agents.

3.2 Organizing Modules

The skeleton structure of an agent module defined in Sec.3.1 consists of three
functional modules; perception, action and communication. A specific reactive
agent is described by the set of specialized reactive modules. A cognitive agent
is described by the set of specialized reactive modules and cognitive modules.
A social agent is described by the set of reactive modules, cognitive modules
and social modules. A rational agent is either a cognitive agent or a social agent.
These various agents are organized to construct a multiagent system. Fig.2 shows

rational agent

part-of l

reactive mod. cognitive mod. social mod.
deliberative module

name I layer I state name I layer state name I layer I state
affordances affordances affordances

perception action comm. perception action comM. perception action comm.

objects world objects world objects world
agents

modeling C modeling

EP 4 reflection
ireal objects

teal world [mental world] rsocial world 1
(external) J L(internal) J L(external/intern-lJ

Fig. 2. Representation of Rational Agent

that a social rational agent is composed of the bottom layer (reactive modules),
the middle layer (cognitive module) and the top layer (social module). The ac-
tivities of each layer are defined over the object world which is directly linked to
it and also over the adjacent layer or layers shown in the figure. The perception
modules in each layer are context dependent searchers which search for the ne-
cessary information from the affordances maintained in the object world which
is directly linked to it. For example, the object world for the reactive layer is
the real world which is the external world for the rational agent. The perception
modules in the reactive layer perceive the real objects in the real world, and
the agent makes actions in the world. The object world for the cognitive layer



624 H. Yamauchi and S. Ohsuga

is the mental world of the rational agent. The perception modules in the cogni-
tive layer perceive the necessary information from the affordances maintained in
the mental world, and according to the results of perception modules, the agent
changes its mental state and makes intentions, plans and decisions for actions
performed in the environment. The maintenance of the mental world would be
also performed by analyzing the current state of the mental world.

Agent modules and auxiliary submodules described above are organized in
the three abstraction hierarchies, i.e., aggregation, generalization and associa-
tion. First, we can define an aggregate of modules in such a way that it exhibits
a collective functionality of the aggregate. A social behavior in a multiagent sy-
stem is a typical example. Second, the generalization (classification) of modules
whatever they are primitive or compound is also considered taking account of
their functionality, i.e., perception modules, action modules, etc. Third, we can
define an association of aggregates in such a way that it exhibits a collective
group functionality of the association. A typical example is seen in coordination
and cooperation with different task groups of agents. A selection and scheduling
problem for different plans, i.e., selecting a set of appropriate goals and then
scheduling the selected goals is also another example. The figure 3 summarizes
these three abstraction hierarchies. As seen in the next chapter, KAUS language
facilitates commands for describing these abstraction hierarchies in the coherent
way.

*cm123 = { {cml} ... {cml,cm2} ... {cml,cm2,cm3} }. association
(group-of)

generalization
(is-a) cm12 c~m3

aggregation
(part-o M1 m2 mn3

mll m12 ... mln m21 m22 ... m2m m3l m32 ... m3k

Fig. 3. Organizing modules

We note here that in the practical implementation we cannot explicitly de-
scribe all members of an association because the cardinality of the association
set is exponential (2 u). Because of this, in practical applications the members of
an association would be given generatively. In fact, for example, a candidate set
of plans is to be generated by the planning module if required.

3.3 Execution Control of Modules

As for the execution of agent modules and the associated submodules, sequential,
parallel (concurrent), synchronous and asynchronous executions are considered.



A Method and Language for Constructing Multiagent Systems 625

The autonomy of the control is emerged from each agent's interaction with the
environment. To put it in another way, the affordances described in the agent
modules make it easy to produce such a control dynamics: One agent module
perceives the other agent module's affordances and then reacts or makes a deli-
berative decision for the next action, and vice versa. The frame problems would
not occur in such autonomous control systems.

4 KAUS Language as a System Description Language

We have developed KAUS (Knowledge Acquisition and Utilization System) lan-

guage from our motivation that a language based on sets and logic would be ad-
vantageous for modelling intelligent systems. For example, in intelligent design
systems based on the multiagent technology, we are required to describe both
structures and functionality of designed objects and the participated agents.

Using KAUS we can describe object structures in terms of set hierarchies (isa,
part-of and group-of hierarchies mentioned in 3.2). Agents can be also organized
in the set hierarchy. On the other hand, we describe their functionality and
relations in terms of the extended predicate logic in which primitive procedural
functions are incorporated. Regarding sets as types of variables, we can write
typed logic programs in KAUS for problem solving. The following shows the
syntax of KAUS language[15].

CLAUSE = LITERAL I PREFIX LITERAL I AND-ORFORMULA I PREFIX AND-OR FORMULA

LITERAL := ATOMIC-FORMULA I -ATOMICFORMULA
PREFIX [QUANTIFIER VARIABLE CFLAG / TYPE]

[QUANTIFIER VARIABLE CFLAG / TYPE] PREFIX
AND-ORFORMULA ::= (CONNECTIVE BODY BODY ... )
ATOMIC-FORMULA (PREDICATENAME ARGS)
BODY LITERAL I AND-OR-FORMULA
TYPE BASE-SET I POWERSET I COMPONENT-SET I NAMELESS-SET I VARIABLE
ARGS TERM I TERM ARGS I TERM, ARGS
PREDICATE-NAME NTA_NAME I PTA-NAME
NTANAME BASE-SET
PTA-NAME $NAME
QUANTIFIER A I E

CFLAG ?: I # I 7#
CONNECTIVE I I &

A clause is used both for asserting a rule or a fact in the rule base and for
describing a goal to be resolved by the inference system. An assertion clause
ends with the period (.) and a query clause ends with the question mark (?). For
example, a rational agent shown in Fig. 2 is represented as follows.

!ins-e rational-agent agentl; 1* define agentl is-a rational_agent. *1
!ins-e agentl:reactivemod rmodl; 1* agentl has a reactive-mod rmodl. *1
!ins-e agentl:cognitive_mod cmodl; I* agentl has a cognitive-mod cmodl. *1
!ins-e agentl:social_mod smodl; I* agentl has a social-mod smodl. *i

[A Agents/*rational-agent] [A Agent/Agents] [A SocialActivity/socialActivity]
(act Agent SocialActivity). 1* all members of rational agents perform a social
activity. *1

Note that in the above example expressions, *rational-agent denotes the
powerset of rational agents. Hence the variable Agents is declared as a variable
of a set type.



626 H. Yamauchi and S. Ohsuga

The KAUS inference system is composed of those modules shown in Fig.
4. Among these, the elimination of tautology, type check and world operation
characterize the KAUS inference system. To our knowledge, the standard Prolog
and its extended versions do not have these inference facilities.

SLD derivation Elimination of Tasttology DeyngEauto

.- B,Ct,C2_,C. Co -Al,A2. -Al ,A3,A4 ostitSlc
I,A2,...,AnI

AA2...AIClC2..,Cm - A2,A3A4 I i

SLD: Linear resolution for Definite clauses with Selection function

Most general unifier (mg-u) for asserted termnl X and query term2 Y in p(X) and p(Y)

term 1 (and) term2 (are unified with) mgu if Aexample:

VX/rt VY/t2 VZ/t2 tlt2 gives

VX/ti 3 Y/&2 3 Z/ tlrnt2 tlrnt2 # [VX/boy]3 Y/girlllikr(X,Y)

SX/tl B Y/t2 VZ/tl tlrt2 personl s oy

VX/ti a a a tl pet-son girl

a SY/t2 a an t2 jo1n- boy

a b b h = b then [3 Z'personllikhejohn,Z)

Fig. 4. Inference modules of KAUS

In the next chapter we issue the problem for implementing intelligent agent
systems using the multi-strata modelling scheme [8,9,10].

5 Representation of Multi-strata Models by KAUS

The multi-strata model is a new modelling scheme for developing human-compu-
ter interactive problem solving systems. For example, business models in enter-
prises and many kinds of design project models for developing new products
are instances of the multi-strata model. Fig.5 shows the skeleton structure of
the multi-strata model and its KAUS description. In the figure, S1, S2 and S3
are called subjects each of whom undertakes a subtask for problem solving. A
subject may be either a human or computer. For example, S3's task is to make
the object model (denoted by S3 : model) of the object S3 : obj. S3 : obj is
explicated by the lower level subject S2. The subject S2 in turn undertakes his
own task specified by S2 : obj, and makes the model of it. This process continues
until the lowest level of the subject's task is clarified.

We can describe the functionality of each agent (subject) in the multi-strata
model using the !define-agent command, which implements the agent module
given in Section 3.1. For example, the subject S2 is described like followings:

!inse rational-agent s2; 1* s2 is-a rational agent. *1
!inse human s2; 1* s2 is-a human. *1
!defineagent s2 f

1* attribute declarations *1



A Method and Language for Constructing Multiagent Systems 627

(privateData name("Jack Jones"), age(32), sex(male)).

I* body of s2 *1
(s2 type: designer state ( [<O,idle>]),

afford( [design(sl :Requirement Model),eval(Model,Status)]),
perception(getValue (sl, Obj)),
action (putValue (Obj, sl : Requirement)),
communication(inform(Status,Agent))

I* local rules maintained by s2 *1

04 !i-s, .mde.k Multi-Strata
.2;o2ao Mode

S3:'b Si 3:onodel !i 3 oo,1: IiMo e

* 82 j SI :ool

Fig. 5. Multi-strata model(skeleton structure)

6 Concluding Remarks

We have described a representation scheme for agent modules which is available
as a skeleton for real application modules in multiagent systems. The point in
this paper is that we have applied affordance to such higher levels of intelligent
activities as cognition and deliberative thinking processes. We have shown that
it is possible to avoid the frame problems existing in the three layers by embed-
ding the notion of affordances into each agent module which is allocated in the
reactive, cognitive and social layers respectively.

Another point is that we have showed KAUS language is suitable for imple-
menting layered systems. However, we have not clarify the details of the control
structures of the multiagent systems which are built up from the described mo-
dules. This subject should be solved in future.



628 H. Yamauchi and S. Ohsuga

Acknowledgement. The authors would like to thank the anonymous referees
for their useful comments on this work.

References

1. Jorg P. Muller: The Design of Intelligent Agents - A Layered Approach, Springer,
1996.

2. Jacques Ferber: Multi-Agent Systems, An Introduction to Distributed Artificial
Intelligence, Addison-Wesley, 1999.

3. Feffrey M. Bradshaw (edited): Software Agents, The MIT Press, 1997.
4. Donald A. Norman: Some Observations on Mental Models, Readings in Human-

Computer Interaction, A Multidisciplinary Approach, (eds.) Ronald M. Baecker,
and William A.S. Buxton, Morgan Kaufmann, pp.241-244, 1987.

5. M.T. Turvey, Kevin Shockley and Claudia Carello: Affordance, Proper function,
and the physical basis of peceived heaviness, Cognition 73 B17-B26, Elsevier
Science, 1999.

6. Frank M. Brown (edited): Proceedings of 1987 Workshop, 'The Frame Problem in
Artificial Intelligence', Morgan Kaufmann, 1987.

7. Gibson, J.J., The ecological approach to visual perception, Boston, MA: Houghton
Mifflin, 1979.

8. Setsuo Ohsuga: Multi-Strata Model and Its Applications - Particularly to Auto-
matic Programming, International Conference on Industrial & Engineering Appli-
cation of Artificial Intelligence and Expert Systems'96, 1996.

9. Setsuo Ohsuga: Toward Trully Intelligent Information Systems - From Expert Sy-
stems to Automatic Programming, Knowledge-Based Systems, vol.10, No.3, Else-
vier, 1998.

10. Setsuo Ohsuga: A Medelling Scheme for New Information Systems - An Application
to Enterprise Modelling and Program Specification, Proc. IEEE, Conference on
Systems, Man and Cybernetics, 1999.

11. H. Yamauchi and S. Ohsuga: Modelling Objects by Extensions and Intensions, in
Information Modelling and Knowledge Bases III, S. Ohsuga, et.al. (eds.), pp.160-
173, IOS Press, 1992.

12. Hiroyuki Yamauchi: KAUS User's Manual v.6.502 (PDF file), RCAST, Univ. of
Tokyo, 1999.

13. Mario Tokoro: The Society of Objects, Readings in Agents, Morgan Kaufmann,
1998.

14. Yoav Shoham: Agent-oriented programming, Readings in Agent, 1998.
15. H. Friedrich, M. Kaiser, 0. Rogalla, and R. Dillmann: Learning and Communica-

tion in Multi-Agent Systems, in Distributed Artificial Intelligence Meets Machine
Learning, Gerhard Weis (edited), 1997.



A Formalism for Building Causal Polytree Structures
Using Data Distributions

M. Ouerd', B. J. Oommen2 , and S. Matwin'

School of Information Technology and Engineering, University of Ottawa,
Ottawa, Canada K1S 5B6

{ouerd, matwin}@site.uottawa.ca
2School of Computer Science, Carleton University, Ottawa Canada K1S 5B6

oommen@scs. carleton. ca

Abstract. In this paper we have considered the problem of approximating an
underlying distribution by one derived from a dependence polytree. This paper
proposes a formal and systematic algorithm, which traverses the undirected tree
obtained by the Chow method [2], and by using the independence tests it suc-
cessfully orients the polytree. Our algorithm uses an application of the Depth
First Search (DFS) strategy to multiple causal basins. The algorithm has been
formally proven and rigorously tested for synthetic and real-life data.

1. Introduction and Background

Over the last decade Bayesian learning principles have received a fair amount of at-
tention. Although they are elegant, they usually involve summations or integrals along
all possible instantiations of the parameters and along all possible models. In the case
of learning of Bayesian networks (which is distinct from Bayesian Learning itself) this
can be perceived as a discrete optimization problem [5]. Precise solutions of this can
be obtained by using search if we assume that there are only a few relevant models.
This has proven to be the method of choice in many real-life applications [1].

Many of the Bayesian models, which are studied, are intractable. The challenge is
to find general-purpose, tractable approximation algorithms for reasoning with these
elegant and expressive stochastic models. For example, if we are to use Bayesian
learning to improve performance of distributed database applications where there can
be millions of transactions every day, we will need an efficient technique to build a
model of the use of the database. The belief network that underlies the Bayesian
learning is at the heart of the approach. The connection between Bayesian learning and
belief networks is that one can use Bayesian techniques to induce a belief network
referred to as a Bayesian Belief Network (BBN). Often, due to the lack of domain
knowledge and in the interest of simplicity, it is assumed that the underlying structure
is in a particularly, simple form, representing reciprocal independence of variables
involved. This results in a simple variant of Bayesian learning called Naive Bayes.

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 629-637, 2000.
0 Springer-Verlag Berlin Heidelberg 2000



630 M. Ouerd, B.J. Oommen, and S. Matwin

The learning benefits if a more comprehensive and causal model of interaction
between the variables is available. Such a model, represented as a Bayesian network,
plays the role of a restricted hypothesis bias [9]. The method allows us to obtain the
approximating probability distribution P(X) by a well-defined and easily computable
density function P.(X). Indeed, it is impractical to store all estimates of the joint func-
tion P(X) for all possible values of the vector X. Our goal is to build a probabilistic
network from the distribution of the data, which adequately represents it. Once con-
structed, such a network can provide insight into probabilistic dependencies that exist
between the variables.

In order to measure the "goodness" of the approximation, an information theoretic
measure can be specified in terms of the Kullback-Leibler [8] cross-entropy metric to
compare joint probability distributions. Chow and Liu [2] used this measure to ap-
proximate discrete distributions by collecting the entire first and second order margi-
nals. They derived a relationship between the measure of closeness between the prob-
abilities and the measure of independence between all the pairs of the variables. A
Maximum Weight-Spanning Tree (MWST) called the "Chow Tree" was built using
the information measure between the variables forming the nodes of the tree. An al-
ternative method of obtaining such a tree using the X2 metric was later proposed by
Valiveti and Oommen [17]. A subsequent work due to Rebane and Pearl [15] used the
Chow Tree as the starting point of an algorithm which builds a polytree (singly con-
nected network) from a probability distribution. This algorithm orients the Chow tree
by assuming the availability of independence tests on various multiple parent nodes.

The works of Rebane and Pearl [15] are commendable. Although, as we shall see,
they did not answer all the questions regarding polytrees, their inference and their
characterization, in our opinion their work was pioneering (i.e., with regard to polytree
representations) and represented a quantum jump since the work done on trees in the
late 1960's. In our opinion, their most fundamental contribution was to discover and
utilize the edge "orienting" principle [ 18] referred to later.

Numerous authors have built on the foundation of the work of Rebane and Pearl.
Noteworthy are the results of Srinivas et al., [16] who worked with independence, and
the recent results of Dasgupta [3] which explicitly specifies the complexity of the
underlying problem. Friedman has also worked in the area and has modified the tradi-
tional EM algorithm to devise the "Structural" EM algorithm [4] to learn BBNs, and
also demonstrated how one can learn Bayesian Networks from massive data sets using
the "Sparse Candidate Algorithm" [ 16].

Much of the current work has made substantial progress on learning the structure of
multiply connected networks and dynamic Bayesian networks, and this has even been
achieved in the presence of hidden variables and for real data sets for which perfect
independence tests are not realistic.

This paper deals with the problem of automatically building a belief network in
terms of a directed polytree with the assumption that the observations have been pre-
sented to the system in terms of joint probability distributions. Thus we assume that
the joint dependence relations represented by these observations is available. Pearl
[14] discussed this process using a two-phase dependence learning scheme. Our aim is
to find causal polytree structures that fit the data presented in terms of joint probability



A Formalism for Building Causal Polytree Structures Using Data Distributions 631

distributions. The question of inferring the polytree structure from the data (as op-
posed to the data distribution) is the study of a subsequent paper presently being com-
piled and is described in [11 ].

The reader must observe that polytrees represent much richer dependency models
than undirected trees, because their joint probability density functions are products of
higher order distributions. Consequently, the problem itself can be shown to be a much
harder problem than that of finding the best tree [14]. First of all, the algorithm is not
guaranteed to find a polytree structure if the underlying distribution is degenerate and
not of a polytree type distribution i.e., if the distributions do not fit into a polytree
representation. Secondly, the algorithm relies on the repeated use of the independence
tests that determines categorically whether two random variables X, and X. are statisti-
cally independent. As shown in [12], even if the random variables are statistically
independent, the experimental evaluation may never yield conclusive independence
decisions.

1.1 Problem Statement and Outline of Solution

If we consider the polytree construction algorithm as given by [15] we observe that the
order of traversing the tree so as to orient it is unspecified. The implementation strat-
egy of determining the order of dependence tests is unanswered and left to the reader.
In this paper we shall formally develop an algorithm which answers these questions.
First of all, the algorithm determines the network structure or the tree using the
MWST algorithm described earlier, and subsequently orients the tree by beginning
with the assumption that we have marginal independence between at least two parents
of any node. Thus if, there is no independence of any two parents of a node the algo-
rithm will terminate by informing the user that the underlying tree structure cannot be
oriented to yield a polytree.

The problem of orienting the tree is solved in two steps. The first step identifies all
the independencies. In fact, every two nodes X, and )ýare independent if the following
equality is satisfied: P(X, X)Q = P(X,) * P(X1).

Although, as mentioned above, this equality is not always satisfied with sample
data, in this paper, we assume that such independence inferences are available. We
also assume that we are provided with this information whenever it is requested. The
second step is as follows: after inferring all the statistical independence between the
pairs of variables, we use the following Orienting Principle (T) due to Pearl et al. [ 14]
to completely orient the tree.

Orienting Principle MT:
For every unoriented triplet of variables X, Y and Z ordered as: X- Z - Y
we test for the independence of X and Y. If X and Y are independent then X is
a parent of Z and Y is a parent of Z. For any triplet X, Y and Z such that: X---
Z - Y, we test if X and Y are independent, and if this is so Y is parent of Z
otherwise Y is a child of Z.



632 M. Ouerd, B.J. Oomimen, and S. Matwin

The details of why this principle works is omitted here but explained in greater detail
in [10] and [13]. Utilizing all this information we shall show that the polytree can be
efficiently computed if the underlying tree structure is systematically traversed.

2. A Depth First Search Algorithm for Building Polytrees

Our algorithm for inducing the polytree is an application of the Depth-First Search
(DFS) algorithm to causal components of the undirected tree. Let T =(V, E) be a
connected, undirected tree where V is the set of vertices, and E the set of edges.

A vertex Z is said to be an articulation point between vertices X and Y if we have
independence between X and Y. As defined by Pearl [14] and used by all the re-
searchers since, a Causal Basin starts with a multi-parent cluster (a child node and all
of its direct parents) and continues in the direction of causal flow to include all of the
child's descendants and all of the direct parents of those descendants.

An example of this is given in the Figure 1.

Causal Basins

Fig. 1. A Causal Basin as defined by Pearl [ 14].

2.1 Problems with Pearl's Algorithm

Although the above definition is consistent, there are some unanswered questions
which arise from the work of Rebane and Pearl [15]. In fact, although they specify a
formal algorithm to compute the causal basins, they leave the following questions
unanswered:
1 . The question of what is meant by the outermost layer is not clear since it "de-

pends on the tree" and its representation.
2. The question of how the traversal is done is not completely defined.
3. The algorithm introduces ambiguity regarding the edges that are already tray-

ersed.
4. The notion of causal basins depends on the starting point.
The last of these issues can be seen from the following figure in which the Chow tree
of this polytree is taken from [ 14].



A Formalism for Building Causal Polytree Structures Using Data Distributions 633

Fig. 2. Three Causal Basins starting respectively at nodes H, K and C.

Observe that the Chow tree of Fig. 1 and Fig. 2 is the same. In Fig. 1, the first ar-
ticulation point (starting point) is node C and the second articulation point is node K.
Having this order for the choice of the starting points we detect two causal basins as
given in Fig. 1. In Fig. 2, we use node H as the starting point, node C as the second
and node K as the third to be able to complete the same orientation of the Chow tree as
in Fig. 1 using three causal basins instead of two. From this it is easy to see that the
starting point determines the individual causal basins.

2.2 Motivation for a DFS Strategy

Consider the process of visiting the vertices of an undirected tree in the following
manner. We select and "visit" a starting vertex Z which is one of the articulation
points in T and in particular, an articulation point between two nodes X and Y. First of
all we orient the edges (X, Z) and (Y, Z) as pointing to node Z following the orienting
principle since we have independence between them. Then we select any edge (Z, W)
incident upon Z. We check for independence between nodes X and W to determine the
orientation of edge (Z, W). We observe two possible scenarios: If there is no inde-
pendence between X and W then edge (Z, W) is pointing to node W. We then visit
node W and begin to search for a new edge starting at vertex W. After completing the
search through all causal paths beginning at W, the search returns either to Z, the ver-
tex from which W was first reached, to search through all nodes in the adjacency list
of Z, or to another non-visited articulation point. If there is independence between X
and W the edge (Z, W) is pointing to node Z, and the search returns either to Z, the
vertex from which W was first reached, to search through all the nodes in the adja-
cency list of Z, or to another non-visited articulation point.

The process of selecting unexplored edges incident on Z is continued until this list
is exhausted. This is formalized in the algorithm Polytree-Depth-First-Search.

The input to the algorithm is mainly the set of nodes, and for every node N we
specify its "adjacency" list which consists of a list of nodes )ýsuch that arc X, -XN
exists in the tree structure of the underlying tree. Also provided are the independence
tests between nodes whenever required. The algorithm is formally given below.



634 M. Ouerd, B.J. Oommen, and S. Matwin

Algorithm Polytree-Depth-First-Search
Input: A tree T=(V, E).

Independence test available for every pair of nodes when it is required.
For every node, a list of all its direct neighbours specified as a connected
List specified as ConList. We assume that the test for a node being an
articulation point is a straightforward operation. Also, a node W is in the
causal basin of X if there is a path from X to W.

Output: A directed polytree if the orientation exists. It returns T, the undirected tree
if any orientation is not possible.

Method
Begin

For (all X in V) Do
Visited [X] = false /* Visited is an array holding the nodes */

EndFor
For (all X in V) Do

/* always start with an articulation point */
If ( !Visited[X] and X is an articulation point) Then

Call Processing (X)
Endlf

EndFor
End Algorithm Polytree-Depth-First-Search

Procedure Processing (X)
Begin

/* node X is not a leaf */

If ((Visited[X] = false) and (ConList(X)) > 1)) Then
/* orient the adjacent edges */
Call IndepOrient(X)
Visited[X] = true
/* traverse the adjacency list of X */
For (all W in the ConList of X and W is in causal basin of X) Do

/* Processing is recursive because of Depth-First Search */

Call Processing(W)
EndFor

Endlf
End Algorithm Processing

The above algorithm uses a DFS strategy. It is easy to devise an analogous algo-
rithm, which uses a Breadth-First Search strategy, or any systematic search scheme



A Formalism for Building Causal Polytree Structures Using Data Distributions 635

Procedure IndepOrient (X)
Begin

For (every distinct N, and N2 in ConList(X)) Do
If Indep(N,, N,) = True Then

print arcs from (N, to X) and (N2 to X)
Endlf

EndFor
For (every distinct N, and N2 in ConList(X)) Do

If (arc from N, to X exists and edge from N2 to X is unoriented) Then
print arc from X to N,

Else If (arc from N, to X exists and edge from N1 to X is unoriented) Then
print arc from X to N,

Endlf
EndFor

End Algorithm IndepOrient

2.3 Analytic Properties of the Algorithm

The formal proof that the above algorithm works follows the arguments of the DFS
traversal of a graph.

Theorem 1:
The algorithm Polytree-Depth-First-Search correctly computes the polytree given the
skeleton tree structure and the underlying independence relationships.
Proof: The proof is done inductively and found in [10].

We shall now state results regarding the complexity of the above algorithm. This is
done by considering the number of independence tests that need to be performed to be
able to orient the tree.

Theorem 2:
For a tree in which every node has up to k adjacent nodes, at depth d in the tree, the

total number of independence tests which have to be done is: k * (k - 1 )d-1 k2).

Proof: The proof is not too involved, but follows from an induction on the size of the
DFS tree. It is omitted here, but found in the unabridged paper [10].

From a straightforward examination the overall burden of the computation can be
obtained by observing that for each node we have to do pairwise independence tests
between its neighbors. Theorem 2 explains what happens at every level of the tree.



636 M. Ouerd, B.J. Oommen, and S. Matwin

3. Experimental Results

In order to check the algorithm developed in this paper, we have done numerous ex-
periments. We assumed that we were to learn an underlying polytree, which is un-
known to the algorithm. Also, we assumed that independence tests, which are consis-
tent with the polytree orientation, were available whenever they were needed by the
algorithm. The polytree learning algorithm applicable for discrete data (called Dis-
crete-Polytree-Depth-First-Search) was invoked using the skeleton and the sequence
of independence tests.

The entire project involved the testing of the algorithm for numerous trees and
polytrees. The details of the results are omitted here but included in [10], [13]. The
descriptions in [10], [13] include specific polytrees, and clearly demonstrate how the
structure is learnt as the independence tests are provided. The test cases also show
examples in which the polytrees have one or multiple causal basins. In every case, the
polytree was exactly inferred.

Our experimental results consistently demonstrate that the algorithm successfully
orients the polytree. However, if the independence information for any pair of nodes is
not provided to the algorithm, the algorithm will terminate without orienting the tree.
The advantages of our algorithm are numerous; first of all it is computationally effi-
cient since it uses a DFS scheme. It also extends itself to both discrete and continuous
variables, and provides a very efficient way of traversing the tree. Finally, we mention
that the scheme also handles multi-feature variables. It has been used quite success-
fully in a real-life application where the problem is to improve performance in systems
using repeated queries which access distributed databases [13]. The scheme has also
been used for the ALARM data [7].

4. Conclusion

In this paper we have considered the problem of approximating an underlying distri-
bution by one derived from a dependence polytree. The skeletal form of the polytree is
known to be the MWST of a complete graph, with If(X, XN), the information theoretic
metric, as the edge weight between the pair of nodes X, and XN. Once the tree is de-
rived, Rebane and Pearl, in [15], proposed to use an independence test to determine if
a variable has multiple parents. They dictated that every two node neighbors X and Y
of a node Z must be tested for marginal independence to decide if Z has parents X and
Y.

This paper proposes a formal and systematic algorithm to traverse the tree
obtained by the Chow method. It uses an application of the DFS strategy to multiple
causal basins. Experimental results clearly demonstrate that when the required inde-
pendence tests are available to the algorithm the orientation of the polytree is com-
pleted, and always correct. The algorithm has also been used in two real-life applica-
tions [13] involving distributed databases and the ALARM data.



A Formalism for Building Causal Polytree Structures Using Data Distributions 637

References

1 Cooper, G.F. and Herskovits, E.H., (1992). A Bayesian Method for the Induction of Prob-
abilistic Networks from Data. Machine Learning, Vol. 9: 309-347.

2 Chow, C.K. and Liu, C.N., (1968). Approximating Discrete Probability Distributions with
Dependence Trees". IEEE Transactions on Information Theory, Vol. 14: 462-467.

3 Dasputa, S. (1999). Learning Polytrees. Proceedings of the Workshop on Uncertainty in
Artificial Intelligence. Available from http://www2.sis.pitt.edu/-dsl/UAI/uai99.html.

4 Friedman, N. (1998). The Bayesian Structural EM Algorithm. Uncertainty in Artificial
Intelligence.

5 Friedman, N., Nachman, I., and Pe'er, D. (1999). Learning Bayesian Network Structure
from Massive Datasets: The "Sparse Candidate" Algorithm. Proceedings of the Workshop
on Uncertainty in Artificial Intelligence. Available from
http://www2.sis.pitt.edu/-dsl/UAI/uai99.html.

6 Geiger, D., Paz, A., and Pearl, J. (1990). Learning Causal Trees from Dependence Infor-
mation. Proceedings of AAAl, Boston, MA: MIT Press, pp. 770-776.

7 Herskovits, E. H., (1991) Computer-Based Probabilistic-Network Construction, Doctoral
Dissertation, Medical Information Sciences, Stanford University, CA.

8 Kullback, S., and Leibler, R.A. (1951). On Information and Sufficiency. Annals Mathe-
matics Statistics, Vol. 22: 79 - 86.

9 Mitchell, Tom M. (1997). Machine Learning. McGraw-Hill.
10 Oommen, B.J., Matwin, S., Ouerd, M., (2000). A Formalism for Building Causal Polytree

structures using Data Distributions. Unabridged version of this paper.
11 Ouerd, M., Oommen, B.J., and Matwin, S. (2000). Generation of Random Vectors for

Underlying DAG Structures given First Order Marginals. In preparation.
12 Ouerd, M., Oommen, B.J., and Matwin, S. (2000). Inferring Polytree Dependencies from

Sampled Data. In preparation.
13 Ouerd, M., (2000). Building Probabilistic Networks and Its Application to Distributed

Databases. Doctoral Dissertation, SITE, University of Ottawa, Ottawa, Canada.
14 Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann, San Mateo, CA.
15 Rebane, G. and Pearl, J. (1987). "The Recovery of Causal Polytrees from Statistical Data".

Proceedings of the Workshop on Uncertainty in Artificial Intelligence. Seattle, Washing-
ton, 222- 228.

16 Srinivas, S., Russell, S., and Agogino, A. (1989). Automated Construction of Sparse Baye-
sian Networks from Unstructured Probabilistic Models and Domain Information. Pro-
ceedings of the Workshop on Uncertainty in Artificial Intelligence. Available from
http://www2.sis.pitt.edu/-dsl/UAI/uai89.html.

17 Valiveti, R.S. and Oommen, B.J. (1992). On Using the Chi-Squared Metric for Deter-
mining Stochastic Dependence. Pattern Recognition. Vol. 25, No. 11: 1389-1400.

18 Verma, T., and Pearl, J. (1991). An Algorithm for Deciding if a Set of Observed Indepen-
dencies Has a causal Explanation. Proceedings of the Workshop on Uncertainty in Artifi-
cial Intelligence. Available from http://www2.sis.pitt.edu/-dsl/UAI/uai.html.



Abstraction in Cartographic Generalization
S6bastien Musti~re', Lorenza Saitta2, and Jean-Daniel Zucker3

'IGN - COGIT / LIP6
2-4, avenue Pasteur, 94165 St-Mand6 Cedex - FRANCE

sebastien.mustiere@ign.fr

2Univ. Del Piemonte Orientale

Dip di Scienze e Teenologie Avanzate
Corso Borsalino 54, 15100 Alessandria, ITALY

saitta@di.unito.it
3Univ. Paris VI - CNRS - LIP6

4, place Jussieu, 75252 Paris - FRANCE
jean-daniel.zucker@lip6.fr

Abstract. This article shows that cartographic generalization is best
viewed as representing (formulating, renaming knowledge) and abstracting
(simplifying a given representation). The general process of creating map
is described so as to show how it fits into an abstraction framework
developed in artificial intelligence to emphasize the difference between
abstraction and representation. The utility of the framework lies in its
efficiency to automate knowledge acquisition for the cartographic
generalization as a combined acquisition of knowledge for abstraction and
knowledge for changing a representation.

1 Introduction

In this paper we address the problem of automating cartographic generalization. This
automation is needed for several reasons: first to decrease cost and time necessary to
produce maps, then to allow geography experts who are not necessary cartography
specialists to create their own maps with a good quality, and finally to facilitate the
crucial need of multi-level analysis of geographic data.

The lack of efficient generalization tools in GIS is due to the fact that
generalization is a difficult task: it is guided by a lot of geographic and cartographic
knowledge, An approach to face this need for automation is to build expert systems
that have proved to be efficient in numerous fields where knowledge require to be
introduced. Many authors emphasize that the main problem for the use of expert
systems is the 4knowledge acquisition bottleneck>>.

Moreover, the analysis of first-generation expert systems 0 stress the need to
differentiate, separate, and structure the different types of knowledge in second-
generation expert systems. We present in this article a description of the knowledge

Z.W. Rag and S. Ohsuga (Eds.): ISMIS 2000, LNAI 1932, pp. 638-644, 2000.
© Springer-Verlag Berlin Heidelberg 2000



Abstraction in Cartographic Generalization 639

used in cartographic generalization well fitted to its acquisition. We analyze
generalization along two dimensions: knowledge abstraction and knowledge
representation, as proposed by 0. This distinction is necessary to differentiate, and
so acquire, the different knowledge types involved in generalization

2 Differentiating Representation and Abstraction

Representing knowledge is one of the main research topic in Artificial Intelligence
since its birth. The Al community has come out in the past fifty years with a large
variety of languages that are each more or less adapted to represent different field of
humans knowledge that require to be represented and processed 0. Although a large
amount of human expertise can be formulated as a set of specific procedures or
inferences in one given language or paradigm, the cartographic generalization
process clearly requires several knowledge representation languages to capture the
different types of knowledge manipulated, ranging from the raw data from the world
to their final representation as a usable map.

Saitta and Zucker have recently proposed a model of abstraction (hereafter called
the KRA model), supporting reasoning in a wide context 0. They distinguish two
fundamental processes, namely the process of changing the language of
representation and the process of abstracting the language of representation.

The KRA model originates from the observation that the conceptualization of a
domain involves four different levels. Underlying any source of experience there is
the world (W), where concrete objects reside. However, the world is not really
known, because we only have a mediated access to it, through our perception. Then,
what is important for an observer is not the world in se, but the perception P(W) that
s/he has of it. At this level the percepts «<exist»> only for the observer and only during
their being perceived. Their reality consists in the «<physical» stimuli produced on the
observer. In order to let these stimuli become available over time, for retrieval and
further reasoning, they must be first of all memorized and organized into a structure
S. This structure is an extensional representation of the perceived world, in which
stimuli related one to another are stored together into tables. The set of these tables
constitutes a relational database, on which relational algebra operators can be
applied. Finally, in order to symbolically describe the perceived world, and to
communicate with other agents, a language L is needed. L allows the perceived
world to be described intensionally. Finally, a theory T might be needed to reason
about the world. The theory may also contain general knowledge, which does not
belong to the specific domain, and allows inferences to be drawn. At the theory level
we operate through inference rules. Let us define R = < P(W), S, L, T > as a
Reasoning Context. The relationships among the four considered levels are
represented in Figure 1.
There is an infinity of ways in which the world can be perceived by an intelligent
agent, according to the observation tools, the goal of the observation, the agent's
cultural background, and so on. This variability is captured by the diversity of the
world perceptions P(W). It is at this layer that the type and amount of information
the agent will memorize, speak about, and reason about later is established. The less



640 S. Mustijre, L. Saitta, and J.-D. Zucker

detailed the perception, the more abstract. Sometimes the agent has control over the
perception in such a way to collect exactly the information it needs to achieve its
goals. Sometimes, the agent can not control the perception, so that it may receive
much more information than it currently needs, or maybe it wants to perform several
tasks, each one requiring different pieces of information, which, on the other hand,
are easy to collect together. The preceding considerations suggest that it would be
very useful to have methods to actually or virtually transform a perception into a
more abstract one. The following definition of abstraction tries to capture this
process.

Perception e,

sk . ) -'"

M ) .T KolgAbstraction Axis

represntaiondtal

CSD

T ')' \ ( T )
* Knowledge Abstraction Axis

Figure 1- Levels of knowledge Figure 2 - Changing levels of
representation details

Definition - Given a world W, let Rg = (Pg(W), Sg, Lg, Tg) and Ra = (Pa(W),

Sa, La, Ta) be two reasoning contexts, which we label as ground and abstract. An
Abstraction is a functional mapping A: Pg(W) -4 Pa(W) between a perception
Pg(W) and a simpler perception Pa(W) of the same world W.

Some comments are needed about this definition. In 0 a formal definition of
"simpler" in terms of relative information gain has been given. Obviously, the
process of abstracting a perception can be iterated, leading to several levels of
abstraction. If no perception can be identified as a preeminent one, then any level can
be selected as "ground", being the notion of "simpler" only a relative one. Another
important point is that abstraction should be a reversible process; in fact, to abstract
does not mean to delete information, but only to hide information, in such a way
that the opposite process (concretion) becomes possible, as well. Finally, according
to this definition, the abstraction process starts at the perception level, but propagates
toward the layers of Figure 1. However, the abstraction relations between the
structures, the languages and the theories are determined by the relations defined on
the perceptions.



Abstraction in Cartographic Generalization 641

In Figure 2, the view on abstraction presented in this paper is synthetically described.
The symbols co, a7, ?, and r denote abstraction operators working between entities of
the same layer.

The perceptual stimuli of the perceived world are classified according to
categories that are proved useful to organize information (including ontologies,
objects, attributes, functions, and relations). Within the KRA model framework 0, a
set of fundamental abstraction operators have been defined. These operators are
defined at the perceived world P(W) level. The proposed set of fundamental
operators 0 = {hIde qt~d,1 (ýM O)ul, (Pt qI cord..... co,} is not exhaustive. In particular
contexts (such as cartography), it can be either reduced or augmented with domain-
specific abstraction types.

The operator q,,, is a fundamental abstraction operator that consists in hiding any
kind of knowledge be it an object, an attribute of an object or a relation between
objects. For example an isolated street may be hidden. The operator cond consists in
making several objects indistinguishable. For example only one of several close
isolated trees will be considered as a typical representative of them. The operator Co1,
consists in grouping several objects that are considered not to be distinguished. For
example the grouping of a set of trees into an object 'forest". The operator 0),,
consists in grouping a set of different objects to form a new compound object. For
example grouping several streets and buildings to form a town. The operator 3

e-l

specifies what subset of the attribute or function values can be merged, because they
are considered indistinguishable. For example, two objects with close altitudes will
be considered at the same altitude. Finally, the operators (0red arg specifies a relation
and a subset of its arguments, which must be dropped from the relation, obtaining
thus a relation with reduced arity. For example the argument "type of crossing" may
be hidden in the relation between two roads. From these operators defined at the
perception level, the operators between the structures, languages and theories are
deduced.

3 Cartography in the KRA Model

The KRA model exhibits several key properties for cartography. It allows to
distinguish the process of representation (change of language) from the process of
abstraction (change of level of detail). These two processes are usually very much
entangled in cartography. This distinction provides the basis for automating
knowledge acquisition in cartography, as a combined acquisition of knowledge for
abstraction and knowledge for changing representation, as we will explain in the
following section.
The topographic map production process closely parallels the KRA model, because it
can be analyzed according to the two dimensions, representation and abstraction. Let
us first consider the scheme of Figure 1 applied to cartography. The first step of
cartography is to collect data from the geographic world, or part of it (W). This is
usually done through aerial photographs or satellite images. These data are the
perceived world P(W). Objects contained in these photographs are located and



642 S. Musti~re, L. Saitta, and J.-D. Zucker

labeled to create a geographic database (GDB). This GDB is the set of geographic
data organized in a Structure (S). Then, this GDB is displayed by means of
cartographic symbols applied to objects stored in it. This is the creation of a map, an
iconic language (L). Finally, maps are created for tasks like space analysis, search
for itineraries, town planning, or geographic theory construction. The theory T
contains all the background facts and laws allowing to reason about geographic
configuration, and may be different for different tasks.

Cartography is not just knowledge representation. All the steps of map creation
do not involve only a knowledge representation, but also involve a knowledge
abstraction. In particular, Map creation (which contains the generalization process)
is both a knowledge representation process, when objects are symbolized, and a
knowledge abstraction process, when objects relevant to the theory construction are
identified. So described, map creation is represented as a diagonal process in Fig. 3.

Generalization Process in the KRA Model

Knowledge abstraction in generalization is the identification of abstracted
geographic objects relevant to the theory construction that will be done from the
map. "Objects" have to be taken here in a very wide sense: they may represent any
basic geographic objects (like a house, a road ... ) or any set of basic objects having a
geographical meaning (the set of streets of town, a street and the buildings along
it ... ).

In our model, the abstraction process is to go from a detailed description of a
geographic object, describing each part of the object, to a more abstract description
of the object, describing only properties of the object relevant to the map users
needs. For example, an abstraction is to go from a complete description of a set of
streets in a town to the description «<this is a streets network»>.
As we explained in the KRA model presentation, abstractions at the structure level
(i.e. on objects of the geographic database) shall only be considered as consequences
abstractions at the geographic world perception level.
Knowledge representation in generalization is the process of symbolizing
abstracted objects. For example, this representation process is to determine which
symbolized subset of streets is the best suited in order to well represent «a street
network»>. This choice is guided by the necessity to well represent the abstracted
object and restricted by the drawing possibilities (we can not represent all the
symbolized streets because they will overlap themselves on the paper).
Difference but not independence. It is important to notice that knowledge
abstraction and representation can not be performed independently one from the
other, nor that when abstraction has been done the "ground" GDB is no more
necessary. For example, in a street network the drawn streets are a subset of the
"ground" streets. The abstracted object <<street network»> helped us to change our
view of the world, but the representation process needs to look again at the ground



Abstraction in Cartographic Generalization 643

GDB to represent actual objects of the world. In this way we imitate the human
perception, which continuously change the level of abstraction to well analyze space.
These inter-links between abstraction and representation explain why, manually,
these two steps have always been performed in one time by the cartographer.
Anyway, it has been shown that efficient expert systems need to clearly separate the
different types of knowledge involved in human processes 0. We so believe that this
distinction between abstraction and representation is necessary for the creation of an
automated process of cartographic generalization.

Geographic
World

Image(

\Ideorificatiorr

Geographic DB
or OLM EE

Ma r o'rirr

Knowledge Map L
Representation or DOM
Axis MaIp orralysir

Knowledge Abstraction Axis Geographic theory(::

(level of details decreases)

Figure 3 - Representation and abstraction in cartography

Our model is related to Brassel and Weibel's famous model of cartographic
generalization 0, in the sense that it differentiates the drawing process from other
processes. But the main differences comes from the knowledge abstraction step
which, in our model, is far from being a simple «<statistical generalization»>. More, we
think that this step is the most complex step of cartographic generalization, even if
the representation process is still far from being well mastered in the field of
automatic cartographic generalization.
For these reasons, our model is closely related to Nyerges' view of cartographic
generalization 0 which splits generalization in two phases: <(Geographical
information abstraction mainly concerns managing geographical meaning in
databases, and map generalization mainly concerns structuring map presentations>>,

4 Structuring Knowledge for Its Acquisition

The distinction enhanced between abstraction and representation is necessary for
efficient knowledge acquisition in cartographic generalization. Because of space
limitation we do not detail this section. We only quote the different types of
knowledge involved in these two processes.



644 S. Mustibre, L. Saitta, and J.-D. Zucker

One the one hand, the knowledge abstraction process is seen as the identification
of geographic objects that are relevant to the user needs (and need to be drawn). It
manipulates 1/ geographic knowledge (e.g. town model) which could be acquired
through geographers interview 2/ perception knowledge (Gestalt) which has been a
lot studied in psychology and cartography 3/ space analysis knowledge, which should
be acquired in computers through space analysis tools (e.g. Delaunay triangulation).

One the other hand, representation knowledge manipulates
1. graphic knowledge to define when a map is legible, which is well known by

cartographers
2. drawing knowledge to define how to represent an abstracted object and which

could be acquired through cartographers interviews or manually drawn maps
analysis

3. algorithm knowledge which could be acquired through cartographers drawing
analysis by machine learning techniques.

5 Conclusion

One of the key problems limiting the automation of cartographic knowledge
acquisition lies in the heterogeneity of the knowledge that is involved throughout the
process of creating maps from geographic databases. In this article, we have adapted
an Artificial Intelligence model to distinguish two fundamental transformations used
in the field of cartography, namely abstraction and representation of knowledge.
The first contribution of this work is therefore to propose a classification of
cartographic and geographic knowledge along this dimension in order to facilitate its
acquisition.

References

1. Brassel K., Weibel R. (1988). A review and conceptual framework of automated
map generalization. International Journal Geographical Information Systems, 2,
229-244.

2. Clancey W. (1983). The Epistemology of a rule-based expert system- A
framework for Explanation. Artificial Intelligence, 20.

3. Ginsberg, (1997). Essentials of Artificial Intelligence, Morgan Kaufmann.
4. Nyerges (1991) Representing Geographic Meaning in Map Generalization,

Longman Scientific & Technical, pp 59-85.
5. Saitta, L. and J.-D. Zucker (1998). Semantic Abstraction for

ConceptRepresentation and Learning. Symposium on Abstraction, Reformulation
and Approximation (SARA-98), Asilomar Conference Center, Pacific Grove,
California.



Author Index

Aha, David W. 358 de Groeve, Michelle 426

Ali, Abdelbaset 444 Grzymala-Busse, Jerzy W. 148

Alsaffar, Ali H. 435,453
Altamirano, E. 534 Hacid, Mohand-Said 77

An, Aijun 119 Haddad, Sami S. 444

Arcos, Josep-Lluis 601 Hafez, Alaaeldin 130

Armani, B. 68 Hamilton, Howard J. 266,562
Han, L. 283

Badia, Antonio 321 Henschen, Lawrence 389

Barber, Brock 562 Higashiyama, Michiko 237

Barruffi, R. 228 Hoffmann, J6rg 216

Bassett, Jeffrey K. 157
Bertino, E. 68 Johnson, C.A. 377

Boisson, C~cile 463
Botta, Marco 31 Karimi, Kamran 266

Boussouf, M. 139 Kashmirian, Jennifer 205

Breslow, Leonard A. 358 Kawasaki, Shuhei 176

Butz, C.J. 247 Kim, Minkoo 453
Kitchin, D.E. 610

Catania, B. 68 Kostoff, Ronald N. 86

Cercone, Nick 119 Kramer, Stefan 426

Chen, Jianhua 331 Kryszkiewicz, Marzena 505

Chu, Wesley W. 400 Kwong, Renfrew W.-w. 59

Croft, W. Bruce 1
Cruz, Alfredo 186 Lakkaraju, Sai K. 525

Cundell, Diana R. 349 Laradi, D. 68
Lanza, Antonietta 40

De Jong, Kenneth A. 157 Lin, Tsau Y. 486

Demolombe, Robert 515 Lin, Weiqiang 49

Deogun, Jitender S. 435,453,495 Lisi, Francesca A. 40

Desai, Bipin C. 444 Liu, Chunnian 591

Dupin de Saint Cyr, F. 543 Liu, D. 610
Liu, Jiming 474

El-Kwae, Essam A. 97 Louie, Eric 486

Elomaa, Tapio 552 Lowden, Barry G.T. 256

Emmerman, Philip J. 12 Lu, James J. 301

Escalada-Imaz, G. 534
Esposito, Floriana 40, 109 Malerba, Donato 40

Maluf, David A. 368,474

Fanizzi, N. 109 Marin, B. 68

Ferilli, S. 109 Matwin, Stan 274,629

Fernandes, Chris 389 McCluskey, T.L. 610

Fu, Ada W.-c. 59 Michalski, Ryszard 21
Milano, M. 228

Giordana, Attilio 31 Morin, Johanne 274

Gordon, Diana F. 166 Movva, Uma Y. 12



646 Author Index

Mukaidono, Masao 311 Sanders, Robyn 349
Mufioz-Avila, Hector 358 Saquer, Jamil 495
Murray, Neil V. 301 Sebag, Michele 31
Mustibre, S~bastien 638 Semeraro, G. 109

Sever, Hayri 435
Ninomiya, Tomoko 311 Shah, Pankaj 148
Nlifiez, Arturo 196 Shahmehri, Nahid 463

Silibovsky, Randy S. 349
Ohsuga, Setsuo 176, 237, 591, 619 Simpson, R.M. 610
Oommen, B.J. 629 Skowron, A. 283
Orgun, Mehmet A. 49 Spears, William M. 166
Ouerd, M. 629 Suraj, Z. 283
Oussalah, Mourad 340 Sztandera, Les M. 349

Pacholczyk, D. 543 Tamzalit, Dalila 340
Padgham, Lin 205 Tanaka, Katsuaki 237
Park, Sanghyun 400 Tang, Jian 59
Peters, J.F. 283 Torroni, P. 228
Pfahringer, Bernhard 426 Toumani, Farouk 77
del Pilar Pozos Parra, Maria 515 Tsumoto, Shusako 573
Plaza, Enric 601 Tsymbal, Alexey 417
Puuronen, Seppo 417

Weber, Rosina 358
Quafafou, M. 139 Widmer, Gerhard 426
Ouerd, M. 629 Wieczorkowska, Alicja 292

Wiederhold, Gio 368
Raghavan, Vijay V. 453 Wong, S.K.M. 247
Ramanna, S. 283
Rag, Zbigniew W. 582 Yamauchi, Hiroyuki 619
Riff, Marfa-Cristina 196
Robinson, Jerome 256 Zarri, G.P. 68
Rosenthal, Erik 301 Zhang, Yan 525
Rousu, Juho 552 Zhong, Ning 591
Rybinski, Henryk 505

Zucker, Jean-Daniel 409, 638
Saitta, Lorenza 31, 409, 638 Zytkow, Jan M. 582



Lecture Notes in Artificial Intelligence (LNAI)

Vol. 1791: D. Fensel, Problem-Solving Methods. XII, 153 Vol. 186 1: J. Lloyd, V. Dahl, U. Furbach, M. Kerber, K.-
pages. 2000. K, Lau, C. Palamidessi, L. Moniz Pereira, Y. Sagiv, P.J.

Vol. 1792: E. Lamma, P. Mello (Eds.), AI*IA 99: Ad- Stuckey (Eds.), Computational Logic-CL2000. Proceed-

vances in Artificial Intelligence. Proceedings, 1999. XI, ings, 2000. XIX, 1379 pages.

392 pages. 2000. Vol. 1864: B. Y. Choueiry, T. Walsh (Eds.), Abstraction,

Vol. 1793: 0. Cairo, L.E. Sucar, F.J. Cantu (Eds.), MICAI Reformulation, and Approximation. Proceedings, 2000.

2000: Advances in Artificial Intelligence. Proceedings, X, 333 pages. 2000.

2000. XIV, 750 pages. 2000. Vol. 1865: K.R. Apt, A.C. Kakas, E. Monfroy, F. Rossi

Vol. 1794: H. Kirchner, C. Ringeissen (Eds.), Frontiers (Eds.), New Trends Constraints. Proceedings, 1999. X,

of Combining Systems. Proceedings, 2000. X, 291 pages. 339 pages, 2000.

2000. Vol. 1866: J. Cussens, A. Frisch (Eds.), Inductive Logic

Vol. 1804: B. Azvine, N. Azarmi, D.D. Nauck (Eds.), Programming. Proceedings, 2000. X, 265 pages. 2000.

Intelligent Systems and Soft Computing. XVII, 359 pages. Vol. 1867: B. Ganter, G.W. Mineau (Eds.), Conceptual
2000. Structures: Logical, Linguistic, and Computational Issues.

Vol. 1805: T. Terano, H. Liu, A.L.P. Chen (Eds.), Knowl- Proceedings, 2000. XI, 569 pages. 2000.

edge Discovery and Data Mining. Proceedings, 2000. XIV, Vol. 1881: C. Zhang, V.-W. Soo (Eds.), Design and Ap-
460 pages. 2000. plications of Intelligent Agents. Proceedings, 2000. X,

Vol. 1809: S. Biundo, M. Fox (Eds.), Recent Advances in 183 pages. 2000.

Al Planning. Proceedings, 1999. VIII, 373 pages. 2000. Vol. 1886: R. Mizoguchi, J. Slaney (Eds.), PRICAI 2000:

Vol. 1810: R. L6pez de Msintaras, E. Plaza (Eds.), Ma- Topics in Artificial Intelligence. Proceedings, 2000. XX,

chine Learning: ECML 2000. Proceedings, 2000. XII, 460 835 pages. 2000.

pages. 2000. Vol. 1898: E. Blanzieri, L. Portinale (Eds.), Advances in

Vol. 1813: P.L. Lanzi, W. Stolzmann, S.W. Wilson (Eds.), Case-Based Reasoning. Proceedings, 2000. XII, 530

Learning Classifier Systems. X, 349 pages. 2000. pages. 2000.

Vol. 1821: R. Loganantharaj, G. Palm, M. All (Eds.), Vol. 1889: M. Anderson, P. Cheng, V. Haarslev (Eds.),

Intelligent Problem Solving. Proceedings, 2000. XVII, Theory and Application of Diagrams. Proceedings, 2000.

751 pages. 2000. XII, 504 pages. 2000.

Vol. 1822: H.H. Hamilton, Advances in Artificial Intelli- Vol. 1891: A.L. Oliveira (Ed.), Grammatical Inference:

gence. Proceedings, 2000. XII, 450 pages. 2000. Algorithms and Applications. Proceedings, 2000. VIII,
313 pages. 2000.

Vol. 1831: D. McAllester (Ed.), Automated Deduction -

CADE-17. Proceedings, 2000. XIII, 519 pages. 2000. Vol. 1902: P. Sojka, I. Kopefek, K. Pala (Eds.), Text,
Speech and Dialogue. Proceedings, 2000. XIII, 463 pages.

Vol. 1834: 3.-C. Heudin (Ed.), Virtual Worlds. Proceed- 2000.
ings, 2000. XI, 314 pages. 2000. Vol. 1904: S.A. Cerri, D. Dochev (Eds.), Artificial Intel-

Vol. 1835: D. N. Christodoulakis (Ed.), Natural Language ligence: Methodology, Systems, and Applications. Pro-
Processing - NLP 2000. Proceedings, 2000. XII, 438 ceedings, 2000. XI, 366 pages. 2000.
pages. 2000. Vol. 1910: D.A. Zighed, J. Komorowski, J. Zytkow (Eds.),

Vol. 1836: B. Masand, M. Spiliopoulou (Eds.), Web Us- Principles of Data Mining and Knowledge Discovery.
age Analysis and User Profiling. Proceedings, 2000. V, Proceedings, 2000. XV, 701 pages. 2000.
183 pages. 2000. Vol. 1919: M. Ojeda-Aciego, I.P. de Guzman, G. Brewka,

Vol. 1847: R. Dyckhoff (Ed.), Automated Reasoning with L. Moniz Pereira (Eds.), Logics in Artificial Intelligence.
Analytic Tableaux and Related Methods. Proceedings, Proceedings, 2000. XI, 407 pages. 2000.
2000. X, 441 pages. 2000. Vol. 1925: J. Cussens, S. Dieroski (Eds.), Learning Lan-

Vol. 1849: C. Freksa, W. Brauer, C. Habel, K.F. Wender guage in Logic. X, 301 pages 2000.
(Eds.), Spatial Cognition II. XI, 420 pages. 2000. Vol. 1932: Z.W. RaL, S. Ohsuga (Eds.), Foundations of
Vol. 1856: M. Veloso, E. Pagello, H. Kitano (Eds.), Intelligent Systems. Proceedings, 2000. XII, 646 pages.
RoboCup-99: Robot Soccer World Cup III. XIV, 802
pages. 2000. Vol. 1934: J.S. White (Ed.), Envisioning Machuine Trans-

lation in the Information Future. Proceedings, 2000. XV,
Vol. 1860: M. Klusch, L. Kerschberg (Eds.), Coopera- 254 pages. 2000.
tive Information Agents IV. Proceedings, 2000. XI, 285
pages. 2000. Vol. 1937: R. Dieng, 0. Corby (Eds.), Knowledge Engi-

neering and Knowledge Management. Proceedings, 2000.
XIII, 457 pages. 2000.



Lecture Notes in Computer Science

Vol. 1899: H.-H. Nagel, F.J Perales L6pez (Eds.), Ar- Vol. 1919: M. Ojeda-Aciego, I.P. de Guzman, G. Brewka,
ticulated Motion and Deformable Objects. Proceedings, L. Moniz Pereira (Eds.), Logics in Artificial Intelligence.
2000. X, 183 pages. 2000. Proceedings, 2000. XI, 407 pages. 2000. (Subseries

Vol. 1900: A. Bode, T. Ludwig, W. Karl, R. Wismdiller LNAI).

(Eds.), Euro-Par 2000 Parallel Processing. Proceedings, Vol. 1920: A.H.F. Launder, S.W. Liddle, V.C. Storey
2000. XXXV, 1368 pages. 2000. (Eds.), Conceptual Modeling - ER 2000. Proceedings,

Vol. 1901: 0. Etzion, P. Scheuermann (Eds.), Coopera- 2000. XV, 588 pages. 2000.

tive Information Systems. Proceedings, 2000. XI, 336 Vol. 1921: S.W. Liddle, H.C. Mayr, B. Thalbeim (Eds.),
pages, 2000. Conceptual Modeling for E-Business and the Web. Pro-

Vol. 1902: P. Sojka, I. Kopefek, K. Pala (Eds.), Text, ceedings, 2000. X, 179 pages. 2000.

Speech and Dialogue. Proceedings, 2000. XIII, 463 pages. Vol. 1922: J. Crowcroft, J. Roberts, M.I. Smirnov (Eds.),
2000. (Subseries LNAI). Quality of Future Internet Services. Proceedings, 2000.

Vol. 1903: S. Reich, K.M. Anderson (Eds.), Open XI, 368 pages. 2000.

Hypermedia Systems and Structural Computing. Proceed- Vol. 1923: J. Borbinha, T. Baker (Eds.), Research and
ings, 2000. VIII, 187 pages. 2000. Advanced Technology for Digital Libraries. Proceedings,

Vol. 1904: S.A. Cerri, D. Dochev (Eds.), Artificial Intel- 2000. XVII, 513 pages. 2000.

ligence: Methodology, Systems, and Applications. Pro- Vol. 1924: W. Taha (Ed.), Semantics, Applications, and
ceedings, 2000. XII, 366 pages. 2000. (Subseries LNAI). Implementation of Program Generation. Proceedings,

Vol. 1905: H. Scholten, M.J. van Sinderen (Eds.), Inter- 2000. VIII, 231 pages. 2000.

active Distributed Multimedia Systems and Telecommu- Vol. 1925: J. Cussens, S. Dieroski (Eds.), Learning Lan-
nication Services. Proceedings, 2000. XI, 306 pages. guage in Logic. X, 301 pages 2000. (Subseries LNAI).
2000. Vol. 1926: M. Joseph (Ed.), Formal Techniques in Real-

Vol. 1906: A. Porto, G.-C. Roman (Eds.), Coordination Time and Fault-Tolerant Systems. Proceedings, 2000. X,
Languages and Models. Proceedings, 2000. IX, 353 pages. 305 pages. 2000.
2000. Vol. 1927: P. Thomas, H.W. Gellersen, (Eds.), Handheld

Vol. 1907: H. Debar, L. M6, S.F. Wu (Eds.), Recent and Ubiquitous Computing. Proceedings, 2000. X, 249
Advances in Intrusion Detection. Proceedings, 2000. X, pages. 2000.
227 pages. 2000. Vol. 1931: E. Horlait (Ed.), Mobile Agents for Telecom-

Vol. 1908: J. Dongarra, P. Kacsuk, N. Podhorszki (Eds.), munication Applications. Proceedings, 2000. IX, 271
Recent Advances in Parallel Virtual Machine and Mes- pages. 2000.
sage Passing Interface. Proceedings, 2000. XV, 364 pages. Vol. 1766: M. Jazayeri, R.G.K. Loos, D.R. Musser (Eds.),
2000. Generic Programming. Proceedings, 1998. X, 269 pages.

Vol. 1910: D.A. Zighed, 1. Komorowski, J. Zytkow (Eds.), 2000.
Principles of Data Mining and Knowledge Discovery. Vol. 1791: D. Fensel, Problem-Solving Methods. XII, 153
Proceedings, 2000. XV, 701 pages. 2000. (SubseriesLNAI).pages. 2000. (Subseries LNAI).
LNAI). Vol. 1932: Z.W. Rag, S. Ohsuga (Eds.), Foundations of
Vol. 1912: Y. Gurevich, P.W. Kutter, M. Odersky, L. Intelligent Systems. Proceedings, 2000. XII, 646 pages.
Thiele (Eds.), Abstract State Machines. Proceedings, (Subseries LNAI).
2000. X, 381 pages. 2000. . Vol. 1933: R.W. Brause, E. Haniseh (Eds.), Medical Data

Vol. 1913: K. Jansen, S. Khuller (Eds.), Approximation Analysis. Proceedings, 2000. XI, 316 pages. 2000.
Algorithms for Combinatorial Optimization. Proceedings,
2000, IX, 275 pages. 2000. Vol. 1934: J.S. White (Ed.), Envisioning Machine Trans-

lation in the Information Future. Proceedings, 2000. XV,

Vol. 1914: M. Herlihy (Ed.), Distributed Computing. Pro- 254 pages. 2000. (Subseries LNAI).
ceedings, 2000. VIII, 389 pages. 2000. Vol. 1937: R. Dieng, 0. Corby (Eds.), Knowledge Engi-
Vol. 1917: M. Schoenauer, K. Deb, G. Rudolph, X. Yao, neering and Knowledge Management. Proceedings, 2000.
E. Lutton, J.J. Merelo, H.-P. Schwefel (Eds.), Parallel XIII, 457 pages. 2000. (Subseries LNAI).
Problem Solving from Nature - PPSN VI. Proceedings,
2000. XXI, 914 pages. 2000. Vol. 1938: S. Rao, K.I. Sletta (Eds.), Next Generation

Networks. Proceedings, 2000. XI, 392 pages. 2000.
Vol. 1918: D. Soudris, P. Pirsch, E. Barke (Eds.), Inte-

grated Circuit Design. Proceedings, 2000. XII, 338 pages. Vol. 1939: A. Evans, S. Kent (Eds.), U - The Uni-

2000. fied Modeling Language. Proceedings, 2000. XIV, 572
pages. 2000.



Lecture Notes in Artificial Intelligence

This subseries of Lecture Notes in Computer Science reports new devel-
opments in artificial intelligence research and teaching, quickly, informally,
and at a high level. The timeliness of a manuscript is more important than its
formn, which may be unfinished or tentative. The type of material considered
for publication includes

- drafts of original papers or monographs,

- technical reports of high quality and broad interest,

- advanced-level lectures,

- reports of meetings, provided they are of exceptional interest and focused on
a single topic.

Publication of Lecture Notes is intended as a service to the computer science
community in that the publisher Springer-Verlag offers global distribution of
documents which would otherwise have a restricted readership. Once
published and copyrighted, they can be cited in the scientific literature.

Manuscripts

Lecture Notes are printed by photo-offset from the master copy delivered in
camera-ready form. Manuscripts should consist of no fewer than 100 and
preferably no more than 500 pages of text. Authors of monographs and editors
of proceedings volumes receive 50 free copies of their book. Manuscripts
should be printed with a laser or other high-resolution printer onto white paper
of reasonable quality. To ensure that the final photo-reduced pages are easily
readable, please use one of the following formats:

Font size Printing area Final size
(points) (cm) (inches) M%

10 12.2 x 19.3 4.8 x 7.6 100
12 15.3 x24.2 6.0Ox 9.5 80

On request the publisher will supply a leaflet with more detailed technical

instructions or a TEX macro package for the preparation of manuscripts.

Manuscripts should be sent to one of the series editors or directly to:

Springer-Verlag, Computer Science Editorial I1I, Tiergartenstr. 17,
D-69121 Heidelberg, Germany IiSBN 3-540-41094-5

9 783540 410942

http://Www.springer.de


